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Abstract— Smile detection from unconstrained facial images
is a specialized and challenging problem. As one of the
most informative expressions, smiles convey basic underlying
emotions, such as happiness and satisfaction, which lead to
multiple applications, e.g., human behavior analysis and
interactive controlling. Compared to the size of databases for
face recognition, far less labeled data is available for training
smile detection systems. To leverage the large amount of
labeled data from face recognition datasets and to alleviate
overfitting on smile detection, an efficient transfer learning-
based smile detection approach is proposed in this paper. Unlike
previous works which use either hand-engineered features or
train deep convolutional networks from scratch, a well-trained
deep face recognition model is explored and fine-tuned for
smile detection in the wild. Three different models are built
as a result of fine-tuning the face recognition model with
different inputs, including aligned, unaligned and grayscale
images generated from the GENKI-4K dataset. Experiments
show that the proposed approach achieves improved state-of-
the-art performance. Robustness of the model to noise and blur
artifacts is also evaluated in this paper.

I. INTRODUCTION

A smile is considered the most common human facial
expression to convey emotions of joy, happiness, and sat-
isfaction ([1]). Smile detection has multiple applications in
different domains, such as human behavior analysis ([2]),
photo selection ([3]), product rating ([4]), and patient mon-
itoring ([5]). Recent longitudinal studies have used smile
information from images to predict future social and health
outcomes ([6], [7], [8]). For example, [8] showed that the
smile intensity in Facebook profile pictures is correlated
with satisfying social relationships and is a predictor of self-
reported life satisfaction after 3.5 years. Another application
is related to the smile shutter function of modern consumer
cameras. In 2007, Sony released its first camera Cyber-
shot DSC T200 equipped with a smile shutter function
that perceives three human faces in the scene and takes
a photograph if a smile is perceived. Similarly, in 2011,
Samsung released its first smart phone with a smile shutter
functionality, the Samsung Galaxy mini S5570. It is reported
that the smile shutter in both the Sony and the Samsung
devices is only capable of detecting big smiles but unable
to detect slight smiles ([5]). All these applications motivate
the development of robust and automatic smile detection
algorithms.

During the last two decades, the image processing and
computer vision communities have developed many smile
detection algorithms ([9]). For example, in [10], local binary
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patterns (LBP) were used as main image descriptors for smile
detection. The authors reported a classification accuracy of
90% using support vector machines (SVM) and a small
dataset of 5781 images. A smile detector based on the Viola-
Jones cascade classifier was proposed in [11]. The detector
achieved a classification accuracy of 96.1% on a small testing
dataset of 4928 images. Although the classification accuracy
was high, the employed images were mainly frontal and were
captured under tightly controlled conditions.

An important contribution to the field of automatic smile
detection was introduced by [9]. They collected the GENKI-
4K database, which contains 4000 real-life face images,
downloaded from publicly available Internet repositories,
which have been labeled as either smiling or non-smiling by
human coders. The relevance of this dataset is that it contains
a large number of images that span a wide range of imaging
conditions and camera models, as well as variability in
ethnicity, gender, age, and background. Prior to the GENKI-
4K dataset, the employed datasets for smile detection were
overly constrained and led to non-generalizable results. The
GENKI-4K database has become the standard dataset for
evaluating smile recognition algorithms in the wild. For
example, [12] proposed a smile detection approach that
uses intensity differences between pixels in the grayscale
representation of the GENKI-4K face images as features.
They used AdaBoost to choose and combine weak classifiers
and reported a classification accuracy of 88%.

Among the latest algorithms for smile detection are
the convolutional neural networks (CNN)-based algorithms,
which learn hierarchical feature representations with higher
level features formed by the composition of lower level
features ([13]). The high classification accuracy achieved by
CNNs has led them to become the state-of-the-art in smile
detection in the wild. For example, in [14], a CNN archi-
tecture of 4 convolutional layers and 1 fully-connected layer
was trained from scratch for smile detection. The authors
achieved a classification accuracy of 94.6%, which is greater
than any accuracy attained by previous methods on the
GENKI-4K dataset. Similarly, [15] proposed to use a CNN
for smile detection. They used model selection for choosing
the CNN parameters and used both the face and mouth
regions as inputs. They used the DISFA database ([16]),
whose images were captured under laboratory-controlled
conditions. A CNN architecture, referred to as Smile-CNN,
was recently proposed by [17] to perform smile detection.
The architecture consists of 3 convolutional layers and 1
fully-connected layer, and was trained from scratch on im-
ages from the GENKI-4K dataset. The authors attained an
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Fig. 1. Example of a CNN architecture.

average classification accuracy of 92.4% and 91.8% using an
SVM and an AdaBoost classifier, respectively.

In this paper, we introduce a CNN-based approach that
uses transfer learning to achieve a classification accuracy
of 95.38% on the GENKI-4K dataset, which is greater
than that obtained by previous CNN-based smile recognition
methods. Specifically, our contributions include the fine-
tuning of the VGG-face model ([18]) with images from
the GENKI-4K dataset, incorporation of face alignment to
enhance the performance of the CNN model, and evaluation
of the model robustness to image artifacts, such as noise
and blur. The motivation for fine-tuning a pre-trained model
is that available datasets for smile recognition are small to
train a deep neural network from scratch. Even the GENKI-
4K dataset has a limited size of 4000 images, which differs
from the large-scale datasets typically used to train CNNs
from scratch, which are in the order of millions of images
([18], [19]).

II. BACKGROUND

Remarkable progress has been made in image recognition
in recent years, mainly due to the availability of large-scale
labeled datasets, modern graphics processors, the revival of
deep CNNs, and the capability of CNNs to enable transfer
learning. This section briefly describes CNNs and transfer
learning.

A. Convolutional Neural Networks

In the context of visual recognition, a CNN is a type
of feed-forward neural network that learns image features
from pixels through convolutions, matrix multiplications, and
nonlinear transformations, constructing a non-linear mapping
between the input and the output. The lower convolutional
layers extract and combine local features from the input
image, and the top convolutional layers are able to learn more
complicated structures by combining features from previous
layers. Fully-connected layers convert the features of the
top convolutional layers into a 1-dimensional vector that is
categorized by a trainable classifier. CNNs are trained using
backpropagation ([20]). Fig. 1 illustrates, as an example,
a CNN architecture of 4 convolutional layers and 1 fully-
connected layer.

Feature learning for images is not a trivial problem be-
cause there are scale, orientation, and position variations for
individual images. To mitigate for the high variability in
the data and ensure some degree of scale, translation, and

orientation invariance, CNNs combine local receptive fields,
shared weights, and downsampling. Local receptive fields
mean that a layer receives inputs from a set of units located
in a small neighborhood in the previous layer, which allow
neurons to extract primitive visual features, such as oriented
edges and corners. Since units in a layer are organized in
planes, weight sharing means that units within a plane share
the same set of weights and perform the same operation on
different parts of the image. Such planes and set of weights
are usually referred to as feature maps and filter banks,
respectively.

The filtering operation performed by a feature map is
equivalent to discrete convolution, which earned the CNN its
name. Apart from enforcing shift-invariance, weight sharing
is essential for reducing the number of trainable parameters,
which otherwise may grow very rapidly for high-dimensional
inputs and lead to intractable networks. Downsampling refers
to the introduction of layers to reduce the resolution of the
feature maps, which in turn reduces the sensitivity to small
translations and distortions. A typical downsampling tech-
nique is known as max-pooling and consists of computing
the maximum of a local patch of units in one feature map.
A standard CNN architecture contains four types of layers:
convolutional, fully-connected, activation, and pooling.

B. Transfer learning

Two difficulties of training CNNs are the high number of
needed training samples and annotations and the long time
required to fully train the networks ([21]). There are many
applications that suffer from deficit of training samples, and
therefore, fully training a CNN becomes impractical for those
cases. For example, medical imaging applications.

The concept of transfer learning, as applied to visual
recognition tasks, refers to transferring image representations
learned with CNNs on large datasets to other visual recog-
nition tasks with limited training data ([22]). The intuition
behind this idea is that convolutional layers provide generic
mid-level image representations that can be transferred to
new tasks. The natural hierarchical feature representation
of CNNs, going from low-level features to more complex
features, allows features to be shared between unrelated
tasks.

Features learned from large-scale datasets, e.g., ImageNet,
can replace hand-crafted features in other tasks. Specifically,
the process starts by removing the last fully-connected layer
and then, use the rest of the CNN as a fixed feature extractor
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Fig. 2. System diagram. Original facial images are first detected and aligned, then fed to the CNN model for classification into two categories: smile and
non-smile.

for the new dataset. Alternatively, the features learned from
large-scale datasets can serve as a better weight initialization
for networks being trained with limited data. This process is
known as fine-tuning and can be performed in two different
ways. That is, either all the layers of the CNN can be fine-
tuned or the high-level portion of the CNN can be fine-tuned
while some of the earlier layers can be kept fixed to prevent
overfitting. The motivation for fine-tuning is that the low-
level features of a CNN contain more generic features, e.g.,
edge detectors, while higher-level features become more
specific to the given task.

III. METHODS

This section describes the face detection and alignment
methods used in our experiments to preprocess the raw facial
images, and the details for fine-tuning the VGG-face model.
The pipeline of the method is shown in Fig. 2.

A. Preprocessing

Faces are first detected using the method described in [23].
The motivation for using this method is that it provides facial
landmarks which can be used for face alignment via a 2D
affine transformation where the left and right eye corners of
all the images are aligned to the same positions. The next step
is to crop and rescale the face regions to 256 × 256 pixels.
Samples of cropped and aligned face patches are shown in
Fig. 2.

Smile detection requires the modeling of subtle and local-
ized variations between images. By eliminating some of the
other type of variability in the data that is not relevant for
smile detection, e.g., head pose variations, face alignment is
expected to help the network better learn the optimal features
for smile detection.

B. VGG Net

The 16-layer VGG architecture was presented in [21] as a
new architecture that bids the performance of AlexNet ([19])
in the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). To this end, the authors increased the depth
of AlexNet by adding more convolutional layers and used

smaller convolution filters to keep the number of parameters
tractable.

The 16-layer VGG architecture is as follows. The input to
VGG is a fixed-size RBG image of 224×224 pixels. All the
convolutional layers have a fixed small receptive field which
is 3× 3. The convolution stride and the spatial padding are
both fixed to 1 pixel. Each convolutional layer is followed
by a Rectified Linear Unit (ReLU) layer as in [19]. Spatial
downsampling is performed through max-pooling over a 2×
2 pixel window, with stride 2, after 2 or 3 convolutional
layers. A stack of 13 convolutional layers are followed by
three fully-connected layers, where the first two have 4096
channels each, and the third has a number of channels that
depends on the classification task. The last layer is the soft-
max layer. The activation function for each fully-connected
layer is a rectified linear unit as well.

In [18], the VGG-face model was presented as the result of
training the 16-layer VGG architecture on a very large-scale
dataset for face recognition. The dataset contained 2.6M
images of 2.6K celebrities and public figures. The VGG-
face model became the state-of-the-art for face recognition
on the YouTube Faces dataset.

C. Fine-tuning

The architecture of the VGG-face model is modified by
changing the number of neurons in the last fully-connected
layer to 2, indicating a binary classification having as targets
smile and non-smile facial expressions. With the exception of
the last fully-connected layer, the modified architecture is ini-
tialized with the VGG-face model ([18]), which is expected
to be better than random Gaussian weights initialization
since it was trained on 2.6M facial images. The last fully-
connected layer is initialized with weights sampled from a
Gaussian distribution of zero mean and variance 1× 10−4.

Because the features learned from CNN layers typically
correspond to generic features, such as contours and edges,
the weights of all the convolutional layers are kept the same
as in the VGG-face model, while the weights of the first
two fully-connected layers are fine-tuned and the last fully-
connected layer is trained from scratch.
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Fig. 3. Examples of smiling (top two rows) and non-smiling (bottom two
rows) faces in the wild. Images are from the GENKI-4K database.

The goal is to train the model that minimizes the average
error of the final soft-max layer. The learning parameters
of the model, such as learning rate and weight decay of
the network, are set the same as in the VGG-face model,
then gradually adjusted based on grid search. As a result,
all the model learning parameters are the same as in the
VGG-face model except the initial learning rate, which is
scaled by a factor of 10. More precisely, the learning rate is
initially set to 1 × 10−3 and then decreased by a factor of
10 when the accuracy on the validation set stops increasing.
The weight decay coefficient is set to 5 × 10−4. Stochastic
gradient descent is used to optimize the network with mini-
batches of 64 samples and momentum coefficient of 0.9.

The training images are rescaled to 256 × 256 and ran-
domly cropped to 224 × 224 patches to generate the input
to the network. The training data is further augmented by
flipping the images horizontally with 50% probability.

IV. EXPERIMENTAL RESULTS

This section describes the experiments that validate the
performance of the fine-tuned VGG-face model for smile
detection using three different inputs, including aligned,
unaligned and grayscale images generated from the GENKI-
4K dataset. Evaluation of the models is performed in terms
of classification accuracy and robustness to noise and blur
artifacts. All the experiments were carried on 2 NVIDIA
K40C GPUs, each with 12GB GDDR5.

A. Database

The VGG-face model is fine-tuned and tested on the
GENKI-4K ([9]) database. The images were taken by or-
dinary people for their own purpose, thus resulting in a wide
range of imaging conditions, both outdoors and indoors, as
well as variability in illumination, pose (yaw, pitch and roll

TABLE I
GENKI-4K PARTITION FOR CROSS-VALIDATION

Subset 1 2 3 4
Number of smile faces 540 541 540 541
Number of non-smile faces 460 459 460 459

Fig. 4. Random feature maps learned from CNN layers of a sample aligned
face (refer to ([18]) for a description of the VGG layers). First row: 2
feature maps learned from conv1 2, each feature map of size 224 × 224.
Second row: 4 feature maps learned from conv2 2, each feature map of size
112× 112. Third Row: 8 feature maps learned from conv3 3, each feature
map of size 56 × 56. Fourth row: 16 feature maps learned from conv4 3,
each feature map of size 28× 28. Fifth row: 32 feature maps learned from
conv5 3, each feature map of size 14× 14.

parameters of the head of most of the images is within ±20◦

from frontal position), background, age, gender, ethnicity,
facial hair, hat, and glasses. All the images are manually
labeled. GENKI-4K contains 2162 and 1838 smiling and
non-smiling facial images, respectively. Sample images are
shown in Fig. 3.

B. Comparison with state-of-the-art methods

To perform a fair comparison with state-of-the-art meth-
ods, the GENKI-4K dataset is first randomly divided into
four subsets, having 1000 samples each, and then, those
subsets are used for four-fold cross-validation. The number
of smiling faces and non-smiling faces for each fold are
shown in Table. I. Each time, one subset is used for testing
and the other three are used for training. The average
detection rate and the standard deviation of the four-fold
are reported as the final performance. All the images are
preprocessed as described in Section III-A.

As discussed in Section III-C, the weights of all the
convolutional layers are set the same as the VGG-face
model weights because features extracted from CNN layers
are generic features and because the VGG-face model was
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Fig. 5. Features of fc7 layer for 2 smiling faces and 2 non-smiling faces.
Left column: the aligned faces; right column: the values of features extracted
after the fc7 layer, the horizontal and vertical axes correspond to the feature
index and the feature values, respectively.

trained on 2.6M facial images. Sample feature maps from
CNN layers of a smile image are shown in Fig. 4. It can
be seen that low-level convolutional layers generally learn
edges and outlines while the features become more abstract
and sparse for upper layers. The first two and the last fully-
connected layers are fine-tuned and trained from scratch on
the GENKI-4K dataset, respectively. The features of the last
fully-connected layer, fc7 (4096 features), are extracted and
compared for 2 smiling and 2 non-smiling faces in Fig. 5.
As shown in the figure, features within the same class have
similar feature values and trends, despite variations in gender,
illumination and head pose.

The number of weight and bias parameters of the original
VGG-face model is around 138M. However, the number of
trainable parameters of the fine-tuned VGG-face model is
120M since the parameters of all the convolutional layers
are kept fixed during training. Despite having a reduction of
only 13% in the number of parameters, training takes only
30 minutes to converge at 1000 iterations.

The performance of the fine-tuned VGG-face model is
compared with state-of-the-art methods in Table II. These
methods are related to either the extraction of handcrafted
features, such as histogram of oriented gradients (HOG)
and local binary patterns (LBP), or to CNN models trained
from scratch. The proposed fine-tuned VGG-face model
outpeforms all the methods in Table II in terms of classi-
fication accuracy and also exhibits a small variance. It is
worth noting that most of the other methods use classifiers
that are more sophisticated than the softmax classifier, such
as SVM and extreme learning machine (ELM). However,
the representational power of the features learned by CNN
models reduces the need for using sophisticated classifiers.

C. Impact of face alignment and color channels

In a real-world scenario, facial landmarks may be hard
to detect due to occlusion and illumination, resulting in
misaligned faces. Similarly, color images may not always be
available, and we have to content ourselves with grayscale
images. In this section, the impact of face alignment and
color information in the performance of fine-tuned VGG-
face models is evaluated.

Our approach to evaluate the impact of face alignment
requires training and testing the model with the original
unaligned GENKI-4K images using only face detection and
cropping as preprocessing. On the other hand, to evaluate the
impact of color information, the GENKI-4K images are first
preprocessed as described in Section III-A, then converted to
grayscale and fed to the fine-tuned VGG model for training
and testing. Note that since the input of the VGG-face model
requires the three color channels, the same grayscale image
is fed to the red, green, and blue channels to convert a single-
channel image to a 3-channel one.

The same cross-validation partitioning described in Table I
is employed for this experiment and the results are compared
with the classification accuracy attained using the original
GENKI-4K images after cropping and face alignment. As
expected, experimental results (Table III) show that the
models trained with the aligned RGB images perform better
that the models trained with the unaligned and grayscale
images. However, the decrease is small, less than 1%, which
means that the fine-tuned VGG-face model can achieve high
classification accuracies even when the data exhibits high
variability of head poses (within ±20◦ from frontal position)
and loss of color information.

D. Evaluation under image quality distortion

Image distortions, such as image noise and blur, have
demonstrated their power to fool a well-trained deep learning
network ([28], [29]). In this section, the fine-tuned VGG-
face model is evaluated on distorted images to evaluate its
robustness.

Noise in the images may result from using low-quality
camera senors in the real world. Noise is modeled as
Gaussian noise added to each color channel of each pixel
separately. The standard deviation of the noise is varied from
1 to 10 in steps of 1.

Blur may occur either because a camera is not focused
properly on the target of interest or because the target is
moving. A Gaussian kernel with varying standard deviation
from 1 to 10 in steps of 1 is used to blur the images. The size
of the filter window is set to 4 times the standard deviation.
Sample images of noisy and blurred images under different
Gaussian variations are shown in Fig. 6.

The results in Fig. 7 indicate that the fine-tuned VGG-
face model is robust to noise and blur to some degree, given
that the classification accuracy remains high (above 80%)
regardless of the image artifacts. It is worth noting that the
accuracy of blurred images almost stays the same before the
standard deviation of the Gaussian kernel reaches 6.
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE GENKI-4K DATABASE.

Method Features Classifier Accuracy(%)

[24] LBP ELM 85.2
HOG ELM 88.2

[12] LBP SVM 87.1±0.76
Pixel comparison AdaBoost 89.7±0.45

[25] HOG (labeled) SVM 91.8±0.97
HOG (labelled + unlabelled) SVM 92.3±0.81

[17]

Raw pixels SVM 84.0±0.91
Raw pixels AdaBoost 80.0±0.76
Learned features SVM 92.4±0.59
Learned features AdaBoost 91.8±0.95

[26] Guassian SVM 93.2±0.92

[14] CNN-Basic Softmax 93.6±0.47
CNN-2Loss Softmax 94.6±0.29

[27]

HOG31 + GSS + Raw pixel AdaBoost 92.51±0.40
HOG31 + GSS + Raw pixel Linear SVM 94.28±0.60
HOG31 + GSS + Raw pixel Linear ELM 94.21±0.35
HOG31 + GSS + Raw pixel Adaboost + Linear SVM 94.56±0.62
HOG31 + GSS + Raw pixel Adaboost + Linear ELM 94.61±0.53

The proposed method Fine-tuned VGG-face model Softmax 95.38±0.52

Fig. 6. Sample images of noisy and blurred images. Top row: noisy images with the standard deviation of Gaussian noise varying from 1 to 10 in steps
of 1. Bottom row: blurred images with the standard deviation of a Gaussian kernel varying from 1 to 10 in steps of 1.

TABLE III
CLASSIFICATION ACCURACY (%) ON UNALIGNED FACIAL IMAGES AND

ALIGNED GRAYSCALE FACIAL IMAGES

Fold1 Fold2 Fold3 Fold4 Avg
RGB & aligned 95.0 95.5 95.7 95.3 95.4
RGB & unaligned 94.8 95.2 95.1 94.1 94.8
Grayscale & aligned 94.4 95.1 94.9 95.0 94.9

V. CONCLUSIONS AND DISCUSSION

A smile detection method based on transfer learning was
presented in this paper. Unlike previous research works
which either perform feature extraction and classification
separately or train a CNN from scratch, we leveraged the
large labeled datasets and well-trained deep learning models
in the face recognition field to generate a CNN model that
achieves improved state-of-the-art on smile detection. The
motivation behind this approach is that the labeled data on
real-world smile detection datasets is scarce compared to
the labeled data on real-world face recognition datasets. For
example, the GENKI-4K dataset has 4K images while the
VGG-face recognition database has 2M images.

It was shown via experiments that the proposed method
outperforms state-of-the-art methods for smile detection in
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Fig. 7. Performance evaluation of the fine-tuned VGG-face model in the
presence of noise and blur artifacts.

terms of classification accuracy. However, transfer learning is
not only important for increasing the classification accuracy,
but it also reduces training time and leads to more robust
systems because it exploits the high variability of large-scale
datasets. For example, it was also shown that models also
achieve high classification accuracy for smile recognition
when fine-tuned and tested on artifact-corrupted images.
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