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Abstract—Face detection is a well-explored problem. Many
challenges on face detectors like extreme pose, illumination, low
resolution and small scales are studied in the previous work.
However, previous proposed models are mostly trained and
tested on good-quality images which are not always the case for
practical applications like surveillance systems. In this paper,
we first review the current state-of-the-art face detectors and
their performance on benchmark dataset FDDB, and compare
the design protocols of the algorithms. Secondly, we investigate
their performance degradation while testing on low-quality
images with different levels of blur, noise, and contrast. Our
results demonstrate that both hand-crafted and deep-learning
based face detectors are not robust enough for low-quality
images. It inspires researchers to produce more robust design
for face detection in the wild.
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I. INTRODUCTION

Face detection has been intensively studied in the past
decades because of its wide applications in face analysis.
As an important processing step for face recognition, a
robust detection algorithm is expected to identify faces under
arbitrary image conditions. Previous work has demonstrated
robustness in face conditions like extreme poses, multi-
ple face scales, and occlusions. However, in the practical
surveillance systems, the face detectors should have the
capability of detecting faces in low-quality images with
distortions like blur, noise and low contrast. Therefore, it
is necessary to evaluate the performance of existing face
detection algorithms on images with various distortions.

Face detection algorithms have evolved from utilizing
hand-crafted features like Haar [1] or SURF [2] to deeply
learned ones. Benefiting from large model capacity, deep
learning methods generally improve the detection of large
variations of faces like extreme poses and heavy occlusions
by learning from large-scale data. A number of approaches
based on deep Convolutional Neural Networks (CNNs) focus
on handling the problem of detecting multi-scale faces,
especially finding tiny faces in the images. To cope well with
multi-scale problem, face detection is usually regarded as a
special case of object detection with only one class. There-
fore, face detection algorithms mostly follow the approaches
of generic object detection and can be categorized into faster
R-CNN [3]/R-FCN [4] family, and SSD [5] family. The
corresponding state-or-the-art algorithms have achieved both
accurate and fast detection on multi-scale faces.

Figure 1: Examples of synthetic low-quality face images.
For blur, we applied Gaussian blur with various standard
deviations. For noise, we utilized additive Gaussian white
noise. We also decrease the range of image pixel values to
lower the brightness and contrast level.

In practical applications like surveillance system, images
containing faces are usually distorted in the process of
acquisition, storage and transmission, causing the image
quality degradation. Although saturating the performance on
high-quality image benchmark like FDDB [6], most popular
face detectors are not evaluated on low-quality images with
distortions like blur or noise. It is shown that deep object
recognition networks trained with high-quality samples are
not reliable enough when being tested on low-quality images
[7]. However, the neural networks of multi-scale designs
may be able to compensate the performance degradation
caused by low-resolution and blur, which inspires us to study
the influence of multi-scale strategies on low-quality face
detection.

In this paper, we investigate the robustness of face de-
tection algorithms on low-quality images from FDDB with
different levels of blur, noise and contrast. Specifically, we
evaluate four representative face detection models: tradi-
tional hand-crafted detectors Viola-Jones Haar AdaBoost [1]
and HoG-SVM [8], and deep learning based models: faster-
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RCNN [9] and S3FD [10]. We illustrate the robustness level
of algorithms varying from features and multi-scale designs.
We hope our results can inspire researchers to propose more
quality-invariant face detectors in the future.

II. FACE DETECTION ALGORITHMS

A. Traditional Methods

Traditional face detection methods [11] are based on
hand-crafted features, and can be categorized into three
classes: cascade methods, deformable parts model (DPM)
[12] and aggregated channel features. For cascade ap-
proaches, Viola-Jones face detector [1] is the milestone work
with AdaBoost cascade scheme using Haar-like features.
After that, more features like SURF [2], HoG [8], and
LBP [13] are investigated on a similar structure of Viola-
Jones detector. Other simpler features like pixel difference
in NPD [14], Joint Cascade [15] and Pico [16] etc. are
developed to improve the computation speed. Another class
of face detection methods based on structured models [17],
[18], [19], [20] apply DPM [12] to cope with the intra-
class variance. Most recently, researchers integrated multiple
hand-crafted features [21] in channels and achieved a higher
accuracy. The representative work includes headhunter [19],
ACF-multiscale [22], and LDCF+ [23] which achieved the
best performance among the traditional methods. These
approaches mostly is able to achieve real-time detection
on CPU, but hand-crafted features lack the robustness to
complicated face variance like pose, expression, occlusion
and illumination. Therefore, these methods may not be
adaptive to low-quality testing samples.

B. Deep Learning Methods

Compared to the methods using hand-crafted features,
deep learning based approaches could successfully capture
large variances of faces when trained on large amounts
of data, thus the most challenging part becomes detecting
groups of tiny faces with variance. To cope well with this
problem, deep learning methods are roughly categorized
into three classes: cascade CNN, faster R-CNN [3] and
SSD [5] based algorithms. Some newly proposed approaches
for generic object detection like YOLO [24], RSA [25],
and UnitBox [26] are also potential base methods for face
detectors.

Cascade CNN [27] was first proposed to address the
problem of high computational cost and high variances of
face detection. The intuition of cascade structure is to reject
simple negative samples at early stages and refine the results
later. Joint Cascade CNN [28] and MTCNN [29] are similar
work except that they applied other facial tasks to enhance
the detection. Zhang et al. proposed an ICC-CNN [30] to
reject samples in different layers within a single CNN. The
advantages of these approaches is the high computation
speed. However, these methods require the usage of dis-
crete image pyramid for multi-scale proposals, and do not

explicitly resolve the problems of finding crowded, tiny and
blurry faces.

Algorithms based on Faster R-CNN [3], [9], [31] or R-
FCN [4], [32] applied a scale-invariant detector, by ex-
tracting features from ROI pooling maps in the higher
layer and deploying detectors on top of that. But detecting
small objects is hard using Faster R-CNN since both the
background and the objects will be projected to the same
pixel position in the high-level feature map. To address
this problem called overlapping receptive field, CMS-RCNN
[33] and Deep-IR [34] integrated features from lower-level
convolutional layers to train the detector. Utilizing low-
level features also results from different visual cues used by
larger and smaller faces. Approaches based on faster R-CNN
achieved an impressive performance, but the computation
speed is relative slow [35].

Algorithms based on SSD [5] trained scale-variant detec-
tors on different layers to take advantages of the multi-scale
feature maps like in SSH [36]. However, according to the
default anchor designs of SSD, it is not suitable for detecting
compact small objects. To address the anchor mismatching
problem and increase the recall rate of tiny faces, S3FD
[10], FaceBoxes [37], Scaleface [38], and HR-ER [39] were
recently proposed by either improving the matching strategy
and anchor densities or assigning layers with specific scale
ranges. Among them, S3FD achieved the state-of-the-art
recall in FDDB [6] dataset.

III. ADVERSARIAL TESTING ON DEEP MODELS

Unluckily, deep networks for image classification tasks
were proved to be sensitive to adversarial examples, which
were generated by adding small perturbations using gradient
methods on purpose [40]. These adversarial examples are
hardly distinguished from the original images by human. In
this case, artifacts like noise, blur, illumination or occlusion
usually cause detrimental effects on the deep network perfor-
mance. Extensive studies have been conducted to evaluate
the effect of image distortions on deep networks [41] or
hand-crafted features [42]. Dodge et al. [7] demonstrated
that VGG16 [43] exhibited the best resilience to the image
distortions compared with other deep models. Liu et al.
[44] attempted to resolve this problem using unsupervised
pre-training and data augmentation, and achieved promising
results.

IV. EXPERIMENTAL SETUP

A. Models

In this section, we introduce the face detectors we con-
sidered for evaluation. The first two models [1], [8] exploit
hand-crafted features. Viola-Jones detector [1] is a simple
cascade model utilizing Haar features. It applied image
pyramid with face templates of fixed size while testing. [8]
applies HoG features. Both of them are efficient for frontal
face detection.



(a) (b) (c)
Figure 2: Evaluation results (ROC curve) of S3FD algorithm on low-quality images. Y-axis indicates the recall and X-axis
represents the numbers of false positive samples. We compare the performance when (a) applying different levels of Gaussian
blur, (b) adding decreasing levels of Gaussian white noise, and (c) adjusting the brightness and contrast of the whole pictures.

(a) (b) (c)

Figure 3: Comparison of evaluation results for all the four models tested. Performance degradation with (a) different levels
of blur, (b) noise, and (c) decreasing brightness and contrast level.

For deep learning models, we select faster R-CNN [9]
and S3FD [10]. Faster R-CNN [3] introduces a region
proposal network (RPN) to predict the positions of objects
using anchor-based methods, and utilizes ROI pooling to
extract features from the proposed regions. Since all the ROI
with different sizes share the same classifier, it is a scale-
invariant detector. The face detection model [9] based on
faster R-CNN is transferred from a pretrained VGG16 [43]
on ImageNet [45], and retrained on WIDER dataset [46].

S3FD [10] is an improved model of SSD [5] with special
designs for finding small faces. Compared to faster R-
CNN, S3FD and SSD utilize the features from multiple
layers of deep networks for multi-scale detections. Mid-
layers from lower-level to higher-level are associated with
pre-defined anchors of doubling scales and stride sizes, and
are connected with the corresponding prediction layers. Thus
it is a scale-variant model. Like faster R-CNN, the backbone
of S3FD is also transferred from a pretrained VGG16 and
further fine-tuned on WIDER Face. We select these two deep
learning models because they represent scale-invariant and
scale-variant detectors respectively, and are both transferred
from a pre-trained VGG16, which is proved to be the most
resilient to image distortions [7].

B. Dataset and Processing

The dataset we utilize to evaluate is the benchmark FDDB
[6]. It contains 5171 faces in totally 2845 images. Each
face is annotated by an ellipse bounding box. Since the
output from most face detectors is rectangular box, we fit
the ellipse using the rectangular boxes before evaluating
the ROC curve. We apply the discrete Receiver Operating
Characteristic (ROC) curve for comparison.

To acquire low-quality images, we process the original
images in FDDB by three types of distortions. Some exam-
ples of the processed images are shown in Fig. 1.

1) Blur: Gaussian blur is applied to reduce the noise
and high-frequency components of the images. Specifically,
two-dimensional Gaussian functions with standard deviation
2, 4 and 6 are utilized to convolve with the images to
form a Gaussian scale space. Subsampling is not applied
to the processed images, thus we do not change the original
resolution. Human is still capable of detecting larger faces
from the images under severe blur.

2) Noise: Gaussian white noise is added to the original
FDDB images. The mean of the noise is zero, and the vari-
ance is set to 0.01, 0.1 and 1 respectively. With the highest
noise level, it becomes harder for human to differentiate
faces from the background pattern.

3) Brightness and Contrast: We limit the pixel values of
the original images by shrinking the ranges. Specifically, we



Figure 4: Detection results of S3FD and faster R-CNN on various levels of blur. S3FD achieves a better robustness for
detecting blurry tiny faces because of utilizing more features from lower-level layers for detection.

simultaneously decrease the brightness and contrast level by
rescaling the pixel values with specific ratios 0.8, 0.5 and
0.2.

V. RESULTS AND DISCUSSIONS

A. Multi-scale Designs and Blur
We first tested the four models on blurry images. Fig. 2

(a) shows ROC of S3FD model evaluated on blurry images.
For S3FD, faster R-CNN, Haar Cascade and HoG, we report
the true positive rate when the false positive samples are
2000, 750, 500, and 500 respectively. The comparison of
each model while testing on images with different levels of
blur is shown in Fig. 3 (a).

We found that both traditional and deep learning methods
are not robust enough to blur testing samples, simply from
the insufficient blurry features in the designed or learned
filter banks. The multi-scale designs of face detection algo-
rithms could not mitigate the negative influence of features,
both for scale-invariant and scale-variant methods. Specifi-
cally, scale-invariant approaches like faster R-CNN applied
the same detector for any scales, theoretically eliminated
the influence of blur or feature resolution. However, faster
R-CNN only extracted features of ROI from one single
higher layer, which was influenced the most by a blurry
input compared with lower layers. It makes detecting smaller
blurry faces harder. Scale-variant detectors like S3FD or
SSD extracted features from multiple scale-specific layers
including the lower layers, which are only slightly influenced
by blur. According to Fig. 3, we observe that S3FD dropped
more slowly than faster R-CNN because of utilizing more
features from lower layers for detecting small faces.

To further verify the above statement, we visualize some
detection results as shown in Fig. 4. The testing images
contain a larger face on the foreground, and multiple blurry
smaller faces on the background. We set the testing threshold
of confidence to 0.1 for both of S3FD and faster R-CNN
to recall more possibilities. Both two models achieved a
satisfactory detection performance for blurry faces, but as the
overall image suffers more severe blur degradation, faster R-
CNN failed to detect small faces when σ = 4, while S3FD
could still find some positive samples.

B. Noise and Contrast

Fig. 3 (b) shows the performance degradation when test-
ing models on synthetic noisy images. We found that the
detection efficiency of all the models are greatly influenced
by additive noises, especially when the variance reaches
1, all the models could not detect any faces. However,
for human, we could still possibly differentiate faces from
background in the second row of Fig. 1. We conjecture that
images with or without noises contain greatly different visual
cues for detection, which confused the pretrained network
using noise-free features. Under this situation, the multi-
scale designs of face detectors will not benefit the detections.

The results of evaluation on low-contrast and dark images
is shown in Fig. 3 (c). Different from the previous two sit-
uations, deep networks or traditional methods demonstrated
better robustness because of the normalization process while
testing.



VI. CONCLUSIONS

In this paper, we made a survey on face detection algo-
rithms, and evaluated the representatives of them: Haar-like
Adaboost cascade and HoG-SVM as traditional methods,
and faster R-CNN and S3FD as deep learning methods on
low-quality images. We tested the performance degradation
of the above models while changing the blur, noise or
contrast level. The experiment results demonstrated that
both hand-crafted and deeply learned features are quite
sensitive to low-quality inputs. And compared to scale-
invariant structure, scale-variant design of neural network
extracting features from multiple layers could benefit the
detection of blurry tiny faces. We hope our results will
inspire more future work of quality-invariant face detectors
for practical applications.
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