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Abstract

Facial action unit (AU) detectors have performed well when trained and tested within the same 

domain. Do AU detectors transfer to new domains in which they have not been trained? To answer 

this question, we review literature on cross-domain transfer and conduct experiments to address 

limitations of prior research. We evaluate both deep and shallow approaches to AU detection 

(CNN and SVM, respectively) in two large, well-annotated, publicly available databases, 

Expanded BP4D+ and GFT. The databases differ in observational scenarios, participant 

characteristics, range of head pose, video resolution, and AU base rates. For both approaches and 

databases, performance decreased with change in domain, often to below the threshold needed for 

behavioral research. Decreases were not uniform, however. They were more pronounced for GFT 

than for Expanded BP4D+ and for shallow relative to deep learning. These findings suggest that 

more varied domains and deep learning approaches may be better suited for promoting 

generalizability. Until further improvement is realized, caution is warranted when applying AU 

classifiers from one domain to another.

I. INTRODUCTION

People communicate emotion, intentions, and physical states using facial expressions. 

Automatic detection of facial expressions is crucial in many areas: mental and physical 

health, education, and human-computer interaction among others. The most comprehensive 

method to annotate facial expression is the anatomically based Facial Action Coding System 

(FACS) [1], [2]. FACS action units (AU) alone or in combinations can describe nearly all 

possible facial expressions. Automatic detection of FACS action units has been an active 

area of research [3], [4], [5].

Studies typically evaluate performance of AU detection models by cross validating 

algorithms within independent partitions of the same domain. A domain may consist of one 

or more databases that are used in both training and testing. In this way, classifiers are 

evaluated by how well they generalize, or transfer, to unseen subsets of the domain in which 
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they were trained. Cross-validation within domains protects against overfitting but cannot 

ensure generalizability to new domains.

In many applications we are interested in applying AU detectors to new domains. For 

instance, we might wish to apply a classifier trained in posed facial expressions of a single 

participant to spontaneous expressions of a group of participants. For domain transfer, 

differences between domains become relevant. Domains may differ in multiple ways. These 

may include context (e.g., participants alone or interacting with other participants), 

individual differences (e.g., gender, ethnicity, and age), orientation to camera, non-rigid head 

motion, lighting, video resolution, and base rates and intensity of specific action units (that 

is, how frequently and for how long they occur). All of these factors potentially influence 

AU detection.

To evaluate state of the art in domain transfer of AU detectors, we first review previous 

research. Our review identifies factors that leave in question the generalizability of AU 

detectors. These factors include lack of AU-specific findings, differences in data sampling 

and performance metrics, and relatively small numbers of subjects, which can attenuate 

performance, These factors are reviewed in Section II.

Taking these factors into account, we then investigate cross-domain generalizability using 

two large well-annotated databases that differ in context (inductions of varied emotions 

versus social interaction among previously unacquainted participants), individual differences 

among participants (e.g., sex, age, and ethnicity), orientation to the camera, non-rigid head 

motion, frequency and intensity with which various action units occur, and other factors. The 

databases are an expanded version of BP4D+ [6] and the Sayette Group Formation Task (i.e. 

GFT below) [7]. To explore whether models trained with one database generalize better than 

ones trained with another, we perform cross-domain experiments in both directions. To 

ensure that findings are not classifier specific, we use both deep and shallow approaches to 

AU detection. For the deep approach, we use a multi-label convolutional neural network; for 

the shallow approach we use the handcrafted features and support vector machine of 

Openface [8]. Openface is a state-of-the-art shallow approach that was trained to optimize 

AU detection performance. Because different test statistics quantify different aspects of 

performance, we report a variety of metrics. These include S score [9], [10], AUC, F1 

(which is positive agreement when comparing two methods) and negative agreement (NA).

To summarize, we:

• Review the literature on cross-domain AU detection and identify current issues in 

inferring AU-specific transfer.

• Investigate cross-domain AU-specific generalizability in two large, well-

annotated databases using both a deep and a shallow approach to AU detection.

• Report a variety of metrics that quantify different aspects of performance.

• Compare AU-specific generalizability of different databases and of shallow and 

deep approaches to AU detection.
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• Make available an expanded version of BP4D+ database (referred to as EB+ 

below). EB+ includes 2D video and frame-level AU annotation for 200 

participants.

• Make code for the CNN publicly available.

II. RELATED WORK

Action unit detection has been studied extensively for nearly two decades [3], [5], [4]. Until 

recently, most approaches have used hand-crafted features. Examples include LBP [41], 

SIFT [42], [43], LGBP [44], HOG [45] and LBP-TOP [46]. With the emergence of deep 

learning, CNN methods have shown significant success for AU detection [47], [48]. Except 

for studies listed in Table I, almost all work in AU detection has focused on within-domain 

performance. For many purposes, however, we wish to apply AU detectors learned in one 

domain to new domains. As in the related field of speech recognition, the impact of AU 

detection will be determined in large part by how well it can perform reliably when applied 

to new domains.

Table I summarizes studies that evaluate cross-domain AU detection. Some [36], [41] 

propose novel adaptation approaches. Most test domain transfer without adaptation. 

Comparisons among these studies with respect to generalizability of specific AU detectors is 

confounded by at least four factors.

One is the lack of AU specific cross-domain results. While many studies [23], [24], [25], 

[26], [27], [28], [29] report detailed within-domain results for each AU, AU- specific cross-

domain results are seldom reported. Cross-domain results are limited to averages computed 

across all AUs. Measures aggregated across multiple AUs mask AU-specific findings.

Two, even when AU-specific results are reported, comparisons between studies are 

confounded by use of different performance metrics. Some studies [36], [35], [37], [39], 

[38], [40] use AU-specific frame-level F1s, others AUC [32], 2AFC [31], [33], or accuracy 

[31], [34]. These measures are not interchangeable. Lack of standard metrics also 

undermines comparisons of studies that report only average performance across multiple 

AUs. Some report precision [23], [24] while others report recall [23], [24] or Hamming loss 

[27], [28]. Without fungible metrics, results between studies lack comparability.

Three, comparisons between studies often are confounded by differences in the numbers of 

subjects, sequences, or frames sampled within common domains. Differences in the 

sampling of frames are common. For instance, two studies [30], [37] used CK to train 

classifiers and MMI to test them but used different numbers of subjects (11 [30] and 70 [37], 

respectively) from MMI. Similarly, three studies [31], [38], [39] used the same 41 subjects 

in BP4D to train their model and the same 27 subjects of DISFA to test it, but they used 

different frames. The number of frames for testing in DISFA was 4845 [31], 130K [38] and 

64K [39]. These confound comparisons between studies.

And four, classifiers often are trained on relatively small databases, which impairs 

generalizability. Within-database results can be low when the number of subjects is 
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insufficient [49]. The same is likely true with respect to generalizability across domains. To 

make strong inferences about generalizability, relatively large numbers of subjects are 

necessary in the training. Moreover, some databases may yield greater genralizability than 

others. At minimum generalizability should be compared for at least two databases.

III. METHOD

To investigate AU-specific cross-domain transfer, we use both deep and shallow approaches 

in two databases that represent different domains. The deep approach is a CNN architecture 

[50]; the shallow approach is a support vector machine (SVM) with hand-crafted features. 

One database is an extended version of BP4D+ [6]. The other is GFT [7]. As noted above, 

they differ in context (emotion induction by an experimenter versus a group formation task 

of multiple participants), individual differences among participants, non-rigid head motion, 

video resolution, composition of the FACS coding teams, and other factors. Both databases 

are well annotated and relatively large although not same (200 participants in EB+ and 150 

in GFT). To ensure comparability between deep and shallow approaches, the same video 

frames and train and test assignments were used for both.

For the CNN, we report both within- and cross domain AU-specific results for both 

databases. For the shallow approach (Openface), we report cross-domain results to GFT but 

not to EB+. Because the release version of Openface was trained in part on BP4D, domain 

transfer to EB+ would be confounded by domain contamination. Preprocessing steps and 

AU detection methods of both the CNN and Openface are described below.

A. Deep Approach: Convolutional Neural Network

1) Face tracking and registration: Video was tracked and normalized using ZFace 

[51], a real-time face alignment software that accomplishes dense 3D registration from 2D 

videos and images without requiring person-specific training. Face images were normalized 

in terms of rotation and scale and then centred, scaled, and normalized to the average 

interocular distance (IOD) of the participants, which is about 80 pixels. After this step we 

obtain 200 × 200 pixel image of faces with 80 pixels IOD.

2) Video-specific normalization: Because videos of multiple people are used to train 

and test the models, individual differences in appearance could influence the models. To 

reduce variation introduced by person specific appearance and highlight variation in facial 

expression, we subtract the mean frame of each video from all frames of that video. 

Considering that variation caused by change in pose is eliminated in the registration step, 

static pixels that do not change with the expression will be black after mean image 

subtraction. We thus eliminate regions that do not vary greatly so that our models will focus 

only on the dynamic parts of the frames, which are changing with the expression.

3) AU Detection: We trained a convolutional neural network (CNN) containing three 

convolutional layers and two fully connected layers (see Figure 1). Frames obtained after 

video-specific normalization are converted into grayscale images and fed as inputs to the 

network. We employ 64, 128, and 128 filters of 5 × 5 pixels in three convolutional layers 

with a stride of 2, 1 and 1, respectively. After convolution, rectified linear unit (ReLU) is 
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applied to the output of the convolutional layers in order to add non-linearity to the model. 

We apply batch normalization to the outputs of all convolutional layers. The network 

contains three max-pooling layers that are applied after batch normalization. We apply max-

pooling with a 2 × 2 window such that the output of max-pooling layer is downsampled with 

a factor of 2. Output of the last maxpooling layer is connected to the fully connected layer of 

size 400. Finally, the output of first fully connected layer is connected to the final layer 

having N = 12 neurons. A sigmoid activation function is used at the output of final dense 

layer for non-linearity1.

Because we perform multi-label AU detection, we use binary cross-entropy loss as follows:

L =
n = 1

N
yn ⋅ logxn + 1 − yn ⋅ log 1 − xn . (1)

Values obtained at the output neurons are between [0,1], corresponding to the probability of 

12 AUs. During test time, we assign the positive AU occurrence label to the instances with 

probability above a threshold, which is optimized on training set.

B. Shallow Approach: Openface

OpenFace 2.0 [8] uses Convolutional Experts Constrained Local Model (CE-CLM) [52] for 

facial landmark detection and tracking. It employs HOG features extracted from similarity 

aligned 112 × 112 pixel face images and facial shape features for AU detection. It performs 

person-specific normalization, in which the median frame of a video is subtracted from all 

frames of the video, and prediction correction. Output of AU detection module of Openface 

is 0/1 label for absence/presence of each AU in each frame.

IV. EXPERIMENTS

A. Databases

We performed experiments with two large spontaneous, well-annotated databases that differ 

in multiple ways. GFT [7] involves social interaction among groups of three previously 

unacquainted young adults. A third of the groups are drinking an alcoholic beverage; a third 

a placebo beverage; and a third fruit juice. Alcohol and placebo effects are common and 

have been reported previously [53], [54], [55]. The other database (EB+) is a series of 

emotion inductions of a single participant by an experimenter, which elicits more intense 

action units with different rates of occurrence. BP4D+ is reported in [6]. The databases 

differ as well in participant characteristics, range of head pose, non-rigid head motion, 

illumination, and video resolution.

Both databases were manually annotated by different teams of highly qualified FACS 

coders. We included 12 AUs that occurred in more than 3% of the frames in both databases. 

That is, AU 1, AU 2, AU 4, AU 6, AU 7, AU 10, AU 12, AU 14, AU 15, AU 17, AU 23, and 

1http://www.jeffcohn.net/resources/AFAR/
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AU 24. Because Openface does not output occurrence for AU 24, results for AU 24 are 

reported for the CNN only.

Expanded BP4D+ (EB+)2 is a manually FACS annotated database of spontaneous behavior. 

Video is 2D with resolution of 1040 × 1392. Average video duration is around 44 seconds. 

Well-designed tasks (e.g. interviews, physical activities) initiated by an experimenter are 

used to elicit varied emotions. Face orientation is nearly frontal and out-of-plane head 

rotation is not common. It contains videos from a total of 200 subjects (140 subjects from 

BP4D+ [6], 60 additional subjects) associated with 5 to 8 tasks. We use a total of 1261 

number of videos having a total of 395K frames. Positive samples are defined as the ones 

with intensities equal to or higher than B-level, and the remaining ones are negative samples.

GFT3 [7] is a manually FACS annotated database of spontaneous behavior in 150 young 

adults in three-person groups. Behavior is unscripted and each video is approximately 2min 

in duration (approximately 517k frames in all). Moderate out-of-plane head motion is 

frequent and occlusion is common, making AU detection more challenging. Positive 

samples are defined as ones with intensities equal to or higher than B-level, and the 

remaining ones are negative samples.

B. Settings

Database splits—We perform both within-domain and cross-domain experiments. In 

within-domain experiments, 5-fold cross validation is used. For EB+, each fold consists of 

160 subjects for training and tuning and 40 subjects for testing. In GFT, each fold consists of 

120 subjects for training and tuning and 30 subjects for testing. In cross-domain 

experiments, data from all subjects in the source domain is used for training; and data from 

all subjects in the other domain is used for testing.

Evaluation metrics—Different metrics capture different properties about the AU 

detection performance. Choices of one or another metric depend on a number of factors, 

including preferences of investigators, purposes of the task, the nature of the data, etc. 

Following Girard and colleagues [7], we report a variety of metrics: S score (free-margin 

kappa), area under ROC curve (AUC), F1 and negative agreement (NA).

F1 is the most commonly used metric in AU detection literature. It is the harmonic mean of 

precision (P) and recall (R) 2RP
R + P  which is also equivalent to positive agreement 

(PA) 2tp
2tp + f p + f n  when only two methods are compared (e.g., CNN and manual AU coding). 

F1 can tell the performance on correct predictions on positive samples.

Negative agreement (NA) is the complement of F1 and is equal to 2tn
2tn + f p + f n . It evaluates 

the solution by the harmonic agreement of samples not including AUs.

2http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
3https://osf.io/7wcyz/
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Area under the Receiver Operating Characteristics Curve (AUC) is equal to the probability 

that a classifier will rank a randomly chosen frame in which AU is present higher than a 

randomly chosen one in which AU is absent. Therefore, this measure shows the success of 

classifier to rank frames with and without AU. AUC was proven to be better than the 

accuracy metrics for evaluating classifier performance [56].

S score or free-marginal kappa coefficient is computed as 2tp + 2tn
tp + f p + f n + tn  [7]. It provides an 

overall, chance-adjusted summary statistic. It is equal to the ratio of observed nonchance-

agreement to possible nonchance-agreement and it estimates chance agreement by assuming 

that each category is equally likely to be chosen at random.

Many of the AUs occur infrequently (i.e., have low base rates). S score and AUC are robust 

to imbalanced data while F1 and NA are not [57], which should be taken into account when 

evaluating results for AUs occur infrequently.

Network and training settings—We trained CNNs with batches of 100 samples. We 

chose stochastic gradient descent optimizer with a learning rate of 1e-3 and a momentum of 

0.9 for better generalizability to unseen domains. Our implementation is based on the 

PyTorch and we performed all experiments on NVidia 1080ti GPU.

C. Results

We report first within-domain CNN results for EB+ and GFT. Second, we compare within- 

and between domain CNN results in both databases. We then compare cross-domain results 

between CNN and Openface, which affords a comparison between a deep (CNN) and 

shallow (Openface) approach. For each set of comparisons we controlled for Type I error 

using Bonferroni correction. With experiment-wise error of 0.05 and 2 * 12 = 24 

comparisons in each set, a p of 0.002 is the critical value for significance.

1). Within-domain results: Table IIa and Table IIc show within-domain AU-specific 

results obtained by the CNN deep approach for EB+ and GFT databases, respectively. In the 

next to last row are reported averages across the 12 AUs outputted by CNN. For 

comparability with Openface, which outputs one fewer AU (AU 24), the last row shows the 

average of the 11 AUs that are common to both approaches.

Imbalanced classes are evident in both databases (see base rate (BR) columns in Table II. In 

EB+, seven of 12 AUs occur in fewer than 15 percent of frames. In GFT, five of 12 AUs 

occur in fewer than 15 percent of frames. This level of skew means fewer positive examples 

available for training and testing and decreases the range of F1 scores in particular [57]. 

Average F1 scores in both databases are in the moderate range. For AUs that occur in more 

than 15 percent of the frames, F1 scores are far better (0.75 to 0.88 in EB+ and 0.75 to 0.80 

in GFT) and are higher in EB+ than in GFT.

AUC scores are consistently high in EB+ and moderate to high in GFT. The same pattern as 

found for F1 is found for AUC. AUC is higher for AUs that occur in more than 15 percent of 

the frames. The effect of base rate is likely due to the greater challenge of learning AUs that 

occur less frequently.
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S scores (free-margin kappa) range from moderate to high in both databases. Although S 

scores show a less consistent relation to base rate, they show the same difference between 

databases. Results for EB+ generally are higher than those for GFT. Overall, most but not all 

S scores are within the range that is acceptable for observational research in psychology 

where kappa scores of 0.7 are expected. These findings are consistent with the hypothesis 

that AUs can be reliably detected within the same domains in which they were trained. They 

also suggest that some databases are easier or more difficult for AU detection. Sources of 

variation need to be better understood.

Within-domain results are better for EB+ than for GFT. Significance results in Table III 

reveal that, within-domain results on EB+ database is significantly better for 8 of the 12 AUs 

when S scores are compared and for 7 of the 12 AUs when AUC values are compared. For 

AU 6 and AU 12, within-domain results of both databases are similarly good.

2) Within-domain Cross-domain comparison: A critical question is whether AU-

detectors generalize to new domains. Table IIb and Table IId reports AU specific cross-

domain results for CNN. They report GFT to EB+ and EB+ to GFT.

When we compare within-domain and cross-domain results, we observe a decrease in 

average cross-domain results for both domains. Average AUC and F1 values are 0.864 and 

0.631 for within EB+ (see Table IIa) while they are 0.719 and 0.458 for GFT → EB+ cross-

domain (see Table IIb). Therefore, we observe decrease of 0.145 and 0.173 for AUC and F1, 

respectively. For each individual AU, there is a degradation in S score, AUC, F1 and NA 

values. Therefore, GFT does not generalize well to EB+ database. The highest F1 and AUC 

values for GFT → EB+ are obtained with AU 10 and AU 12, whose base rates are high.

On the contrary, average AUC and F1 values are 0.789 and 0.481 for within GFT (see Table 

IIc) while they are 0.736 and 0.463 for EB+ → GFT cross-domain (see Table IId). We 

observe a decrease of 0.053 and 0.018 for AUC and F1, respectively. S score and AUC 

values of EB+ → GFT are worse than within GFT results for all individual AUs. Although a 

decrease is observed for each individual AU, it is rather slight, meaning that testing GFT 

with a model trained on EB+ can give good results. The model trained on EB+ generalizes 

well to GFT database.

Significance results in Table III reveal that, except for AU4, within-domain results are 

significantly better than cross-domain results for GFT when S score is used and for EB+ 

when AUC is used.

Recall that, EB+ has videos of larger number of individuals, higher base rates of AUs, and 

contains nearly frontal faces, while GFT has larger variation due to moderate head pose, 

making AU detection a more challenging problem. We can interpret our results in a way 

that, if a model is trained with a domain having infrequent AUs, it is likely to have 

generalizability problems on even relatively less challenging domains. However, if the 

model is trained with a more balanced domain, it can generalize better to others, provided 

that other variations, such as pose are minimized in the preprocessing step.
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3) Cross-domain comparison of deep and shallow approaches: We report 

cross-domain results with deep approach and Openface on GFT. Training set of current 

release of Openface contains BP4D, whose tasks, base rates of AUs, pose and illumination 

conditions are the same with EB+. Therefore, we do not report test results using Openface 

with EB+ since it would not correspond to a cross-domain experiment.

Since we report AU specific detection results and test both models on the same domain, we 

can directly compare AU detection results of deep and shallow approaches. By comparing 

Table IId with Table IIe we can infer that, deep model gives slightly better S score, F1 and 

NA on average, while average AUC of deep approach is much higher than Openface. When 

we analyze F1s for individual AUs, deep approach outperforms Openface in all AUs except 

for AU1, AU2, AU10 and AU17. AUC values of deep approach are significantly (p < 0.05) 

better than the ones obtained with shallow approach for all AUs except for AU1. S values of 

AUs obtained with deep approach are generally better and they are significantly better than 

shallow approach for AU 1, AU 4, AU 6, AU 14, and AU 23 (see Table III).

Notice that, if we would only report AUC values as in [32], we would say that following a 

deep approach generalizes better compared to a shallow one. On the other hand, if we would 

only report F1s as in [37], [38], [35], we would infer that deep and shallow approaches 

perform similar for cross-domain experiments. With a comparison of only S score values, 

we would conclude that deep approach is slightly better. Since we report results with all the 

measures for both approaches, we can interpret that, deep approach ranks instances with 

AUs present or absent much better, both deep and shallow approaches perform similar on 

positive instances and when the effect of chance is discarded, deep approach performs 

slightly better.

V. DISCUSSION AND FUTURE WORK

We reviewed studies that report cross-domain results and identified major problems in 

comparing generalizability of different approaches. These are failure to report AU specific 

results, variability in the number of subjects or frames used to obtain test results, and 

variability in the measures used to quantify performance. To overcome these problems, we 

recommend that investigators use comparable subjects and frames and report AU specific 

results using multiple measures that quantify varied aspects of performance. We recommend 

S score, AUC, F1, and NA on all available frames of the domain. With these 

recommendations, within- and cross-domain results can be rigorously compared.

To address limitations of previous research in AU-specific domain transfer, we performed 

cross-domain experiments using both a deep and a shallow approach using two large, well-

annotated databases, namely EB+ and GFT, that differ from each other in key respects. 

Additional databases were initially considered (Bosphorus, BP4D, DISFA, SEMAINE, 

FERA, UNBC and CK+), but all had been used in training OpenFace. To control for 

experiment-wise error in statistical tests, we used Bonferroni correction.

In both deep and shallow approaches, we sought to maximize generalizability. For instance, 

we used video-specific normalization to reduce individual differences in appearance. And in 
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the deep approach we used stochastic gradient descent, which has been shown to provide 

better generalizability to unseen domains. Even with such efforts, our results reflect that AU 

detectors that perform well within the same domain perform less well on new domains. The 

decrease occurred for all of the AUs examined. In many cases performance decreased to 

below the threshold acceptable for behavioral research.

Commercial systems, including iMotions, Affectiva and Noldus, profess to recognize AU 

and holistic facial expressions. Considering the low cross-domain generalizability of the 

state-of-the-art, we urge caution in applying such systems to new domains. Use in new 

domains should first be validated on a subset of manually annotated video. If systems fail 

this validation step, re-training is recommended. This is not possible with current 

commercial systems but is an option with OpenFace and the CNN used here.

All machine learning methods, whether shallow or deep, implicitly assume that 

representations and classifiers are drawn from the same domains [58]. When this assumption 

is violated, additional learning is required. Domain adaptation approaches for AU detection 

would be indicated.
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Fig. 1: 
Overview of the deep network used for within-domain and cross-domain experiments.
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TABLE III:

Significance of differences between classifiers by t-test.

-

Within EB+ Within GFT Within EB+ Deep

> > > >

Within GFT Cross on GFT Cross on EB+ Shallow

AU S AUC S AUC S AUC S AUC

1 n.s. n.s. *** *** *** *** *** n.s.

2 *** n.s. *** *** * *** n.s. *

4 n.s. *** *** n.s. n.s. *** *** ***

6 n.s. n.s. *** *** *** *** ** ***

7 *** ** *** *** *** *** n.s. ***

10 *** * *** *** *** *** n.s. ***

12 n.s. n.s. *** *** *** *** n.s. ***

14 *** *** *** *** *** *** * ***

15 *** *** *** *** *** *** *** ***

17 *** *** *** *** *** *** *** **

23 *** *** *** *** *** *** *** ***

24 *** n.s. *** *** *** *** - -

*
is p < 0.05

**
is p < 0.01

***
is p < 0.001.

The latter are significant after correcting for multiple comparisons. For comparison between deep and shallow, deep was greater than shallow 
except for the shaded cells.
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