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Abstract—Social robots must be able to generate realistic
and recognizable facial expressions to engage their human
users. Many social robots are equipped with standardized
facial expressions of emotion that are widely considered to be
universally recognized across all cultures. However, mounting
evidence shows that these facial expressions are not universally
recognized — for example, in East Asian cultures, they elicit
significantly lower recognition than in Western cultures. Con-
sequently, without culturally sensitive facial expressions, state-
of-the-art social robots are restricted in engaging a culturally
diverse range of human users, which limits their usability and
global marketability. To develop culturally sensitive facial ex-
pressions, novel data-driven methods are used to model the dy-
namic face movements that convey basic emotions (e.g., happy,
sad, anger) in any culture using cultural perception. Here,
we tested whether dynamic facial expression models derived
in an East Asian culture and transferred to a popular social
robot enhance its performance when East Asian participants
classify the displayed facial expressions and rate their human-
likeness. Results show that, compared to the social robot's
existing set of facial ‘universal’ expressions, the culturally-
sensitive facial expression models are generally recognized
with higher accuracy and are judged as more humanlike.
We also specifically detail the dynamic face movements that
produce increased recognition accuracy and judgments of
human-likeness, including those that further boost the robot
performance. Our results demonstrate the utility of using data-
driven, methods based on social perception to derive culturally-
sensitive facial expressions, which can substantially improve the
performance of social robots. We anticipate that these methods
will continue to inform the design of culturally-sensitive social
robots and broaden their social signalling capacity, usability,
and global marketability.

I. INTRODUCTION

Facial expressions are widely considered to be the univer-
sal language of emotion. Based on Darwin's ground-breaking
theory on the biological origins of facial expressions of
emotion [1] and Ekman's seminal cross-cultural recognition
studies (e.g., [2]), several dominant theories in the field of
psychology have argued that six basic emotions — happy,
surprise, fear, disgust, anger and sad — are expressed and
recognized in the same way across all cultures (e.g., [2-
7]). To represent these universal facial expressions, the field

Accepted by 14th IEEE FG 2019

The Six Basic Universal Facial Expression of Emotion
Happy Surprise Fear Disgust Anger Sad

Average recognition accuracy [
®>75%
® <75%

Figure 1. A. Standardized facial expressions of emotion that are widely
considered to be universally recognized. B. Color-coded points show the
average recognition accuracy of these facial expressions in 40 locations
across the world as reported in 15 previous studies [2, 5, 6, 21-32]. Figure
adapted from [33] with permission.

established a set of six standardized facial expressions (see
Fig. 1A for examples), with each comprising a specific
pattern of face movements called Action Units (AUs) such as
Nose Wrinkler (AU9), Upper Lid Raiser (AU5) [8]. These
standardized facial expression images quickly became the
gold standard in research and influenced a broad range of
fields including affective computing [see 9 for a review] and
social robotics [10-12]. For example, state-of-the-art social
robots such as Felix [13], SAYA [14] and Furhat [15, see aslo
16 for a review] generate their facial expressions based on
these standardized universal Action Unit patterns. However,
mounting evidence shows that these facial expressions are
not recognized with similar performance across all cultures.
Instead, they elicit significantly lower accuracy in a number
of cultures [17, 18, see aslo reviews of 19, 20]. To illustrate,
Fig. 1B shows the recognition accuracy reported in 40
locations across the world based on 15 well-known studies
using these standardized facial expressions [2, 5, 6, 21-32]
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where red represents high accuracy (i.e., > 75%) and blue
represents lower accuracy (i.e., < 75%) [33]. As shown
by the distribution of red and blue points, the standardized
facial expressions tend to be recognized primarily in Western
cultures but less so in East Asian cultures. These consistent
cultural differences therefore demonstrate that the facial ex-
pressions widely considered to be universal are instead more
representative of the social signals of Western culture [see
also reviews of 18, 34]. Indeed, such findings of substantial
cultural differences are now increasingly common within
the field of psychology [17, 35, 36] because the majority
of psychological knowledge has been derived from West-
ern (more specifically, Western, educated, industrialized,
rich and democratic — WEIRD) [37] populations and from
Western-centric theories using confirmatory methods [38]. A
further limitation of these standardized facial expressions of
emotion is that they are static and therefore cannot represent
the naturalistic dynamics of real human facial expressions
[39]. Therefore, traditional theory-driven approaches in psy-
chology have restricted knowledge of facial expressions
— that is, which dynamic face movement patterns convey
these basic emotions in different cultures — which in turn
has impacted related fields such as social robotics where
expressive capacity is limited primarily to Western cultures.

II. RELATED WORK

To better understand facial expressions of emotion across
cultures, new data-driven methods have been used to model
the dynamic face movement patterns that convey the six
basic emotions in different cultures [e.g., 17]. Fig. 2A-
B illustrates this approach. On each experimental trial,
cultural participants view a random facial animation that
has been generated by a facial animation platform [40],

which randomly samples and combines a subset of facial
movements (called dynamic Action Units, AUs) from a core
set of 42 AUs. For example, in Fig. 2A, three AUs are
selected — Outer Brow Raiser (AU2) color-coded in green,
Lip Corner Puller (AU12) in blue, and Lips Part (AU14) in
red. Each is activated with a random movement (see color-
coded temporal activation curves for each AU; temporal
parameters are labelled in the green curve). Participants
view the facial animation and classify it according to one
of the six emotions (‘happy, ‘surprise, ‘fear, ‘disgust,
‘anger’ or ‘sad’) and rate its intensity on a 5-point scale
(‘very weak’ to ‘very strong’). If the facial animation does
not correspond to any of these emotions, participants select
‘other.” Therefore, each facial animation that is classified
as a particular emotion contains a face movement pattern
that conveys that emotion to the participant. After many
such trials, a statistical relationship is built between the
dynamic AUs presented on each trial and the participant's
corresponding responses (e.g., ‘happy’) as depicted in Fig.
2B. This procedure produces a statistically robust model
of the dynamic facial expression pattern that elicits the
perception of a given emotion in a participant from the
culture of interest (see [40] for full details of model fitting
procedure). Importantly, as these models are quantifiable
representations of facial expressions, they can be directly
transferred to social robotics to generate culturally-sensitive
facial expressions, as illustrated in Fig. 2C. Therefore, this
data-driven approach of agnostically sampling face move-
ments and using subjective human perception to isolate the
dynamic Action Unit patterns that convey different emotions
is particularly suitable for exploring facial expression com-
munication across diverse cultures [38]. Using this approach,
Jack, et al. [17] modelled a set of dynamic facial expressions



of the six classic basic emotions using the cultural perception
of Western and East Asian participants. Here, we aim to
transfer the culturally-derived East Asian dynamic facial
expression models to a popular social robot head — Furhat —
and examine whether they improve performance compared
to the social robot's existing ‘universal’ facial expressions
when tested on East Asian participants.

II1. METHOD

A. Transference of culturally-derived dynamic facial expres-
sion models to a social robot

To display the dynamic facial expression models on the
social robot head, we first supplemented the social robot's
existing facial movement vocabulary of 7 pre-set univer-
sal facial expressions of emotion (2 happy, 1 of surprise,
fear, disgust, anger and sad) with a set of 42 individual
dynamic AUs including all combinations (see full details
of transforming the AU shape deviation data to the social
robot's mesh topologies in [41]). We could then display
each of the culturally-derived dynamic facial expression
models of the six classic emotions (n = 30 models per
emotion) on the social robot head along with the social
robot's existing set of 7 facial expressions. In a first ex-
periment, we asked a group of East Asian participants to
classify these facial expressions by emotion; in a second
experiment East Asian participants judged their human-
likeness. For both experiments, we recruited 10 East Asian
participants (10 Chinese, 5 females, mean age 23.6 years,
SD = 2.12 years) with minimal exposure to and engagement
with other cultures as assessed by a questionnaire (see
Supplementary Material, Screening Questionnaire for full
details). All participants had normal or corrected-to-normal
vision, were free from any emotion related atypicalities (e.g.
Autism Spectrum Disorder, depression), learning difficulties
(e.g. dyslexia), synaesthesia, and disorders of face perception
(e.g. prosopagnosia) as per self-report. All participants had
a minimum International English Language Testing System
(IELTS) score of 6.0 (competent user). Each participant gave
written informed consent, and received a standard rate of 6
per hour for their participation. The Ethics Committee of the
College of Science and Engineering, University of Glasgow
provided ethical approval (Ref No: 300160186).

B. Recognition of universal facial expressions versus
culturally-derived facial expressions

On each trial, participants viewed a facial animation dis-
played on the social robot head and classified it according to
one of six emotions — happy, surprise, fear, disgust, anger or
sad — in a 6-alternative forced choice task. Each participant
viewed a total of 374 facial animations ([30 culturally-
derived facial expression models x 6 emotions] + [7 existing
universal facial expressions] x 2 repetitions) presented in
random order across the experiment. We presented each
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Figure 3. A. Recognition accuracy of culturally-derived facial expressions
and the social robot's existing facial expressions. B. Judgments of human-
likeness.

facial animation on one of 7 available face textures (‘De-
fault, ‘Male,” ‘Female,” ‘Obama,” ‘iRobot,” ‘Gabriel,” and
‘Avatar’), pseudo-randomly selected such that each texture
appeared an equal number of times across the experiment
for each participant. We blocked all trials by face texture
and randomized the order of the blocks for each participant.
We presented each facial animation once for a duration of
1.25 seconds within the participant's central visual field at
a constant viewing distance of 90 cm using a chin rest.
Stimuli (size 22.5 cm X 16 cm) subtended 14.25° (vertical)
and 10.16° (horizontal) of visual angle, which reflects the
average size of a human face [42] during natural social in-
teraction [43]. Following each facial animation, participants
responded using a Graphic User Interface (GUI) displayed
on a 19-inch flat panel Dell monitor next to the robot head.
We instructed participants to respond quickly and accurately.
Following response, two beeps cued participants for the next
trial. Participants then viewed the social robot and pressed
the space bar to start next trial. We used Matlab 2016a to
display the GUI and record participant responses.

To compare the recognition accuracy of the culturally-
derived facial expression models with the social robot's



existing facial expressions, we computed the proportion of
correct responses for each facial expression model (n = 30
per emotion) and each of the social robot's existing facial
expressions (n = 7 total) by pooling the data across all
trials and participants. Fig. 3A shows the results for each
emotion. Red circles represent each culturally-derived facial
expression model; blue represents the social robot's existing
facial expressions. Circle size represents the number of facial
expression models with a specific accuracy (e.g., in happy,
6 models are recognized at 95% accuracy, see the face
map of each model and accuracy in Supplemental Material,
Action Unit Activations of the Culturally Derived Models
by Recognition Accuracy). As shown by the distribution of
red circles in each emotion category, the majority of the
culturally-derived facial expression models elicited higher
recognition accuracy than the social robot's existing facial
expressions with the exception of anger where only 1 model
showed higher performance than the social robot's existing
facial expressions.

C. Comparing judgments of humanlike-ness of universal
facial expressions and culturally-derived facial expressions

Next, we compared judgments of human-likeness of the
culturally-derived facial expression models and the social
robot's existing facial expressions. On each trial, we pre-
sented a pair of facial expressions of the same emotion (e.g.,
happy) — one culturally-derived facial expression and one of
the social robot's existing facial expressions displayed on
the same face texture — and asked participants to choose
which one looked most humanlike. We played each facial
expression once for a duration of 1.25 seconds with an inter-
stimulus interval (ISI) of 0.5 second and presented in a
pseudo-random sequential order across the experiment. After
displaying each pair of facial expressions, one beep sounded
to cue participants to respond. Participants indicated which
facial expression they thought was more humanlike using a
GUI displayed on a 19-inch flat panel Dell monitor next
to the social robot head. Following response, two beeps
sounded to cue participants for the next trial. Participants
viewed the social robot and pressed the space bar to start
the next trial. We randomly assigned one of 7 available
face textures to each emotion, blocked trials by emotion,
and randomized the order of the blocks for each participant.
Therefore, each participant completed a total of 420 trials
([60 pairs of happy facial expressions + 30 pairs of facial
expressions for each of the other 5 emotions] X 2 pair
orders). We used the same viewing conditions and equipment
as in B above.

To compare judgments of human-likeness between the
culturally-derived facial expression models and the social
robot's existing facial expressions, we computed the pro-
portion of times participants selected each facial expression
as more humanlike by pooling trials across all trials and
participants. Fig. 3B shows the results. The face maps

in Supplemental Material, Action Unit Activations of the
Culturally Derived Models by Human-Likeness Judgements
show the AUs in each model and humanlike judgements.
As shown by the distribution of red points in Fig. 3B,
participants consistently judged the culturally-derived facial
expression models as more humanlike than the social robot's
existing facial expressions.

D. Identifying the dynamic face movements associated with
performance

We showed that the culturally-derived facial expression
models are recognized with higher accuracy and are judged
as more humanlike compared to the social robot's existing
universal facial expressions. To identify which specific face
movements — that is, the presence of a given AU and/or
its specific dynamic properties — are associated with these
improved performances, we used an information-theoretic
approach based on mutual information (MI) [44, 45]. Specif-
ically, MI quantifies the relationship between two variables
— here, the presence of an AU and performance (i.e.,
recognition accuracy or judgments of human-likeness) of a
facial expression model. High MI would indicate that an
AU (e.g., Brow Lowerer, AU4) is strongly associated with
performance (e.g., correct emotion classifications); low MI
indicates a weak relationship. To identify, for each emotion,
the AUs that are strongly associated with performance, we
applied the following analysis for recognition accuracy and
human-likeness separately: We computed the MI between
each AU (i.e., present or absent in the culturally-derived
facial expression model) and performance (e.g., correct emo-
tion classifications) by pooling the participants' responses
to the culturally-derived facial expressions displayed in B.
Recognition of universal facial expressions versus culturally-
derived facial expressions, resulting in 600 trials per emotion
(30 models x 10 participants x 2 repetitions). Given that
some AUs are present in 100% of the facial expression
models — e.g., in happy, Lip Corner Puller (AU12) — which
provides no variance to successfully compute MI, we added
noise to 1% of the AU patterns by randomly allocating
AU absence (i.e., 0 for absence, 1 for presence) before
computing MI. We established the statistical significance of
high MI values using a Monte Carlo simulation method by
shuffling the participants' responses 1000 times, computing
MI for each AU at each iteration, and using the random
distribution of MI values to identify the AUs with MI values
that are significantly higher than chance (i.e., > 95% of the
distribution, uncorrected). All AUs with significantly high
MI are displayed on face maps in Fig 4 for recognition
accuracy (Panel A) and human-likeness (Panel B) with their
Action Unit labels listed to the right of each face map in
regular font.

Certain AUs could also improve performance based on
their specific dynamic properties such as high amplitude,
early peak latency, or fast acceleration. To identify any
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Figure 4. Dynamic Action Unit patterns associated with high recognition accuracy and judgments of human-likeness.

such AUs, we computed the MI between each dynamic
property (e.g., amplitude) and performance (e.g., correct or
incorrect emotion classifications). Specifically, we computed
MI between performance and three levels of AU temporal
parameter values (high, medium, low) for each of four
temporal parameters — amplitude, peak latency, accelera-
tion, deceleration — separately. We established statistical
significance of high MI values for each and each temporal
parameter using a Monte Carlo method as described above.
AU dynamics with significantly high MI are displayed in
the face maps in Fig 4 with their AU names listed in
italics (see legend on top right). Next, to further specify the
particular level of dynamic properties (e.g., high, medium,
or low amplitude) of each of these AUs that drives high
performance, we computed the frequency of each level
of dynamic properties in the high-performance trials (e.g.,
correct emotion classifications) and identified the specific
level of dynamic properties with the highest frequency. We
did this for each of four temporal parameters — amplitude,
peak latency, acceleration, deceleration — separately. The
specific dynamic properties of each AU are displayed as
activation curves below each face (significant results are

presented in saturated colour; non-significant parameters are
interpolated and presented in more transparent colour). AUs
with both their presence and dynamic properties associated
with high performance are marked with asterisks (see legend
on top right). Together, these results show that for each
emotion, several specific AUs and/or their specific dynamic
properties are strongly associated with recognition accuracy
and with judgments of human-likeness. For example, in
happy, Inner-Outer Brow Raiser (AU1-2) is strongly associ-
ated with recognition accuracy, as are the specific dynamic
properties of Lip Corner Puller - Cheek Raiser (AU12-6).
For perceptions of human-likeness, in fear, the dynamic
properties of Upper Lid Raiser (AUY) is strongly associated
with performance.

E. Dynamic Action Units that further boost performance

Above, we identified the individual AUs and the dynamic
properties of AUs that are strongly associated with (and
therefore important for) performance — i.e., the correct
classification of emotions and for judgments of human-
likeness. As shown in Fig 3, certain facial expression mod-
els elicit particularly high performance and thus comprise
specific face movements that further boost performance. As



described above, these AUs could boost performance by their
presence alone or by their specific dynamic properties such
as high amplitude, early peak latency, or fast acceleration.
To identify and characterize these specific dynamic AUs for
each emotion, we first identified the AUs that are strongly
associated specifically with high performance by computing
the point-wise mutual information (PMI) between the pres-
ence of each AU and each of three levels of performance
(i.e., ‘low accuracy, ‘medium accuracy’ or ‘high accuracy;’
and the same for human-likeness). For example, high PMI
would indicate that the presence of an AU specifically
drives high accuracy. We established statistical significance
with the Monte Carlo method described above. These high-
performance AUs are displayed in the face maps in Fig 4,
with their names listed in bold. Next, to identify whether
specific dynamic AU properties also boost performance,
we conducted a similar PMI analysis applied separately to
each of four temporal parameters — amplitude, peak latency,
acceleration, deceleration — using three bins of parameter
values for each (e.g., ‘low amplitude,” ‘medium amplitude’
and ‘high amplitude’). These AUs are displayed on the
face maps in Fig 4 with their AU name in bold italics
and the specific dynamic properties shown as activation
curves below each face. AUs with significantly high PMI for
their presence and dynamics are marked with asterisks. For
example, in fear, Brow Lowerer (AU4) and Mouth Stretch
(AU27) further boost recognition accuracy. In disgust, the
dynamic properties of Upper Lip Raiser Right (AU10R)
boost performance for judgments of human-likeness.

IV. CONCLUSIONS

Here, we transferred a set of 30 culturally-derived dy-
namic facial expression models to a popular social robot
and compared their recognition accuracy and judgments of
humanlike-ness with the social robot's existing universal fa-
cial expressions amongst a group of East Asian participants.
Results show that these culturally-derived dynamic facial
expression models generally outperformed the social robot's
existing facial expressions on both emotion recognition
accuracy and judgments of human-likeness. Further analysis
of the facial expression models revealed the specific Action
Units and temporal dynamic properties that drive improved
performance, including those that further boost performance
towards higher recognition accuracy and perceptions of
human-likeness. Together, our results highlight the advan-
tage of using culturally valid dynamic face movements to ac-
curately signal social messages. Our results also demonstrate
the power of using subjective cultural perception to model
dynamic facial expressions to improve the performance of
social robots within a culturally diverse global market. We
anticipate that the application of data-driven approaches
will further inform the design of culturally-sensitive digital
agents for improved performance and usability with more
diverse range of user groups.
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