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Abstract— As deep networks become increasingly accurate at
recognizing faces, it is vital to understand how these networks
process faces. While these networks are solely trained to
recognize identities, they also contain face related information
such as sex, age, and pose of the face. The networks are not
trained to learn these attributes. We introduce expressivity as
a measure of how much a feature vector informs us about
an attribute, where a feature vector can be from internal or
final layers of a network. Expressivity is computed by a second
neural network whose inputs are features and attributes. The
output of the second neural network approximates the mutual
information between feature vectors and an attribute. We
investigate the expressivity for two different deep convolutional
neural network (DCNN) architectures: a Resnet-101 and an
Inception Resnet v2. In the final fully connected layer of the
networks, we found the order of expressivity for facial attributes
to be Age > Sex > Yaw. Additionally, we studied the changes
in the encoding of facial attributes over training iterations. We
found that as training progresses, expressivities of yaw, sex, and
age decrease. Our technique can be a tool for investigating the
sources of bias in a network and a step towards explaining the
network’s identity decisions.

I. INTRODUCTION

Deep convolutional neural networks (DCNN)-based face
algorithms are trained to learn the identity of a face; they
are not trained to learn attributes of the face. These DCNNs
generate representations that encode identity. However, Hill
emphet al. [1] found that DCNNs generated identity repre-
sentations self-organized by sex. Also, identity representa-
tions can contain information on pose, age, and illumination
direction [1], [2], [3].

Facial attributes, including those mentioned above, affect
algorithm accuracy [4], [5]. Assessing bias in algorithms
implies measuring the effect of these attributes on accuracy.
Explaining how a network comes to an identity decision in-
cludes discerning how face representations encode attributes.
To gain further understanding on the effects of attributes on
bias and assist in developing methods to explain network
decisions we address the following two questions. How much
information about facial attributes are captured in the internal
layers of the network? How does the encoding of facial
attributes evolve as training progresses?

In this paper, we explore how attributes are encoded in
the internal layers of two different and successful architec-
tures: a Resnet-101 and an Inception Resnet v2 architecture
based DCNN [6], [7]. Both networks are trained solely to
identify faces. In addition, we examine how the encoding of
attributes evolves over training iterations for both these two

networks. To gain a greater understanding of the relationship
between attributes, we introduce the concept of expressivity
of an attribute. Expressivity is a measure of how much a
given representation informs us about an attribute, where the
representation of a face can be from internal or final layers in
a DCNN. The following are the conceptual and experimental
contributions of our paper.

1) We are the first to investigate the encoding of facial
attributes in the internal layers of DCNNSs.

2) For DCNNs, we are the first to monitor the evolution
of the encoding of facial attributes during training.

3) In the final fully connected layer of both networks, we
observed that the order of expressivity for three facial
attributes to be Age > Sex > Yaw.

4) We found that as training progresses, the expressivity
of yaw, sex, and age decreases. The observed rate of
decrease was Age < Sex < Yaw.

5) The expressivity of identity dramatically increases from
the last pooling layer to the final fully connected layer.

Knowing how face attributes are expressed in internal
layers and how their representations evolve during training
has both scientific and societal importance. Since DCNN-
based face recognition systems are fielded in the real-world,
the need for these networks to be explainable is pressing. Un-
derstanding how internal layers encode attributes introduces
new a tool to explain identity decisions and to examine the
sources of bias in algorithms. From a scientific perspective,
knowing the importance of attributes during training will
provide insight into the training process.

II. RELATED WORK

Significant research has been done in training state-of-
the-art face recognition networks in the past few years
[6], [7], [8], [9], [10]. Although, the interpretability of
such networks has not been widely explored, several
existing works explore explainability of deep networks for
general visual recognition. These works can be divided into
following two categories.

Methods enforcing interpretability constraints during
training: Yin er al. [11] propose a spatial activation
diversity loss as a constraint to preserve interpretability
while training face recognition networks. Similarly, Kim
et al. [12] propose a generative technique using the most
representative exemplars (prototypes), thus highlighting
interpretability of the model. As mentioned in [13], these



methods cannot be used to interpret pre-trained models and
hence cannot be applied to networks or models which are
already in use.

Methods interpreting trained models : TCAV [13] is one
of the most influential work in this area. TCAV interprets a
network on the basis of its sensitivity to user defined concepts
(such as ‘stripes’). This is done by learning Concept Activity
Vectors (CAVs) by training a linear classifier to distinguish
between the activations produced by a concept’s examples.
While this method works efficiently for discrete physical
concepts, such as presence of a specific color or pattern,
it cannot be directly modified for checking the sensitivity
of a model to a more general continuous concept (such as
pose angle, age etc.). This is because for training CAVs,
we also need negative example images where the concept
being studied is missing. It is not trivial to find such images
when the concepts are omnipotent and continuous (facial
yaw, age etc.). Also, the method requires the testing images
to belong to one of the training classes since the sensitivity
computations requires measuring the change in logits of
the class being investigated. This cannot be easily modified
for our requirement where we use unseen subjects/faces
to estimate models’ sensitivity to facial attributes. Another
important work in this category is [14] where the authors
use linear classifiers on different layers of a network to
understand the role of intermediate layers. Koh and Liang
[15] propose an influence function to measure the model’s
sensitivity to an infinitesimally-small local perturbation in the
training images. However, such a local perturbation-based
method cannot be used to estimate models’ sensitivity to
physical attributes like pose or orientation.

Another class of works [16], [17] interprets the output
of a network by generating saliency/attention maps. While
such techniques help to highlight the spatial regions which
affected the network’s prediction, they do not allow to test
the models’ sensitivity to user defined concepts. Moreover,
this method cannot be applied for concepts which cannot be
physically localized (such as facial yaw, age etc.).

Hill et al. [18] is one of the few works which interpret
trained face recognition networks, where the authors show
the following hierarchy: face identity nested under sex, illu-
mination nested under identity, and viewpoint nested under
illumination.

We interpret a trained face recognition network by inves-
tigating its sensitivity to facial attributes. Previous methods
like [15], [13] rely on the change in prediction with respect
to a concept/attribute to interpret a network’s sensitivity to
an attribute. However, we introduce a new measure called
expressivity, which quantifies the predictability of an at-
tribute in a given set of features extracted using the model.
Moreover, expressivity can be computed for both categorical
and continuous attributes, which enables us to compare the
predictability of various attributes.

III. EXPRESSIVITY

Predictability of facial attributes/identities in a given set
of face descriptors indicates the attribute-relevant informa-
tion content encoded in the descriptors. To estimate this
information content, we intend to use Mutual Information
(MI). MI between two random variables is a measure of the
amount of information that can be obtained for one random
variable by observing the other variable. Therefore, if we
estimate MI between face descriptors and their corresponding
identities/attributes, we can estimate the information content
of these identities/attributes in the given descriptors. Since
MI can be computed for both categorical and continuous
attributes, an estimate based on MI provides a measure which
is consistent across categorical and continuous attributes.

MI between two random variables (V7, V5) is given as:

I(V1,Va) = Dir(Py; 1, [Py, ® Py,) 1

where, Dy represents the Kullback-Leibler divergence,
Py, v, denotes the joint probability distribution, Py, and Py,
denote the marginal distributions, and Py, ® Py, represents
the product of the marginal distributions. Tishby and Za-
slavsky [19] show that each layer in a deep network can
be quantified by the amount of mutual information (MI) it
retains on the input variable, on the (desired) output variable.
However, as mentioned in [20], computing MI is not a trivial
task. Most of the existing non-parametric approaches for esti-
mating MI do not scale with the dimensionality of variables.
Belghazi et al. [20] propose MINE to estimate MI between
high dimensional continuous variables using gradient descent
over neural networks. The neural information measure has
been defined in [20] as follows.

Ie(F,A) = sup Ep. . [Ty] — log(Ep,ep,[c™])  (2)
6

where F, A are the variables whose mutual information is
to be estimated, § € © represents parameters in a network
computing a function Ty : F; A — R. As proved in [20],
the MINE estimate provides a lower bound estimate to the
actual ML

In the context of our work, we define ‘Expressivity’
of A in F as the aforementioned information measure
(Equation [2). We use MINE to compute the expressivity of
face identity and various facial attributes A (discrete and
continuous) in a given set of face descriptors F'. Although
face identity is not strictly a face ‘attribute’, we treat it in
the same way as a face attribute. Therefore, in this work,
attribute A collectively refers to identity and facial attributes
like pose, sex etc.

Following the protocols detailed in [20], we briefly explain
how gradient descent over a neural network can be used
to compute expressivity. Let f; € R™ denote i'" feature
in a batch B of size b (i.e. |B| = b), and a; € R denote
the corresponding attribute value. The set {(f;,a;)}%_; rep-
resents the b elements sampled from the joint distribution
(fiya; ~ Ppa). Similarly {d;}%_, represents b attribute
values sampled from a marginal distribution (a; ~ P4). To



estimate the the neural information in 2} we compute the
expectation over joint and marginal distribution as follows :

b
Z flaaz

Ep(h) Tg

@\H

E

ZeTe(fu a;)

where b is the number of features in a batch B whose
mutual information to be computed with their corresponding
attributes. We use a network with parameter set ¢ (see Fig.2)
to compute the aforementioned arbitrary function Ty (f;, a;)
and Ty(f;,a;). By substituting Ep,.,[Ty] and Ep, gp, [eT?]
in Eq. [2[, the function V(0) is computed as:
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As mentioned in [20], the supremum of V(@) with respect to
parameter set 6 is a lower bound approximation of the mutual
information between features F' and attributes A. Hence we
use the following function L as our objective function to
train the network N.
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At every training iteration, we use a different parameter set
6 to compute the function 7. As the training proceeds, the
network minimizes (EI) thus maximizing V() with respect
to 6. This is equivalent to computing the supremum of
V(). Hence, the final value of V(6) at convergence is an
approximation of Expressivity. (Eq. 2

In equations (3) and (@), the objective function (and the
lower bound of mutual information) is computed in a batch
and not on the given set of features and their attribute values,
thus making the gradients biased towards the minibatch,
rather than the full batch. This issue has been identified in
[20], and can be mitigated by replacing the expectation term
in the denominator of gradient update (3) by an exponential
moving average. More theoretical details related to this
approximation of mutual information is provided in [20].

IV. PROPOSED APPROACH
A. Networks and datasets used

To compute the expressivity of identity or attribute A in
a given set of features F, we extract the features F' using
the following networks :
(1) Network A (Resnet-101 architecture) : The architecture
is described in [6]. For investigating hierarchical course
of the feedforward pass, we use a version of this network
trained on a combined dataset of all the MS-Celeb-1M and
UMD Faces images. For this trained network, we compute
expressivity of attributes using features from these layers :
Resd4a?2b, Resb5a2c, Poolb, FC-L2S.

Layer Description
Res4a2b 2™ convolutional layer of 7™ Res-block
Resba2c 3" convolutional layer of 9" Res-block

Pool5 Final pooling layer which takes in the output of the

o0 11 Res-block Res_5c
Final fully connected which takes in the output of Pool5
FC-L2S Lo
and computes Lo softmax activation
(a) Network A
Layer Description

Concatenation layer of 10" inception block
Concatenation layer of 17% inception block
Concatenation layer of 36™ inception block

a9_concat
b5_concat
c3_concat

Final pooling layer which takes in the output of the

Pool8xg convolutional layer after 42" inception block c10

Final fully connected which takes in the output of

FC-L2s Poo18x8 and computes Lo softmax activation

(b) Network B

TABLE I: Brief descriptions of the layers used to compute
expressivity in both the networks. More architectural details
are provided in [6].
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Fig. 1: IJB-C dataset [21] shows enough variation with respect to
(a.) Yaw, (b.) Age, which is required to compute expressivity of
age and yaw, in a given set of 1JB-C features.
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Fig. 2: We use a consistent network architecture to compute
expressivity of m—dimensional features F', augmented with an
attribute vector A. More details in Sec.



(2) Network B (Inception Resnet v2 architecture).
The architecture is described in [6]. The training
dataset of this network is same as that of Network
A. We explore the following layers in the network:
a9_concat, b5_concat, c¢3_concat, Pool8x8,
FC-L2s.

Layer-wise details for both the networks are provided in
Table [ For computing expressivity, we use IJB-C [21] as
our test dataset. IJB-C dataset consists of 3531 identities
with a total of 31,334 still images and 117,542 video frames
collected in unconstrained settings. We extract the 1JB-C
features F' from different layers of aforementioned trained
networks. For computing the corresponding attributes A, we
use the All-in-one network [22].

B. Attributes used

We compute the expressivity of identity and three at-
tributes : yaw, sex, age in the extracted IJB-C features. To
compute the yaw, sex and age of the corresponding IJB-C
images, we use the All-in-one deep CNN proposed in [22],
which simultaneously performs face detection, landmarks lo-
calization, pose estimation, sex recognition, smile detection,
age estimation and face identification and verification. In
Figure [T} we verify that the IJB-C datasets show enough
variation with respect to yaw and age, so that we can insure
that expressivity (which is a lower bound estimate of mutual
information) is an accurate model for the corresponding
attributes. The IJB-C dataset consists of 2203 male and 1328
female identities, which ensures that sufficient sex variation
exists.

We now briefly explain the attribute vector A introduced
in Section When considering sex, the vector A consists of
probability values of the sex being male (PR_MALE), which
are the outputs of All-in-One network in [22]. When consid-
ering identity, A is a discrete vector, where each element is a
numerical identity label. We generate the attribute vector A
for yaw (in degrees) and age (in years) in a similar manner.
The exact methodology to compute the expressivity using
the feature descriptors and their respective attribute vector is
provided in the next subsection.

Protocol 1 Computing expressivity using flattened features

Input: layer L,

Input: Set of n images [

Input: attribute vector A € R™*!

Initialize £ = ||

For a given image 7 € I, extract feature f;

Augmentation step X = [F|4], where F =

[f1, f2 o fal®

for iter : 1 to M do
Initialize MINE network according to dimensions of
X

9:  E +MINE(X)

10: end for

11: return Expressivity = Average(F)

AN A >

® 3

Protocol 2 Computing expressivity using unflattened feature
maps

1: Input: layer L, with k channels, each of dimension d x d

Input: Set of n images [

Input: attribute vector A € R**1

Initialize £ = ||

S = Subset of randomly selected z (out of k) channels

For a given image ¢, vectorize and concatenate all z maps

in S, to generate vector f; of dimension m x 1, where

m=dxdx*z

7: Augmentation
[f1 fa fal

8: for iter : 1 to M do

Initialize MINE with input dimensions of X &

AN

step X = [F|A] where F =

Rnxm+1
10. E «MINE(X)
11: end for

12: return Expressivity = Average(E)

C. Protocols to compute expressivity

In this work, we define expressivity as a lower bound
approximation of MINE, as explained in section We
consider two protocols (described above): Protocol-1, to
compute the expressivity of attributes in flattened features
(i.e. features from fully connected or pooling layers which
are extracted as vectors). Protocol-2, to compute the expres-
sivity of attributes in unflattened feature maps (i.e. feature
maps from a convolutional layer which are extracted as 2D
channels). For both of these protocols, we need a set of
n images, and their corresponding attributes A € R"*!,
In step 8 of Protocol-1 and step 9 of Protocol-2, we
initialize a MINE approximation network according to the
input dimension of the augmented matrix. As explained in
Section [LII} we train the network to compute the lower bound
approximation of mutual information between features F'
and attribute A. We use a simple multi layer perceptron
(MLP) network, described in Figure [2] for computing Ty
in (). The network consists of two hidden layers with
256 and 128 units. These layers are followed by ELU
activations. We use this architecture consistent throughout
our experiments. When using different sets of features for F,
the only architectural changes in the network are made in the
input layer dimension, according to the feature dimension.
The network is trained until the loss in (@) converges and
expressivity is computed using the protocols. In step 8 in
Protocol-1 and step 9 in Protocol-2 we initialize and train
the MINE network multiple times (M) to increase number
parameter sets 6 in (2), among which the supremum is to
be found. In all our experiments, we use M = 16. Also,
in step 5 of Protocol-2 we select only a subset of features
maps (channels), as mentioned in [14]. Note that, for any
attribute vector A (yaw/identity/age/sex), we use the same
feature subset S.

Apart from analyzing the network layer features, we also
investigate the presence of various attributes in the raw RGB



Layer Dim. (¢ x d X d)  Protocol z Feat. dim
Res4a2b 1024 x 14 x 14 2 11 2156
Res5a2c 2048 X T X 7 2 42 2057

Pool5 2048 1 - 2048
FC-L2S 512 1 - 512

(a) Network A
Layer Dim. (¢ X d X d) Protocol z  Feat. dim
a9_concat 128 x 35 x 35 2 3 3675
b5_concat 384 x 17 x 17 2 13 3757
c3_concat 128 x 8 x 8 2 59 3776
Pool8x8 1536 1 - 1536
FC-L2S 512 1 - 512

(b) Network B

TABLE II: Network A and B layers used to compute expressivity.
¢ : number of channels in a given layer, d: channel dimension, z :
Number of channels selected out of ¢ channels, to generate a subset
of features

face image in Section [V| For this, we average the R,G and B
channels to generate a grayscale image. Following this, we
vectorize the image and use it as feature f; in Protocol-1.

D. Training linear classifiers

To verify that expressivity correctly models the informa-
tion of attributes in features, we show its correlation with
error-rates of linear classifiers trained on the corresponding
features. We randomly select a subset of 5000 IJB-C images
and extract their features. To train the linear classifier we use
3000 features and test it on 2000 features. This is a trivial
task for flattened features. However, to compute the error
rate in feature maps from higher layers of the network, we
use the same subset S of feature maps as selected in step 5
of Protocol-2. Following this, we vectorize and concatenate
them as in Step 7. We provide more specific details in the
next section.

V. EXPERIMENTS

Using the protocols described in Section and the
expressivity measure defined in we extract features from
different layers of Networks A and B and use them to train
a network (Figure [2) to compute expressivity of various
attributes.

A. Hierarchical course of feedforward pass

Table [lI] shows the network layers explored, along with
the final dimension of the features used for computing ex-
pressivity for both the networks. The layerwise expressivity
values for Networks A and B are shown in Figure 3] It should
be noted that both the networks were trained using identity-
supervision and no supervision based on pose, sex and age.
Our inference is listed as follows:

o In both networks A and B, we find that the expressivity
of yaw, sex and age is high and that of identity is the
lowest in the shallower layers (Res4a2b, Res5a2c in
Network A; a9_concat, b5_concat, c3_concat
in Network B) and input image. This shows that yaw and

sex are high level face features as compared to identity,
which cannot be extracted using shallow layers.

« As we examine the deepest layer (FC-L2S), the expres-
sivity of yaw and sex attain their lowest values, whereas
identity and age have very high expressivity. This shows
that identity and age are more fine grained features com-
pared to other attributes.

o There is a rapid increase in the identity expressivity from
the pooling to fully connected layers, in both the networks.

o Comparing the expressivity values of all attributes except
identity in the final layer, we can infer that for identity
recognition, yaw is the least important and age is the most
important attribute.

There are three reasons for the relatively high expressivity
of the age when compared to the other attributes.

First, in the IJB-C dataset most of the images were
acquired over a short period of time, therefore, it can happen
that a given age correlates with identity. Second, we used an
automated algorithm [22] to estimate the age, and therefore
it is computed from the appearance of the face. All attributes
were computed automatically, but we can expect that in
relative terms the age is the least accurate of all attributes
automatically computed. Third, the entropy of the age (Fig.
[[[b)) is higher than the entropy of the other attributes and
this could increase the mutual information component of the
expressivity.

Discussion of the data processing inequality: The data
processing inequality (DPI) [23] states that for three random
variables P, @, R forming a Markov chain P — @@ — R,

MI(P, Q) > MI(P, R).

The data processing inequality formalizes the concept that
no processing of data can increase mutual information. To
make this more concrete, let P be any random variable (e.g.
sex, yaw, identity), and let (), R be features for different
layers in a network where R is a deterministic function of
Q, i.e. R is deeper than (). Since R is a function of () then
P, Q, R forms a Markov chain [23]. It follows from the DPI
that the information about P contained in the features cannot
increase as we go deeper.

The expressivity results in Figure [3] are not monotonically
decreasing, which might seem like a contradiction to DPI.
However, as pointed out in [14], the features in our con-
text denote representation, rather than information content
described in Information Theory. Representations are more
closely related to predictability of a specific attribute, as
compared to information-theoretic content. Hence, in this
work, expressivity refers to the accord between and attribute
and attribute, rather than its theoretical information content.

Relation with linear separability: Alain and Bengio
[14] show that the linear separability of features with
respect to output classes, which provided supervision,
monotonically increases as we go deeper into the network.
From Figure 3] we find this to be true for expressivity
identity as well, which provided supervision during training .



Yaw Yaw
Layer n ..
regress” error  expressivity
Resd4a2b 11.42 1.36
Resba2c
Pool5 11.57 1.23
FC-12S 11.65 0.59

TABLE III: Comparison of yaw regression errors with their
corresponding expressivity values, in different layers of Network
A. The highest accuracy (or lowest error) corresponds to highest
expressivity and lowest accuracy (or highest error) corresponds to
lowest expressivity.

In order to ensure that the expressivity values correlate
with feature vectors, we compute the accuracy/error rate
obtained by training a linear classifier and testing it directly
using features from the aforementioned layers in Network
A, as explained Section To analyze the yaw expressiv-
ity values, we first train a simple linear regression model
on 3000 randomly selected features (extracted from IJB-
C images) and evaluate its regression error on 2000 IJB-C
features.The corresponding results are presented in Table
from which we can infer that expressivity values do correlate
with regression errors for yaw.

B. Temporal course of training

We also analyze the training process of Network A and B
and investigate the changes in the expressivity of yaw, sex,
identity and age in the final layer (FC-L2S) of these networks
with respect to its training iterations. The features at all
iterations (> 0) are 512 dimensional and are flattened and
Protocol-1 is used for computing attribute-wise expressivity,
along with specifications for FC-L2S mentioned in Table
The features at iteration O, represent the final layer features
of the networks trained on ImageNet [24], without the final
fully connected layer for identity recognition. These features
are therefore 2048 and 1536 dimensional for networks A
and B respectively. The results are presented in Figure
Our observations are listed below:

« We find that the expressivity of yaw, age and sex reach
their peak values in the first 25000 iterations for Network
A and 40000 iterations for Network B, to learn the general
concept of facial pose, age and sex.

« Following that, we find that the yaw expressivity decreases
rapidly as the training proceeds, showing that making
features almost agnostic to pose variance is an essential
part of the training process.

« For both networks A and B, the expressivity of age and sex
decreases slightly after their corresponding expressivity
peaks are attained, during the course of training. However,
compared to yaw, the rate of decay in the expressivity of
age and sex is low. This shows that age and sex are more
important for identity recognition than face yaw.

« Observing the expressivity values in the final iteration, we
can infer that for identity recognition, the following is the
order of relevance of attributes for which the network does
not receive any supervision : Age > Sex > Yaw. The

. Yaw Yaw Age Age
Iteration
eIror  expr. | error - expr.
T 8.06 1.22
T> 11.27  0.68
T3 11.65  0.59 8.11 1.19

TABLE 1V: Comparison of age and yaw regression errors with
their corresponding expressivity values in 3 iterations 74,75, T5.
For yaw, Ti1,7>,T5 = 25k,100k,200k iterations. For age
50k, 100k, 200k

opposite of this order is observed in the rate by which the
expressivity values of yaw, age and sex decreases, i.e. the
rate of decrease is : Age < Sex < Yaw. This is true for
both networks A and B.

o The expressivity of identity generally increases during
training for both networks A and B.

o Features extracted from the final layer of Iteration 0
model (Imagenet features), express identity better than
other attributes. This is because the Imagenet features
express ‘objectness’, which is closely related to identity
as compared to other attributes (yaw, age, sex).

Similar to what we did in Section we compare the
expressivity values to the corresponding error rates by train-
ing and testing linear classifiers directly on the final fully
connected layer features. The results are presented in Table
where we again find that there exists correlation between
expressivity values and age/yaw regression errors.

C. Advantage of expressivity over other techniques

The following are the advantages of Expressivity over
existing interpretability techniques:
Comparison of several attributes: Comparing expressivity
of different attributes in a given set of features is important
for understanding the information organization in a trained
network. As shown in Figures [ and [3] expressivity helps
put the error rates of all attributes on the sample scale,
thus enabling their comparisons. This cannot be achieved by
directly using the accuracy/error rates of linear classifiers,
as different attributes have different scales and evaluation
metrics.
Useful for any physical concept (discrete/continuous):
Although we used expressivity to analyze face recognition
networks in terms of facial attributes, it can be used for a
network with respect to any physical attribute. For instance,
we can compute the expressivity of ‘stripes’ concept in a set
of features F' if we have a binary attribute vector A, denoting
the presence or absence of ‘stripes’. This is similar to TCAVs
[13]. However, TCAVs cannot be directly used to quantify
the content of continuous concept (like pose angle), since we
need images with which demonstrate absence of that concept
to train CAVs, and this is not trivial for concepts like pose
angle, age etc.
No dependence on training classes: Methods like [13] and
[16] require computing change of logit values. However, for
images not in training classes, this value is not meaningful.
Using expressivity allows to measure information about
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face in this figure is attributed to Eva Rinaldi under the [cc-by-sa-2.0] creative commons licenses respectively. The face was cropped from

the source image.
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Fig. 4: Expressivity of identity, age, sex and yaw in final layer (FC-L2S) features of a.) Network A and b.) Network B. Decreasing
expressivity of task irrelevant attributes (yaw, age, sex) is a part of training. Observed rate of decrease : Age < Sex < Yaw

attributes that were not explicitly included in training.
D. Relation with information bottleneck theory

Saxe et al [25] provide a response to the Information
Bottleneck theory [26], and claim that when an input do-
main consists of a subset of task-relevant and task-irrelevant
information, hidden representations do compress the task-
irrelevant information. In our context, identity is the task-
relevant information, since the networks only receive identity
supervision. The task-irrelevant information includes yaw,
age and sex information. In our work, we concur with the
claims of [25]. It can be seen in Figures [4] the expressivity of
task-irrelevant attributes (yaw, age, sex) in the final layer de-
creases as we train the network, depicting the ‘compression’

phase. This occurs while the identity expressivity increases
as the training progresses, which corresponds to the “fitting’
phase of the network. Hence, we also verify another result
in [25], that this compression happens concurrently with the
fitting process rather than during a subsequent compression
period.

VI. DISCUSSION AND FUTURE WORK

We present an approach to quantify the information
learned by a face recognition network about several attributes
and identities, by computing their expressivity in a given
set of features. The scale of this measure is agnostic to the
attribute being examined. We use this measure to analyse
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layer-wise features, and temporal snapshots of the final
fully connected layer in two face recognition networks. We
make some important observations in both the networks we
investigated: (1) The mid-layer and shallow layer features
effectively capture task-irrelevant information (about yaw,
sex, age). The deeper layers encode task-relevant identity
information. (2.) During the training process, the expres-
sivity of identity increases while that of yaw, sex and age
decreases, thus showing that decreasing expressivity of task-
irrelevant attributes is a part of learning. Expressivity of
yaw, especially, decreases very rapidly. (3.) Using the expres-
sivity values in the final layer of trained networks, we find
the following order of attribute-wise relevance for identity
recognition : Age > Sex > Yaw. This is opposite to the order
of the rate by which expressivity of these three attributes
decrease during training. We also relate our findings with
existing works on interpretability and information bottleneck
theory.

There are other face attributes, such as facial expression,
presence of eyeglasses, beard, hairstyle etc. which play a
crucial role in identity recognition. One future avenue of
research is to extend our work for these attributes and obtain
a more exhaustive ordering of face attributes in terms of their
relevance to face recognition. Also, one could investigate the
training processes of layers other than fully connected layers.
Finally, one could estimate the expressivity of attributes in
face descriptors extracted from other networks, like [27] and
[28].
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