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Abstract—Image degradation due to atmospheric turbulence is
common while capturing images at long ranges. To mitigate the
degradation due to turbulence which includes deformation and
blur, we propose a generative single frame restoration algorithm
which disentangles the blur and deformation due to turbu-
lence and reconstructs a restored image. The disentanglement
is achieved by decomposing the distortion due to turbulence
into blur and deformation components using deblur generator
and deformation correction generator respectively. Two paths of
restoration are implemented to regularize the disentanglement
and generate two restored images from one degraded image.
A fusion function combines the features of the restored images
to reconstruct a sharp image with rich details. Adversarial and
perceptual losses are added to reconstruct a sharp image and
suppress the artifacts respectively. Extensive experiments demon-
strate the effectiveness of the proposed restoration algorithm,
which achieves satisfactory performance in face restoration and
face recognition.

Index Terms—Image Restoration; Face Recognition; Face
Verification; Turbulence Mitigation; Generative Adversarial Net-
works

I. INTRODUCTION

Capturing images at long ranges is always challenging as
the degradation due to atmospheric turbulence is inevitable.
Under the effects of the turbulent flow of air and changes
in temperature, density of air particles, humidity and carbon
dioxide level, the captured image is blurry and deformed due to
variations in the refractive index [1], [2]. This will significantly
degrade the quality of images and performances of many
computer vision tasks such as object detection [3], recognition
and tracking [4]. To suppress these effects, two classical
approaches have been considered, one based on adaptive optics
[5], [6] and the other based on image processing [7], [8],
[9], [10], [11], [12], [13], [14], [15]. However, these methods
require multiple image frames captured by a static imager.
Mathematically, [9], [8], [13] the process of image degradation
due to atmospheric turbulence can be represented as

Ĩk = Dk(Hk(I)) + nk, (1)

where Ĩk is the observed distorted images, I is the latent clear
image, Hk is a space-invariant point spread function (PSF),
Dk is the deformation operator, which is assumed to deform
randomly and nk is the sensor noise.

Recently, many learning-based face restoration algorithms
such as face deblurring [16], [17], [18] and face superresolu-
tion [19], [20], [21] have been proposed. Moreover, the emer-

gence of Generative Adversarial Networks (GAN) has further
improved the quality of reconstructed images. However, these
methods have not tackled the problem of deformation, which
greatly reduces the quality of the aquired images and the
performance of many computer vision tasks.

Recently, [15] proposed a generative method to restore a
clean image from multiple frames using a Wasserstein GAN
[22] and a subsampled frames algorithm proposed by [13].
However, the method assumes a multi-frame setting with a
static object. This assumption may not be practical in real life
situations.

Motivated by the recent success of data-driven approach, we
propose a generative single face image restoration algorithm,
namely Atmospheric Turbulence Face GAN (ATFaceGan),
which reconstructs a clean face image with texture details pre-
served by simultaneously disentangling blur and deformation.
We build two generators, namely, deblur function and defor-
mation correction function to decompose the degradations in
turbulence. Also, we propose a two path training approach
to further disentangle the degradation and reconstruct two
images. A fusion function is used to combine the information
in the two restored images and reconstruct a sharp face image.
Some sample restored images are shown in Fig. 1.

Our contributions are summarized below:

1) The proposed method tackles the atmospheric turbulence
degradation problem with a single image input.

2) We propose a generative face restoration algorithm
trained in an end-to-end manner, which tackles degra-
dation due to both blur and deformation by building
the deblur function and deformation correction function
respectively.

3) We propose a two path training strategy to further disen-
tangle the blur and deformation and improve the quality
of the restored image.

4) We propose a fusion network to combine the latent
features of the intermediate results and reconstruct one
clean restored image.

5) Experiments demonstrate that the restored face image is
satisfactory in both quantitative and visual assessment.
Further, the restored face images yields improved recog-
nition performance.
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Fig. 1: Restored images of ATFaceGAN from the publicly available face dataset [23]. Rows 1 and 3 present the synthetic
atmospheric turbulence degraded images. Rows 2 and 4 present the corresponding restored images obtained by the proposed
algorithm.

II. RELATED WORK

Turbulence Degraded Image Restoration Classical
methods of restoring images degraded by turbulence generally
include two approaches. One is ”lucky imaging” [24], [25],
which chooses a frame or a number of good frames in a
turbulence degraded video and fuses the selected frames.
Another one is the registration-fusion approach [8], [9], [26],
[14], which first constructs a good reference image and aligns
the distorted frames with the reference image using a non-rigid
image registration algorithm. After alignment, the registered
images are fused following which a restoration algorithm is
applied to deblur the fused image to obtain the final restored
image. Despite having satisfactory results, these methods as-
sume multi-frame inputs with static objects. This assumption
is violated easily in reality, for example, when pedestrians are
moving in long range surveillance videos.

Face Restoration Due to recent successes of CNNs and
GANs, several CNN-based face restoration algorithms have
been proposed. [16] proposed a CNN with Residual Blocks to
deblur face images. [17] proposed a multi-scale CNN that ex-
ploits global semantic priors and local structural constraints for
face image deblurring as a generator and built a discriminator
based on DCGAN [27]. [18] proposed an unsupervised method
for domain-specific single image deblurring by disentangling
the content information and blur information using the KL
divergence constraint and improves the performance of face
recognition. However, since degradation due to turbulence
contains motion blur, out-of-focus blur or compression arti-

facts, these methods could not obtain satisfactory results.

III. PROPOSED ALGORITHM

The proposed face image restoration algorithm is trainable
in an end-to-end manner. Our goal is to reconstruct a sharp
face image from the distorted face image and enhance the
performance of face recognition systems.

A. Problem Setting

Following the formulation of the degradation model dis-
cussed in [14], [9], [13], we assure the mathematical model
in (1). This is the general setting for restoring the latent
clean image from a sequence of turbulence-degraded image
frames. However, we assume only one frame is available to
reconstruct the latent clean image, a more challenging and
practical problem than considered earlier. As a result, the
subscript k is removed. Also, we notice that the ”mixing”
of deformation and blur in realistic turbulence face images
is very fast and we could not be sure whether deformation
precedes blur or blur precedes deformation. Therefore, we use
a general turbulence function T to replace D◦G in (1). Hence,
our model becomes

Ĩ = T (I) + n. (2)

Let Ib = {Ib := H(I)|I ∈ I} and Id = {Id := D(I)|I ∈ I}
be the space of blurry and deformed face images respectively.
Our goal is to construct a restoration function G to restore the
distorted face images, i.e. G(Ĩ) = I . However, it is a highly
ill-posed problem as we have very little prior information to



Fig. 2: Overview of the proposed restoration algorithm. Given a distorted image Ĩ , it is first passed through the deformation
correction function Gd to get it aligned and deblurred with deblur function Gb and generate Gbd(Ĩ). It is then passed through
the bottom branch (red), gets deblurred by Gd and then algined by Gb to obtain Gdb(Ĩ). Features of Gbd(Ĩ) and Gdb(Ĩ) are
concatenated and passed through the fusion function Gf to obtain the final restored image Gf (If ).

reconstruct Ĩ . Hence, a data-driven approach, in particular the
Wasserstein GAN with gradient penalty, is applied to restore
it. Moreover, blur and deformation are always combined in the
turbulence-degraded face images. We hope to build a deblur
function Gd and a deformation correction function Gb to
remove the undesired blur and deformation, i.e. Gd(Ĩ) = Id
and Gb(Ĩ) = Ib. Therefore, we split the turbulence degradation
due to blur and deformation in the training stage. In order to
restore a general turbulence function T which contains both
the blurring operator H and the deformation operator D, we
propose a two path training approach, which tries to obtain
more information to obtain a better result. Therefore, two
restored images are obtained, i.e. Gd(Gb(Ĩ)) and Gb(Gd(Ĩ)).
A fusion network is implemented to improve the restoration
results. Denote Gbd = Gb ◦Gd, Gdb = Gd ◦Gb and F (I) be
the features of image I . Mathematically,

G(Ĩ) = Gf (If ), (3)

where Gf is a image fusion function and If is the feature
pairs (F (Gdb(Ĩ)), F (Gbd(Ĩ)). The end-to-end architecture is
illustrated in Fig. 2.

B. Data Augmentation

In order to apply a data-driven method to restore a clean
face image from distorted faces, sufficient amount of synthetic
training data are needed. Therefore, the blur operator H and
the deformation operator D are required to synthesize the dis-
torted images. In this paper, we use the turbulence generation
algorithm from [13], [14], [15] due to its efficiency in choosing
different parameters to generate turbulence-degraded images
with various severity.

We follow the procedure discussed in [13], [14], [15] to
generate a random motion vector field to deform the face
images. M points are selected in a face image I . For each
point (x, y), a N × N patch PNx,y centered at (x, y) is

considered. A random motion vector field Vx,y is obtained
in PNx,y . Mathematically,

Vx,y = η(Gσ ∗ N1, Gσ ∗ N2), (4)

where Gσ is the Gaussian kernel with standard deviation σ,
η is the strength value, N1 and N2 are randomly selected
from a Gaussian distribution. The overall motion vector field
is generated after M iterations as follows:

V =

M∑
i=1

V(x,y)i (5)

Then this motion vector field would be our deformation
operator D defined as

D(I) = I � V, (6)

where � is the warping operator. The blurring operator H is
simply a Gaussian kernel. For more details, please see [13],
[14], [15].

In order to construct the deblur function Gd and the defor-
mation correction function Gb, we need to generate a blurry
image Ib, a deformed image Id and a distorted images Ĩ from
each clean face image I . To generate Ib, Gaussian blurring
filter with parameter τ is applied on I to get Ib. To obtain Id,
the random motion vector field with strength η is applied on
I .

C. Network Architecture

A Wasserstein GAN with gradient penalty is applied to
restore the distorted face images. The generator architecture
is a CNN, similar to [28] used for image deblurring. It
contains two strided convolution blocks with stride 12, six
residual blocks [29] (ResBlocks) and two transposed con-
volution blocks. There are one convolution layer, instance
normalization layer [30], ReLU activation [31] and a Dropout
layer with p = 0.5 in each ResBlock. A global skip connection



mentioned in [28] is also added. The deblur function Gd
and deformation correction function Gb are included in both
paths of this architecture. The fusion network Gf takes the
concatenation of the features from face images GbdĨ) and
Gdb(Ĩ) as inputs. The features are extracted after the activation
function of the third ResBlock in Gb and Gd. The architecture
of the fusion network Gf is exactly the latter half of the
structure of Gb and Gd, which contains three ResBlock and
two transposed convolution blocks. Since the input is the
concatenation of two feature vectors, the number of channels
in the ResBlocks of Gf is doubled. In order to keep the global
skip connection, which has been shown to converge faster,
pixel-wise average of GbdĨ) and Gdb(Ĩ) is added to Gf (If ).
During training, three discriminators, namely Db, Dd and Df ,
are designed. Db, Dd and Df determine whether Gb(Ĩ) and
Gd(Ĩ) and Gf (Ĩ) are real or fake. The discriminators are
Wasserstein GAN [22] with gradient penalty [32] (WGAN-
GP). Their architectures are same as PatchGAN [33], [34].
All the convolutional layers except the last are followed by
InstanceNorm layer and LeakyReLU [35].

D. Disentanglement of Blur and Deformation
In order to disentangle the turbulence distortion into blur

and deformation, the deblur function Gd and the deformation
correction function Gb are built. The content loss Lcon is
defined as

Lcon = ‖Gb(Ĩ)− Ib‖1 + ‖Gd(Ĩ)− Id‖1, (7)

which is the sum of the L1 loss between aligned image Gb(Ĩ)
and Ib and the L1 loss between deblurred image Gd(Ĩ) and
Id.

E. Two path training
The two path training strategy helps to disentangle the blur

and deformation effects. One fixed order of restoration is
needed if two path training is not implemented. For example,
the distorted image is restored by Gb and followed by Gd
according to (2). Then during the training phase, Gb is trained
with the turbulence degraded images which are both blurry
and deformed. In other words, the training images for Gb are
implicitly assumed to be both blurry and deformed but not
merely deformed. Therefore, if two path training is used, then
Gb could learn from turbulence degraded images Ĩ and the
deblurred images Gd(Ĩ).

Moreover, the search space of the optimization problem is
larger because no implicit structure of degradation is assumed.
As the turbulence function T only consists of blur and
deformation but not the order of degradation, this gives more
information (GbdĨ) and Gdb(Ĩ)) to the network and improve
the performance.

F. Fusion Loss
After both restored images Gbd(Ĩ) and Gdb(Ĩ) are obtained,

their features are fused together to obtain the final restored
image. The fusion loss is defined as the L1 loss of the restored
image and the real clean image I , i.e.

Lf = ‖Gf (If )− I‖1. (8)

G. Adversarial Loss

The Wasserstein-1 distance in WGAN has been shown
to have good convergence property and is more stable in
training given that the function is 1-Lipschitz. To enforce the
1-Lipschitz constraint, gradient penalty is applied. Then the
discriminator and generator losses are defined as

LIiDis = EĨ∼Ĩ [Di(Gi(Ĩ))]− EIi∼Ii [Di(Ii))]

+ λWGAN · EÎi∼Îi [(‖∇ÎiDi(Î)‖2 − 1)2],
(9)

LIfDis = EIf∼If [Df (Gf (If ))]− EI∼I [Df (I))]

+ λWGAN · EÎf∼Îf [(‖∇ÎDf (Î)‖2 − 1)2],
(10)

LIiGen = −EIi∼Ii [Di(Gi(Ĩ))] (11)

LIfGen = −EIf∼If [Df (Gf (If ))] (12)

where Îi is the distribution obtained by randomly interpolating
between real images Ii and restored images Gi(Ĩ), i ∈ {b, d}
and j ∈ {b, d, f}. The adversarial loss is

Ladv =
∑

j∈{b,d,f}

LIjDis + L
Ij
Gen (13)

H. Perceptual Loss

Using L2 loss or L1 loss merely as the content loss would
lead to blurry artifacts and loss in texture details as these
losses favor pixelwise averaging. On the other hand, Perceptual
Loss, which is an L2 loss function between the feature maps
of real image and generated image, has been demonstrated
to be beneficial for image restoration tasks [17], [28], [18].
Therefore, perceptual loss is adopted, which includes

LIip = ‖φl(Gi(Ĩ))− φl(Ii)‖22, i ∈ {b, d} (14)

LIfp = ‖φl(Gf (If ))− φl(I)‖22 (15)

where φl(·) is the features of the lth layer of a pretrained CNN.
In this paper, the conv3,3 layer of VGG-19 [36] network
pretrained on ImageNet [37] is adopted. The total perceptual
loss is

Lp =
∑

i∈{b,d}

LIip + LIfp = LIb,Idp + LIfp (16)

The full loss function is a weighted sum of all the losses,

L = Ladv + λconLcon + λfLf + λb,dp LIb,Idp + λfpL
If
p (17)

The weights are empirically set for each loss to balance their
importance.

I. Testing

At test time, only the generators are used. Given a turbu-
lence distorted image Ĩ , the restored image is generated as
follows:

Ir = Gf (F (Gbd(Ĩ)), F (Gdb(Ĩ))). (18)



TABLE I: Ablation study tested with LFW dataset

Method Degraded images One generator Decompose into Add two path Add fusion
two generators training function

PSNR 24.17 25.99 25.90 26.16 27.29
SSIM 0.878 0.901 0.897 0.902 0.924

(a) (b) (c) (d) (e) (f)

Fig. 3: Ablation study. (a) is the distorted image and (f) is the
sharp image. (b) only contains one generator. (c) is split into
Gd and Gb. (d) adds two path training and (e) adds fusion
network

IV. EXPERIMENTS

Our algorithm is trained on [23] and evaluated on six face
recognition datasets, including LFW [38], CFP [39], AgeDB
[40], CALFW [41], CPLFW [42] and VGGFace2 [43].

A. Training details

The end-to-end design is implemented in Pytorch [44]. The
training was performed on two GeForce RTX 2080 Ti GPU.
In training, 10000 aligned face images are randomly picked,
which are with resolution 112×112 from [23] with the turbu-
lence degradation algorithm in Sec(III-B) and a batch size of
16. During training, we use the Adam solver [45] with hyper-
parameters β1 = 0.9, β2 = 0.999 to perform five steps of
update on discriminators and then one step on generators. The
learning rate is initially set at 0.0001 for the first 30 epochs,
then linear decay is applied for the next 20 epochs. For hyper-
parameters in deformation operator D, we empirically set
η = 0.13, N = 4, σ = 16 and M = [1000, 3000, 7000, 10000].
For hyper-parameters in blurring operator H , the parameter
µ is set to be [1, 2, 3, 4]. For hyper-parameters in the loss
function, we empirically set λcon = λf = 1000, λb,dp = 10
and λfp = 1. Note that various parameters in M and τ are
randomly picked to synthesize various strength of blur and
deformation. The computation time of restoring a 112 × 112
image is 0.031 seconds per image on average.

B. Testing details

In all the six testing dataset, all the pairs of the face images
are degraded by the algorithm from [13]. PSNR and SSIM are
used for evaluating the quality of the restored image. We use
a pretrained face recognition network [46], which is trained as
reported in [47], to test the face verification performance1.

C. Ablation study

In this section, the results of an ablation study preformed
to analyze the effectiveness of each component or loss in
the proposed algorithm are presented. Both quantitative and

1Please refer to the corresponding project page for the face verification
policy: https://github.com/ZhaoJ9014/face.evoLVe.PyTorch

qualitative results on face dataset in [23] are evaluated for the
following four variants of our methods where each component
is gradually added: 1) only one generator and one discrimina-
tor; 2) splitting the generators into two, Gb and Gd, and the
restored image is Gb(Gd(Ĩ)); 3) Applying two path training
and the restored image is Gb(Gd(Ĩ)) and 4) adding fusion
network and fuse them by Gf

We present the PSNR and SSIM for each variant in Table I
and visual comparisons in Fig. 3. From Fig. 3, we observe that
the resultant images with direct restoration, which only uses
one generator, is not satisfactory. This is because turbulence
degradation is a very ill-posed problem. There is a large gap
between turbulence-degraded and clean image and one gener-
ator could not provide enough information to the network. By
decomposing the network into two generators, the quantitative
performance is similar to one generator but it is less noisy.
This is because we have more information for the generators
to learn as the intermediate results (Gd(Ĩ)) provides additional
supervision to the final restored image. When we apply the
two path training step and as both Ib and Id are added to
supervise the training, the results are good even groundtruth I
is not used in the training. Adding the fusion network further
improves the result as more information (features of Gbd(Ĩ)
and Gdb(Ĩ)) is given to the network and the information is
combined by the fusion function Gf . Table I also justifies the
result.

D. Qualitative and quantitative Evaluation

Since the proposed algorithm is the first single frame-based
image restoration method with turbulence-degraded images,
which involve blur and deformation, it is hard to compare with
other methods. Therefore, we compare with some state-of-
the-art image restoration methods including [28], [18], which
could train with our turbulecnce-dagraded image dataset.
These two methods are the representative methods for applying
GAN in deblurring in supervised and unsupervised ways
respectively. For [28], we change the batch size from 1 to
16 and the number of training epoch to 100. For [18], we use
the default setting.

The quantitative results are shown in Table II and the
visual comparison are illustrated in Fig. 4. In Fig. 4, we have
demonstrated three images: one from LFW, one from CFF and
one from AGEDB. The top one is a frontal image with mild
blur and mild deformation, the middle one is a frontal image
with moderate blur and severe deformation and the bottom
one is a non-frontal gray-scale face image with severe blur
and mild deformation. For the top image, we can see that
blur is suppressed in all three methods. [28] and [18] shows
sharper visual result then ours. However, the result from [28]
is noisy and that from [18] is deformed. The proposed method



(a) (b) (c) (d) (e)

Fig. 4: Visual performance comparison with state-of-the-art methods. (a) is the distorted image. (b) [28]. (c) [18]. (d) Ours.
(e) Groundtruth.

TABLE II: Quantitative performance comparison with state-of-the-art methods

Dataset Sharp Distorted [28] [18] Ours
Acc PSNR SSIM Acc PSNR SSIM Acc PSNR SSIM Acc PSNR SSIM Acc

AgeDB [40] 0.981 22.71 0.769 0.819 24.04 0.781 0.830 21.22 0.657 0.750 25.24 0.838 0.835
CALFW [41] 0.959 22.85 0.831 0.842 24.43 0.843 0.844 21.97 0.771 0.780 25.78 0.890 0.857
CFP FF [39] 0.997 22.13 0.830 0.892 22.88 0.833 0.916 21.40 0.683 0.861 24.37 0.889 0.922
CFP FP [39] 0.981 22.94 0.850 0.799 23.84 0.850 0.812 21.83 0.629 0.743 25.20 0.901 0.815
CPLFW [42] 0.925 24.21 0.875 0.787 26.11 0.882 0.797 22.68 0.787 0.732 27.29 0.919 0.800

LFW [38] 0.998 24.17 0.878 0.936 25.80 0.884 0.951 23.10 0.824 0.896 27.29 0.924 0.946
VggFace2 [43] 0.952 23.44 0.849 0.837 24.99 0.856 0.853 22.06 0.774 0.784 26.16 0.896 0.854

restores the image effectively. On the other hand, if both blur
and deformation exist, [28] would induce more noise as shown
in Fig. 4 (b) and [18] could not remove the deformation as
shown in Fig. 4 (c). The proposed method suppresses both blur
and deformation. Moreover, as our training set only consists
of 10000 images, which include both colored and grey-scale
images, the quantitative results generated by [18] are not good
compared to [28] and the proposed method as the number of
training sample is not large enough. The proposed method
trained with a relatively small training set is effective in the
presence of severe blur, deformation and pose. The PSNR and
SSIM in Table II both demonstrate that the proposed method
performs better than state-of-the-art methods.

For the face verification task, we note that [28] is slightly
better than the proposed method in one out of seven exper-
iments even though both the visual quality and quantitative
results of the proposed method is better than [28]. Except
LFW, the proposed method is more accurate than the other two
methods. The verification accuracy of [28] is comparable with
the proposed method. It is because [28] uses only perceptual
loss as their content loss. As a result, the restored image
from [28] is perceptually similar than the proposed method.
Using the L2 distance from two feature output from conv3,3

layer of VGG-19 [36] network as a perceptual metric, namely
dV GG, we found that the dV GG between restored image by
[28] and the original clean image is 110.82 in LFW while the

dV GG between the restored image by the proposed method
and original clean image is 118.55.

Atmospheric turbulence degradation severely harms the task
of face verification as the verification accuracy is reduced
by more than 10% on average. There could be a significant
drop (as much as 20% for CFP FP) even though the face
verification system is trained with [47], which consists of
over 5 million images. Also, as the task of restoration from
turbulence is very challenging, the restoration results from
other state-of-the-art method do not yield satisfactory results
even they are trained with our dataset. Moreover, the proposed
method restores the turbulence degraded images effectively
even with a relatively small dataset.

E. Performance of the disentangled representation

We try to disentangle the blur and deformation from at-
mospheric turbulence by training the deblur function Gd and
the deformation correction function Gb with a commutative
constraint. To see the performance of the disentanglement, Gb
and Gd are tested. We try to use Gd to deblur the blurry image
and Gb to correct the deformed images. Note that during the
training, Gb is only fed with the distorted image Ĩ and the
deformation corrected image Gd(Ĩ) of the distorted image.

We test Gb and Gd with Id and Ib respectively, where
I are from the LFW dataset. The PSNR, SSIM and the
accuracy of face verification are presented in Table III. The



(a) (b) (c) (d) (e)

Fig. 5: Visual performance comparison of the deblur function
Gd and deformation correction Gb with the LFW dataset. (a)
Blurry image. (b) Restored image of (a) by Gd. (c) Deformed
image. (d) Restored image of (c) by Gb. (e) Groundtruth.

Fig. 6: Visual performance comparison of original face image
and the resultant image that passing through the pipeline with
the original face image. Left: Original. Right: Ours.

visual performance is shown in Fig. 5. For the first row, the
image is moderately blurred (Fig. 5 (a)) and severely deformed
(Fig. 5 (c)). From Figs. 5 (b) and (d), we see that Gd and
Gb successfully remove the blur and deformation from the
image and preserve the features of the subject. On the other
hand, note that the image in the second row is a profile
face with moderate blur (Fig. 5 (a)) and mild distortion (Fig.
5 (c)). Still, Gd and Gb successfully restore the degraded
images. Moreover, the PSNR, SSIM and face verification
results confirm that Gd and Gb restore the images, preserve
shape and semantic information and are robust to severity of
blur, deformation and pose.

F. Robustness to clean images input

We tested the case of feeding the groundtruth clean image
into the proposed method. We tested 5222 images from the
IJB-C dataset [48]. The PSNR and SSIM of the resultant
images after passing the original clean image to the pipeline
are 33.89 and 0.980 respectively. The visual comparison result
is shown in Fig. 6. Both qualitative and quantitative results
show that the proposed method is robust to non-blurred
images.

G. Failure cases

We have shown some failure cases in Fig. 7. The proposed
method produces over-smoothed images if the turbulence

Fig. 7: Failure cases. Left: AT. Right: Restored.

TABLE III: PSNR, SSIM and face verification results for LFW
dataset with Gb and Gd.

Ib Id Gd(Ib) Gb(Id)
PSNR 25.33 29.78 28.72 29.93
SSIM 0.895 0.958 0.931 0.961
Accuracy 0.793 0.649 0.817 0.809

degradation is very strong.

V. CONCLUSION

In this paper, we proposed a single frame image restoration
method ATFaceGAN, which is a generative algorithm to
disentangle the turbulence distortion into blur and deformation
and restores a sharp image. In order to disentangle turbulence,
a deblur generator and a deformation correction generator
are introduced. To further separate the blur and deformation,
two paths are employed to produce two restored images.
Finally, a fusion function combines the two restored images
and generates one clean image. Ablation studies on each com-
ponent demonstrate the effectiveness of different components.
We have conducted extensive experiments on face restoration
and face verification using the restored face images. Both
quantitative and visual results show promising performance.
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