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Abstract—With the improvement of sensor technology and sig-
nificant algorithmic advances, the accuracy of remote heart rate
monitoring technology has been significantly improved. Despite
of the significant algorithmic advances, the performance of rPPG
algorithm can degrade in the long-term, high-intensity continuous
work occurred in evenings or insufficient light environments.
One of the main challenges is that the lost facial details and
low contrast cause the failure of detection and tracking. Also,
insufficient lighting in video capturing hurts the quality of
physiological signal. In this paper, we collect a large-scale dataset
that was designed for remote heart rate estimation recorded with
various illumination variations to evaluate the performance of the
rPPG algorithm (Green, ICA, and POS). We also propose a low-
light enhancement solution (technical solution) for remote heart
rate estimation under the low-light condition. Using collected
dataset, we found 1) face detection algorithm cannot detect faces
in video captured in low light conditions; 2) A decrease in the
amplitude of the pulsatile signal will lead to the noise signal to be
in the dominant position; and 3) the chrominance-based method
suffers from the limitation in the assumption about skin-tone
will not hold, and Green and ICA method receive less influence
than POS in dark illuminance environment. The proposed
solution for rPPG process is effective to detect and improve the
signal-to-noise ratio and precision of the pulsatile signal. Our
dataset is available at https://github.com/xilin1991/Large-scale-
Multi-illumination-HR-Database.

Index Terms—image enhancement, remote photoplethysmog-
raphy, low-light environment, remote heart rate monitoring
technology.

I. INTRODUCTION

The advances in semiconductor technology enables us to
measure one’s physiological parameters in a non-contact way
just by means of simple instrumentations such as consumer-
level digital camera [1]–[3] and cellphone [4]. The technol-
ogy is usually called remote photoplethysmography (rPPG)
or image plethysmography (iPPG). The non-contact rPPG
does not need any direct physical contact with the subject,
which introduces great convenience in numerous applications
such as driving monitoring, fitness monitoring [5], [6], home
healthcare [7], [8], face anti-spoofing [9], etc.

However, there exists one question that is crucial but has not
gained much attention: the impact of insufficient illuminance
on the rPPG measurement. For the experimental environment,
the performance of the existing approach is verified under
well-lit conditions and there are no datasets acquired under
various illuminance to compare the accuracy of the existing
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rPPG algorithm. As a consequence, monitoring heart rate
during activities that occur in evenings or insufficient light
environments, such as sleeping, driving train or car, etc., can
remain a new challenge. But in the past, the researcher put
less attention to this issue and done not some work.

The challenges of extracting physiological signal in low
light environment are threefold. First, the region of interest
(ROI) cannot be reliably detected. Most object detection
and tracking algorithms determine the target based on rich
features contained in the images, e.g., Scale-Invariant Feature
Transform (SIFT) [10], Histogram of Gradient (HOG) [11],
or Convolutional Neural Network (CNN) based features [12].
However, insufficient illuminance attenuates the light intensity
of the scene, resulting in not enough features inside the target
for the trackers or low color contrast between the target and the
background. Second, the physiological signal captured by the
camera is extremely subtle and this problem is more significant
in low-lighting conditions. A decrease in the amplitude of
the pulsatile signal will lead to the noise signal to be in the
dominant position. Third, the pulse extraction models may fail
because their assumptions no longer hold. For example, the
skin reflection model [13], [14] relies heavily on the skin-
tone direction and the pulsatile color variation direction in
RBG space. The directions will change in low light condition
because the signals in blue and red channels are almost zeros.

In this paper, we propose a novel framework to extract rPPG
pulse information in low light condition. Inspired by recent
progress in low-light image enhancement techniques [15]–
[17], we employ image enhancement algorithm prior to pulse
extraction for accurate heart rate measurement such that the
physiological signals would not be influenced by illumination
and existing rPPG methods can be combined directly with the
processing pipeline. The solution consists of three main steps:
1) video enhancement; 2) ROI detection and tracking; and 3)
heart rate extraction.

The main contributions of this article are summarized as
follows:

1) To the best of our knowledge, we provide the first
solution for robust rPPG measurement under low light en-
vironment, which consists of an image enhancement module
and a pulse extraction module.

2) We are the first to systematically analyze the light
illumination on the rPPG measurement. The accuracy of
several rPPG algorithms are tested on a wide variety of light
illuminance in terms of mean absolute error (MAE), root mean
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TABLE I: A summary of publicly available datasets for remote heart rate estimation

Name Date published Illumination Subject Recording devices Number of videos Size Total duration
MAHNOB-HCI [21] 2012 Normal 27 RGB camera (60fps) 522 25.2 GB 527 min

COHFACE [18] 2016 Normal 40 RGB camera (20fps) 160 368 MB 160 min
MMSE-HR [19] 2016 Normal 40 RBG camera (25fps) 102 - -

OBF [23] 2018 Normal 106 RGB camera (60fps)/NIR camera (30fps) 212 - 1060 min
PBD-RPPG [24] 2018 3 level illuminance 3 RBG camera 21 16.8 GB 63 min
VIPL-HR [25] 2018 Dim/Bright illuminance 107 RGB camera (25fps)/NIR camera (30fps) 3203 48 GB (compressed) 1189 min

squared error (RMSE) and signal-to-noise ratio (SNR) [14].
3) We build large-scale dataset with the illuminance cov-

ering a wide range from 1 to 100 lux. To the best of our
knowledge, there is no publicly available datasets for the
research of rPPG measurement under low light environment.

The rest of this article is organized as follow: Section II
introduces the related works of existing publicly available
remote heart rate datasets and remote heart rate estimation.
Section III presents a framework of low-light video enhance-
ment for remote heart rate measurement in details. Experi-
mental setup and results are reported in Section IV and V,
respectively. Section VI concludes the whole article.

II. RELATED WORK

A. Publicly Available Datasets for Remote Heart Rate Esti-
mation

Many of the published methods conducted the experiment
on private datasets, which cause difficulties in fair comparisons
of different methods. But there are a lot of publicly available
datasets that were designed for rPPG methods. One of them
is the COHFACE dataset [18], which is composed of 160
videos and physiological signals collected from 40 healthy
individuals. The environment on the scene was changed once
as to create two types of lighting conditions, studio and natural.
At the same time, Tulyakov et al. introduced a new dataset
MMSE-HR [19] , which was part of the MMSE database
[20] and the subjects‘ facial expressions were more varied.
Besides, the MAHNOB-HCI dataset [21] was introduced by Li
et al [22]. for evaluating their method performance. However,
the datasets mentioned above were either designed for other
application or published earlier.

In the last two years, there are also a few publicly available
datasets specially designed for the task of remote heart rate es-
timation. In 2018, Xiaobai et al. proposed a database designed
for HR and heart rate variability (HRV) measurement [23].
Since this database aims at HRV analysis and all the situations
in this database are well-controlled, making it very easy
for remote HR estimation. Hoffman et al. released a public
benchmark dataset for testing rPPG algorithm performance
(PBD-RPPG) [24]. In the datasets, Videos accompanied by
ECG measurements were recorded on three participants with
three different skin tones. Niu et al. introduced a large-scale
multi-modal HR dataset (named as VIPL-HR) [25], which
contains 2451 visible light videos and 752 near-infrared videos
of 107 subjects. As we can see from Table I, the existing
public-domain datasets for remote heart rate estimation are
limited in the normal light environment.

B. Remote Heart Rate Estimation

Over the last decades, researchers have been investigating
the feasibility of remote heart rate estimation using a non-
contact-based device such as a camera. Pioneering research
includes Verkruysse et al. [1] detect PPG signals captured by
regular color digital cameras. This research reveals the green
light (approximately 530 nm wavelength) has been found to
give superior results compared to red or blue light [1], [26]
and also compared to infra-red [27]. Poh et al. applied BSS-
based model to remote heart rate estimation [2]. They separate
the PPG signal from the red, green, and blue color channel in
the video via Independent Component Analysis (ICA) [2], and
then Fourier transformation was applied. Another kind of rPPG
algorithm is based on the skin reflection model [13] which
exploits the interaction between light and skin. The CHROM
[14] uses a linear combination of the chrominance signals by
assuming a fixed skin-tone to white-balance the image. In the
later work of [14], Wang et al. comprehensively investigates
the algorithmic principles of rPPG in a mathematical context
with optical and physiological reasoning and proposes a new
method, Plane-Orthogonal-to-Skin (POS) [13] , which project
original RGB signal to extract pulsatile signals for remote
heart rate estimation.

This article investigates the robustness of remote heart rate
estimate algorithms (Green, ICA, POS) of under various illu-
mination conditions, especially in the low-light environment,
further study is carried out to assess their performance under
various light intensity.

III. METHOD
We propose a solution for remote heart rate estimation under

low-light condition, which consists of three stages: low-light
enhancement, ROI detection and tracking, and remote heart
rate estimation. The flowchart is shown in Fig. 1. The purpose
of the first stage is to enhance the input video frame where
visibility of the physiological signal is improved. The output is
an enhanced RGB image for each frame in the video sequence.
Then the ROI that contains the pulsatile signal will be obtained
from enhanced video frames in the second stage. The last stage
is heart rate extraction from raw traces in the ROI.

A. Low-light Enhancement

Regular remote heart rate estimation methods perform well
in normal light environment, but the regular pipeline may
eventually lead to failure if the videos are recorded under more
challenging conditions, e.g., low-light illumination. Inspired
by Retinex model [28], [29], we can enhance the video in the
low-light environment via removing the impact of illumina-
tion to facilitate the process of remote heart rate estimation.
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Fig. 1: Overview of the improved low-light video enhancement solution for rPPG.

Referring to Retinex model, the frame of low-light video is
decomposed into reflectance and illumination, which can be
modeled as:

L = R ◦ T (1)

where L is the frame in the video, R and T represent the re-
flectance and the illumination map, respectively. The operator
◦ denotes the element-wise multiplication. By transforming
(1), we can recover the enhanced result R by the division is
element-wise and T is the key to recover the enhanced image.
We observe that the green channel contains the strongest
pulsatile signal among the RGB color channels under low-
light condition. Our initial illumination map adopts the value
of the green channel to prevent mixing of noise from other
channels. The operation is as follows:

T̂← LG (2)

for each individual pixel, where G denotes green channels in
the three color channels.

In this work, we aim to preserve the over-all structure,
smooth the textural details, and amplify the pulsatile signal. To
this end, based on our employed initial illumination map T̂, we
solve the following optimization problem, which is proposed
in LIME [17],

min
T
‖ T̂− T ‖2F +α ‖W ◦ ∇T ‖1 (3)

where ‖ · ‖F and ‖ · ‖1 denote the Frobenious and `1 norms,
respectively, α is the coefficient to balance the involved two
terms, and W is the weight matrix, and ∇T is the first order
derivative filter. In Equation (3), initial map T̂ refers to green
channel to preserve physiological signal.

B. ROI Detection and Tracking

The purpose of stage 2 is to obtain the ROI that contains
the pulsatile signal from the enhanced frame of video. We first
use the Viola-Jones detection algorithm [30], [31] to detect
the location of a face on the first enhanced frame of the
input video, then adopt Discriminative Response Map Fitting
(DRMF) method [32] to find the coordinates of 66 facial
landmarks inside the face region. We use n = 4 points out
of 66 landmarks to define our ROI and generate a rectangular
mask of the ROI as the yellow bounding box shown in Fig. 2.

The rules of defining the ROI is as follows: the first one is
to exclude the mouth and eye region; the second one is that
the left and right boundaries of the ROI do not exceed the
cheek width. Therefore, we select n = 5, 13, 29, 51 points to

Fig. 2: ROI detection and tracking. The white maker symbol
∗ indicate 66 facial landmarks and we select n = 5, 13, 29, 51
points to define the initial ROI boundaries. The yellow line
shows the ROI boundary, inside which feature points are
detected and tracked.

define initial ROI boundaries, and then indent the boundaries
of ROI from initial boundaries above.

Then we use Staple tracker [33] to counter the problem
of ROI movement for the subsequent frames. Given the ROI
of frame i, spatial averaging [2] is applied to compute the
average value of pixels in each color channel within the ROI.
This results in the raw traces:

C(i) =
[
~CR(i), ~CG(i), ~CB(i)

]T
(4)

for i = 1, ..., L, where L is the number of frames in the video.

C. Heart Rate Estimation

Three published rPPG algorithms (Green, ICA and POS)
are used to extract the blood volume pulse from the enhanced
video to compare the performance of these algorithms under
low-light conditions.

Green (Verkruysse, Svaasand & Nelson, 2008 [1]): In this
case, we first select the green color channel vector ~CG(i) from
the raw traces. The signal, ~CG(i), was selected as the channel
with the greatest frequency power in the range 0.7 and 2.5 Hz.

ICA (Poh, McDuff & Picard, 2010 [2]): By referring to
priors approach [34], we detrended the raw traces based on
smoothness with λ = 100. Then, ICA method is applied to
the normalized detrended signal and filtered using a zero-
phase, 3rd-order Butterworth bandpass filter with pass band
frequencies of [0.7 2.5] Hz (corresponding [42 150] beat per
minute, BPM).

POS (Wang, Brinker, Stuijk & de Haan, 2017 [13]): In this
method a projection plane orthogonal to the skin-tone is used
for pulse extraction. A moving window of length 1.6 seconds
was set for the raw traces. For each window of data, the
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raw traces data are normalized by their respective mean to
give C̃n(i) ∈ R3×LW , where LW is the length of window.
Next, the normalized color matrix, C̃n(i), was multiplied by
the projection matrix P to give S(i). The resulting outputs of
the window-based analysis was used to construct the blood
volume pulse signal in overlap add fashion.

IV. EXPERIMENTAL SETUP AND
IMPLEMENTATION DETAILS

This section presents the experimental setup for the bench-
marking. First, a self-collected large video dataset recorded
under various illumination conditions is introduced. Next,
evaluation metrics are presented. Finally, we present the pa-
rameters of the experiment.

A. Dataset

We recruited 15 healthy subjects (12 male, 3 female, 18 to
30 years old) in this experiment and a total number of 165
video sequences were recorded under various illuminations.
The dataset will be available publicly1. The detail of the
experimental setup is described as follow:

Apparatus: Logitech HD pro webcam C930E color camera
was used to record videos of 640 × 480 pixels, 30 fps, 60s,
uncompressed bitmap format. PPG signal was measured using
CONTEC CMS50E.

Experimental environment: The video is captured in a
darkroom as shown in Fig. 3, which is covered with a blackout
cloth in order to isolate from ambient light. A split type
illuminometer, BENETECH GM1030 lux meter, is used as
the instrument for measuring light intensity and brightness in
the darkroom.

Fig. 3: The appearance of darkroom and experimental setup.

Participants: Fifteen participates were recruited in our
experiment. In the first step of the experiment, we measure
the light intensity received in the region of face via the
illuminometer which is placed against the light source and
was positioned in front of the participant‘s face. During the
experiment, each of the 15 individuals was asked to sit 1 meter
away from the camera, and the camera was positioned at the
participant‘s nose level as shown in Fig. 3.

B. Evaluation Metrics

Signal-to-Noise-Ratio (SNR) is adopted from [14] to eval-
uate the quality of the extracted pulse signal in comparison

1https://github.com/xilin1991/Large-scale-Multi-illumination-HR-Database

with the ground truth signal. It is derived by the ratio of the
first two harmonic ranges to the remaining parts of the pulse
signal in the frequency domain. The valid frequency range
considered in SNR is [42 240] (equivalent to [0.7 4] Hz).

Heart rate accuracy. We extract the instantaneous heart
rate estimation from a set of 51 overlapping 10-second win-
dows for each 1-minute video. The first 10-second windows
in the video as initialization is used to calculate the tenth-
second instantaneous heart rate. We choose mean absolute
error (MAE) and root mean squared error (RMSE) to evaluate
the accuracy of heart rate estimation.

C. Parameters Determination

We chose to vary the illuminance for three compared
rPPG methods (Green, ICA, POS) in order to under-
stand the influence of light intensity on accuracy of
pulse recovery. For completeness and anticipating effects
on rPPG signal, we varied illuminance in the range:
{100, 100.2, 100.4, 100.6, 100.8, 101.0, 101.2, 101.4, 101.6

, 101.8, 102.0} lux (equivalent to {1.0, 1.6, 2.5, 4.0, 6.3, 10.0,
15.8, 25.1, 39.8, 63.1, 100.0} lux).

V. RESULTS AND DISCUSSION

A. Evaluation of ROI Detection

We applied the histogram equalization (HE) and the pro-
posed image enhancement algorithm to the low-light video
on each illuminance level. Fig. 4 shows comparison between
original low-light images and corresponding enhanced images
at different illuminance level. After the above-mentioned op-
erations, we examine the Intersect over Union (IOU) score
between the detection ROI on the original video and the
enhanced video frame, including HE and improved LIME. The
average IOU score at each illuminance level is shown in Fig.
5.

The results show that there is a significant difference in
obtained IOU score between the original video and enhanced
frames. Detection exemplars are plotted in Fig. 6, where
ROI detection results on the original image and enhanced
frames are plotted for comparison. It can be observed that the
estimated ROI given from enhanced frames are usually larger
than the original video in the overlapping area with ground
truth, which means that most of the ground truth region can
be detected in the enhanced frames. Under all illuminance
levels, ROI detection on enhanced frames obtains IOU score
> 0.7, but detection on original video have great fluctuations.
Compared with enhanced frames, including HE and Improved
LIME, original frame is significantly smaller than the former
two at 1.0 to 2.5 lux, especially IOU score is less than 0.5 at
1.0 lux. In this case, 5 out of 15 subjects were not successfully
detected ROI. It implies that the performance of face detection
algorithm was hurt by captured video under insufficient light.
The gap between the enhanced frames and the original frame
has become less noticeable from 4.0 lux. There is not a very
sensible difference between HE and Improved LIME, and ROI
detection on HE enhanced frame can get high precision in very
low light condition. Overall, ROI detection performance on the
enhanced frames is stable and reliable, the performance on low
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TABLE II: Summary of the BVP SNR, MAE and RMSE for the rPPG algorithms under various light intensity in original
video and different enhancement screens.

Lux 100.0 100.2 100.4 100.6 100.8 101.0 101.2 101.4 101.6 101.8 102.0

SNR(dB)

Original
Green -1.06 -0.75 1.13 2.13 5.06 6.32 7.32 7.01 7.98 8.53 7.51
ICA -0.50 -0.08 1.18 2.72 6.03 6.61 7.83 8.98 10.15 12.33 11.65
POS -2.9 -2.54 -1.01 -0.87 2.59 4.72 6.00 7.17 8.23 9.49 9.20

HE
Green -1.37 0.41 0.30 1.24 3.55 4.32 6.07 5.17 5.65 5.45 4.15
ICA - - - - - - - - - - -
POS -2.63 -1.93 -1.26 -0.93 2.62 4.56 5.59 6.81 8.10 9.18 9.33

LIME
Green -0.19 0.03 1.00 0.11 1.45 3.72 5.38 6.61 6.63 9.46 6.70
ICA - - - - - - - - - - -
POS -2.44 -1.77 -1.25 -0.91 2.23 4.64 4.54 6.59 6.66 9.17 7.40

Improved
Green -0.26 1.57 1.30 1.63 3.62 3.07 3.65 3.28 3.16 2.91 4.04
ICA - - - - - - - - - - -
POS -2.42 -1.24 -0.89 0.81 2.08 1.67 1.86 1.97 2.05 2.06 3.25

MAE(BPM)

Original
Green 14.93 14.06 7.87 5.35 2.45 2.24 2.35 2.41 1.72 1.47 1.76
ICA 14.96 14.54 8.04 6.76 3.59 3.39 2.32 2.34 1.80 1.17 1.69
POS 59.89 51.38 29.37 23.98 5.11 1.70 1.87 1.27 0.97 0.86 0.94

HE
Green 18.10 12.66 8.12 8.28 4.07 3.32 2.62 2.68 3.03 2.87 3.72
ICA - - - - - - - - - - -
POS 59.52 51.3 30.52 27.26 4.34 1.77 1.86 1.34 0.93 0.91 0.96

LIME
Green 15.55 12.27 7.18 8.86 6.51 3.23 6.56 1.99 3.81 1.20 4.36
ICA - - - - - - - - - - -
POS 58.31 54.36 31.98 29.08 4.30 1.92 12.49 1.34 1.60 0.91 1.29

Improved
Green 12.12 6.01 6.30 5.35 2.97 3.06 4.48 5.21 5.60 5.73 4.94
ICA - - - - - - - - - - -
POS 56.84 43.47 26.10 8.13 4.45 2.63 4.18 6.41 5.34 6.66 2.78

RMSE(BPM)

Original
Green 18.98 18.32 11.91 8.71 4.13 3.10 4.20 3.88 3.09 2.89 2.63
ICA 20.24 19.32 12.43 8.91 5.06 4.88 3.31 3.45 2.96 1.77 2.60
POS 74.88 64.73 44.53 37.02 11.36 4.01 3.88 1.71 1.34 1.17 1.19

HE
Green 22.57 16.65 12.11 12.65 6.30 5.78 4.40 4.92 5.73 5.47 6.99
ICA - - - - - - - - - - -
POS 73.95 62.83 43.80 38.48 10.26 3.79 3.47 1.81 1.30 1.25 1.21

LIME
Green 19.69 17.10 10.95 13.32 11.28 5.33 8.09 3.08 5.77 1.81 5.88
ICA - - - - - - - - - - -
POS 74.83 66.84 45.59 41.35 9.76 4.00 15.88 1.80 3.17 1.24 1.89

Improved
Green 17.18 10.13 9.96 9.56 4.74 5.73 7.52 7.35 8.30 9.56 8.02
ICA - - - - - - - - - - -
POS 74.31 57.33 40.31 16.17 8.49 4.88 8.46 9.96 8.03 13.04 4.42

Fig. 4: Snapshots of partial original video in the benchmark dataset and corresponding enhanced frame video. First column:
original; second column: HE; third column: Improved.

light video has gradually degraded to IOU score < 0.5 where
there have no clear details of target scenes in the video frame.

B. Performances of State-of-the-art rPPG Algorithms

We evaluate the performances of state-of-the-art rPPG al-
gorithms under varied illuminance to answer the following
questions: 1) how much pulsatile signal is preserved in the
low-light video? 2) whether state-of-the-art rPPG algorithm
can extract heart rate accurately? To answer the first question,
we show spectrograms to compare the quality of the pulsatile
signals from the red, green and blue channel for all illumi-
nance levels. Signal quality is evaluated by the highest power
spectrum distribution in the dominant heart rate. The results
are reported in Fig. 7.

For all illuminance categories, the distribution of highest
power extracted from the green channel is continuous and

the frequency of the highest power concentrated on a range
of ground truth heart rate. The highest power distribution of
red and blue channel is neither concentrated or continuous.
The red and blue channels contain stable plethysmographic
signal starting from 15.8 lux. Simultaneously, we can see in
Fig. 4 that the details and color of the original video were
recovered from 15.8 lux. But at less than 15.8 lux, the pulse
amplitude obtained in red and blue is small, the noise plays
the leading role. It suggests that the green channel contains
the most stable plethysmographic signal among the three
recorded channels under all illuminance. We also know from
the spectrograms that signal quality extracted from the green
channel is highest no matter what the situation, while signal
quality extracted from the red and blue channel much less.
In addition, increasing the illuminance gradually strengthens
pulsatile signal preserved in the green channel. As the result
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Fig. 5: IOU result of original video and low-light enhanced
videos.

Fig. 6: Detected ROI boundary. Yellow rectangle is represent
ground truth; red is detect ROI boundary on improved LIME
enhanced video; green rectangle is represent detection on HE
enhanced video frame; and blue is represent the ROI detection
on original video.

shows, the green channel can preserve the best pulsatile signal
in all cases.

Then, we investigate the varying tendency of state-of-the-
art rPPG algorithm accuracy and signal quality along with
the illuminance in order to answer the second question. The
pulse signals are extracted on the raw video using Green, ICA,
and POS. The MAE, RMSE and SNR result alongside the
illuminance are listed in Table II. Fig. 8 show plots of pulse
signal MAE, RMSE and SNR for three heart rate estimation
methods. Fig. 8 (a) shows clearly the SNR of all methods
increase step by step, in which the result given by ICA (blue
line) is better than the other two. It is notable that Green‘s
result is less than POS after 25.1 lux. For Green, ICA, and
POS, the precision curve includes MAE and RMSE observe a
significant reduction until 15.8 lux as shown in Fig. 8 (b)
and (c), suggesting that insufficient lighting, such as low-
light environment, limited performance of remote heart rate

estimation, and the state-of-the-art algorithm is not capable
of solving the issue in this situation. Especially, the MAE
and RMSE of POS are dropping from 59.90 to 1.70, 74.88
to 4.01. From 1.0 lux to 10 lux, the precision of Green
is the highest, followed by ICA and POS. Combining the
spectrograms obtained from Figure. 8, we know the lack
of pulsatile signal contained in the red and blue channel is
harmful to the method rely on three color channels in case
of the illuminance less than 15.8 lux. Furthermore, the noise
involved in red and blue channels is mixed into the process
of pulse extraction. From 15.8 lux to 100.0 lux, the precision
of POS is the highest, followed by ICA and POS. Three heart
rate estimation algorithm achieves a slight improvement in
precision under the illuminance 15.8 to 100.0 lux. In the case
of brighter lighting, POS is the most reliable method.

C. Evaluation of Low-light Enhancement’s Influence
To assess the impact of low-light enhancement on the

performance of the rPPG measurement (Green, POS), we cal-
culate the SNR in the recovered blood volume pulse signal and
the MAE, RMSE in pulse rate compared with the measurement
from the contact-based PPG signal. We apply HE, LIME and
proposed image enhancement algorithm, improved LIME, to
enhance the frame from low-light videos.

Table II shows the numerical results for SNR, MAE and
RMSE alongside the illuminance for each enhancement case.
Fig. 9 show plots of the BVP SNR, MAE and RMSE for
different low-light enhancement algorithm. In each plot we
show the results for the raw video, HE, LIME and im-
proved LIME enhanced frame. For the Green, the SNR for
proposed image enhancement is greater than the raw video
measurements at the illuminance values of 4.0 lux and below
and is the highest in the applied enhancement methods. The
differences between raw video and the proposed enhancement
decrease as the illuminance increases. As expected, increasing
the illuminance steadily promote the SNR of resulting raw
video and proposed enhancement, but the differences of them
are not particularly obvious. The SNR for HE and LIME is not
much different from the raw video measurements at 1.0 to 4.0
lux. It’s worth noting that both HE and proposed enhancement
improve the accuracy of ROI detection, but only the SNR of
proposed method was increased. This result demonstrates that
the proposed enhancement method not only enhances the vis-
ibility of video but also improves the quality of physiological
signal. Above 4.0 lux, the enhancement effect of the proposed
algorithm is not very significant, and more noise is introduced.
Similar results are observed in POS, The improvement of SNR
for proposed image enhancement is more significant at the
illuminance values of 6.3 lux and below. Above 6.3 lux, the
effect of the proposed enhancement algorithm on SNR is not
significant. The MAE and RMSE were also calculated for both
Green and POS extracted rPPG in the raw video, HE, LIME
and improved LIME enhanced frame. For Green and POS, the
use of the proposed enhancement algorithm performs better
than using other enhancement methods below 6.3 lux and
10.0 lux, respectively. We can see the enhancement methods
are more effective for POS than Green, suggesting that low-
light enhancement methods restore the details in the picture,
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Fig. 7: Spectrograms obtained in red, green and blue channel on video recorded under various illuminance intensity. The color
red indicates the highest amplitude and plot white ∗ symbol on this. Time is on the horizontal axis, ranging from 0 to 1
minutes, the vertical axis shows the frequency from 0 to 300 BPM.

Fig. 8: SNR, MAE and RMSE results as a function of illuminance intensity.

Fig. 9: Plot of BVP SNR, MAE and RMSE for Green and POS for different low-light enhancement algorithm.

especially the skin-tone. The result also reflects the proposed
low-light enhancements method is more effective for the case

in very low illuminance.
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VI. CONCLUSION

Pulsatile signal preserved in the video could be damaged
by insufficient illuminance causing the failure of remote heart
rate estimation. We performed a systematic analysis of the
illuminance to evaluate the impact on remote heart rate es-
timation. We estimate the SNR, MAE and RMSE of state-
of-the-art rPPG algorithm (Green, ICA and POS) to verify
their performance and robustness on a wide variety of light
illuminance. Our results suggest that Green and ICA is more
reliable than POS in low-light conditions. As the illuminance
level is increased, the precision of rPPG algorithm drops stably
and the SNR goes up, especially POS. Then we improved the
existing low-light image enhancement for remote heart rate
estimation to render it suitable for remote heart rate estimation.
The results demonstrate that the precision of ROI detection
and remote heart rate estimation is increased in enhanced
frame video. It reflects that low-light enhancement improves
the visible detail and gains a pulsatile signal in the low-light
video. We prove that the proposed solution can promote the
process of ROI detection, tracking and remote physiological
measurements. We believe that the improvement in SNR of
the proposed solution can continue to increase, which will be
further investigated in our future work. Besides, we build a
large-scale dataset that was designed for remote heart rate
estimation recorded with various illumination variations. It
facilitates follow-up research in this area.
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