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Abstract— The EmoPain 2020 Challenge is the first inter-
national competition aimed at creating a uniform platform
for the comparison of multi-modal machine learning and
multimedia processing methods of chronic pain assessment
from human expressive behaviour, and also the identification
of pain-related behaviours. The objective of the challenge is to
promote research in the development of assistive technologies
that help improve the quality of life for people with chronic
pain via real-time monitoring and feedback to help manage
their condition and remain physically active. The challenge also
aims to encourage the use of the relatively underutilised, albeit
vital bodily expression signals for automatic pain and pain-
related emotion recognition. This paper presents a description
of the challenge, competition guidelines, bench-marking dataset,
and the baseline systems’ architecture and performance on
the Challenge’s three sub-tasks: pain estimation from facial
expressions, pain recognition from multimodal movement, and
protective movement behaviour detection.

I. INTRODUCTION

The EmoPain 2020 Challenge 1 is the first international com-

petition in automatic pain recognition aimed at benchmarking

the performance of machine learning methods designed to

recognise or quantify chronic pain from behavioural—face

and body—cues, and also recognise pain-related movement

behaviours. Chronic pain (CP) is a widespread distressing

problem that not only restricts body activities but signif-

icantly impacts on the mental, psychological, social and

economic status of people with chronic pain. A 2016 study

[1] showed that over 40% of the UK population are affected

by chronic pain with this number going up to 62% for

people over 75 years. A similar study for the United States

puts the former figure at 25% [2]. Beyond the individual,

CP has dire consequences on socio-economic growth and

development. Amongst other medical conditions, chronic

pain was responsible for most medical consultations and

costs the US approximately $560 billion dollars each year

[2]. The escalating socio-economic costs of CP, as well as

its detrimental effect on the quality of life of individuals and

their families, buttress the urgent need for efficient chronic

pain interventions.

∗ Corresponding author
† These authors made equal contributions
1https://mvrjustid.github.io/EmoPainChallenge2020/

Technological interventions present a plausible solution,

but the first step towards a workable system requires accu-

rate identification and interpretation of pain-associated ex-

pressions and behaviours. Consequently, technology-driven

methods (see survey in [3]) utilising clinically certified

behavioural and physiological pain indicators for pain assess-

ment have been proposed within the machine learning and

computer vision research community. Although machine-

assisted pain assessment methods have advanced consider-

ably, their practical application has been constrained by data-

related and design issues.

One major problem is that there are few publicly acces-

sible pain datasets that meet requirements for effectively

training such predictive systems. Secondly, pain expression is

multi-faceted, yet there is an over-reliance on unimodal clues,

particularly the face, whereas body movements are critical

to effective chronic pain assessment [4]. Although facial

expressions give a good indication of affect intensity, without

the body context, its discriminative property of affective

states diminishes [5]. In contrast, pain-related movement

behaviour provides more information about the distress level

of a pain stimulus (physical activity) and what form of

support is required [6], [4]. Thus, pain literature [7], [4]

strongly advocates the use of multiple, rather than isolated

behavioural cues for pain assessment. Lastly, existing bench-

marking pain corpus [8], [9] predominantly feature pain

expressions induced in constrained environments and by non-

threatening stimuli which are not fully representative of real-

world distressing physical activities encountered by people

with chronic pain; whereas, for technological interventions

to be beneficial, it should be developed on data which repre-

sent the everyday body functions of the target population.

Also, some of these datasets [9], [10] provide only uni-

dimensional—facial cues—behavioural chronic pain charac-

terisations.

The EmoPain 2020 challenge aims to address the above

gaps by creating a platform to foster multi-modal auto-

matic pain recognition research within the machine learning

community. The challenge is based on the multi-modal

EmoPain dataset, which for the first time, is opened up to

the community in a competition framework to benchmark
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automated pain assessment methods. The EmoPain dataset

[7] consists of audiovisual, motion data and muscle activity

captured from chronic lower back pain (CLBP) and healthy

participants engaged in both instructor-led and self-directed

physical exercises which replicate everyday body functions.

Utilising the visual and movement data dimensions, the

EmoPain 2020 challenge presents three pain recognition

tasks: (i) Pain Estimation from Facial Expressions Task, (ii)

Pain Recognition from Multimodal Movement Task and (iii)

Multimodal Movement Behaviour Classification Task.

Participants could choose to compete in all or some of

the tasks. Data for each task is split into training, validation

and a held-out test partition. To ensure a fair comparison,

participants were given the same training and validation data

to develop their algorithms/models, which was then sent

to the organisers for evaluation on the held-out test set.

Participants did not have access to the test data partition.

Papers accompanying the challenge submissions were pre-

sented at the FG2020 International Workshop on Automated

Assessment of Pain.

The rest of the paper is organized as follows: Section

II discusses relevant work in automatic pain recognition;

Section III gives a full description of the EmoPain dataset

and the three sub-tasks as well as the metrics used for ranking

participants’ submissions; Section IV describes the baseline

features and models developed for each task, and the results

obtained. Lastly, section V summarises the contributions and

concludes the work.

II. RELATED WORK

This section describes current approaches to automatic pain

recognition with a focus on pain-associated face and body

expression synthesis, processing, analysis and interpretation.

Relevant pain literature will be discussed in three groups

building on the challenge’s task categorisation. An extended

survey is provided in [3].

A. Automatic Pain Detection based on Facial Expressions

The face is a key medium for communicating pain in human

interactions, particularly when pain expression is not actively

suppressed by the individual. Facial expressions of pain have

been shown to have distinctive properties from other basic

emotions [11], [12], lending credence to its pertinence to pain

recognition. Due to its relative ease of accessibility and util-

isation in daily social interaction, faces have been explored

extensively for automatic pain recognition. Early work based

on facial actions was limited to binary classification of face

images into pain or no pain [13], [14] or distinguishing real

pain from posed pain [15]. However, this outcome was not

adequate for clinical applications as evidenced by the self-

report pain assessment scales [16] which aim to quantify

pain rather than identify its occurrence. Consequently, recent

studies moved on to estimating pain levels from facial

expressions using either a multi-class classification set-up

[17] or regression framework [18], [19], [20]. This shift

was also propelled by the introduction of pain datasets [8],

[9] which provide discrete pain annotations of face images.

Most of these studies [20], [19] predict pain on the 16-point

Prckachin and Solomon Pain Intensity (PSPI) [21] scale or

a condensed version [17], while others [22], [23] focus on

recognising observer reported or patients’ self-reported pain

ranging from two to five pain levels.

To discriminate pain expressions, face shape and appear-

ance descriptors have been widely employed due to their

proven effectiveness in facial expressions analysis. Appear-

ance features encode facial deformations due to expressions

(e.g., wrinkles) while shape features describe the spatial

localisation of facial components (i.e., eyes, mouth and

nose). In terms of facial features used, previous work on

pain recognition can be classified into three: (i) handcrafted

feature methods [22], [17], [13], [20], (ii) data-learned fea-

ture methods[24], [25] and (iii) hybrid-feature methods [19],

[26]. Handcrafted facial descriptors are statistical measures

computed from a face image using human-designed algo-

rithms. Commonly used features in this category include

gradients features [22], Gabor features [15] , Active Ap-

pearance Models (AAM) [13], [17], Local Binary Patterns

(LBP) [20], facial landmarks and associated distance metrics

[22] amongst others. Data-learned features are offshoots

of neural network applications to pain recognition and are

automatically generated within the network. Hybrid features,

on the other hand, are an integration of traditional and

data-learned features and have been shown to significantly

improve the predictive ability of recognition models on small

datasets [27].

Although pain recognition from faces has witnessed

tremendous progress, there is still ample scope for improve-

ment. Current work has concentrated on facial data collected

in constrained, ideal settings where several video cameras

are positioned at strategic positions to capture face images

from all possible angles. Thus, captured images are usually

high resolution, near frontal and unobstructed faces, whereas

this is not always the case in typical everyday settings, e.g.,

performing rehabilitation exercise at home. Another open

challenge is insufficient data representation for higher pain

levels in existing pain corpus, which limits the performance

of recognition models on these pain classes [27]. Hence,

novel methods that make the most of existing data, and more

focus on the creation of representative chronic pain facial

data are required.

B. Automatic Pain Detection based on Bodily Expressions

Despite findings in [4] that the body may be more expressive

of pain experience than the face or vocal modality, which

are more dependent on social context, it has not been as

widely explored for automatic detection of pain levels as

the face. Most of the early studies [28], [29] and a number

of more recent work [30], [31] focused on discrimination

between people with chronic pain and those without. Other

studies have similarly investigated differentiation between

two levels of pain [32], [33]. One exception is [34] where

11 levels of pain were detected. While studies such as [35],

[36] have also gone beyond binary classification, unlike the

afore-mentioned, they are based on experimentally-induced
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pain which is transient and not usually perceived a threat

[37].

The bodily expressions used in the investigations carried

out in these studies have typically depended on the pain

location and the activity being performed. For example, in the

work of [31], automatic detection of knee pain was based on

gait characteristics and ground force reaction during walking

tasks. Similarly, the automatic detection of neck pain in [30]

used neck movements measured while participants performed

neck exercises. For low back pain, where participants are

usually being assessed during physical activities involving

the trunk, features of trunk [28], [29], [32], spine [34], knee

[29], and hip [29] movement, corresponding back muscle

activity, and force and centre of gravity [29] have been used

for pain (level) detection.

Another work in the area related to body movement is the

one of Rivas et al. [38]. In their work, the authors explore

the use of hand pressure and joystick manipulation to detect

stroke patients’ pain level by personalising the model to

each patient by using data from 10 different sessions. In

[39], the authors extend the work by combining multiple

modalities (hand pressure, gesture and facial expressions) to

investigate the relationship between affective states and pain

during rehabilitation. Again, individual models are built by

taking advantage of the multiple sessions.

In a recent study [40] on automatic discrimination be-

tween healthy participants, low-level pain, and high-level

pain based on complete movement instances in the EmoPain

dataset, we explored features of the trunk, knee, head/neck,

and arm movements computed from full-body positional

data as well as features from shoulder and lower back

muscle activity. We used two separate sets of features for

trunk flexion and sit-to-stand movements respectively, given

the considerable differences in the temporality of the two

movements and the anatomical regions recruited in perform-

ing them. We additionally built a separate model for each

movement type for this reason and especially to manage

the limited data size available. For full and forward trunk

flexion, we extracted the range of trunk and neck movement,

the amount of unsteadiness in arm movement, and the time

and amplitude of high-to-low muscle activity change; for sit-

to-stand, we extracted range of trunk and neck movement,

knee and pelvic angles at the point of buttocks lift, speed and

duration of the lift phase, and the time of high-to-low muscle

activity change and muscle activity range. We obtained 0.90

F1 score (0.90 accuracy) on average, over the three classes

and three movement types, based on leave-one-subject-out

cross-validation.

C. Automatic Detection of Protective Movement Behaviour

Aside from the pain estimation on bodily expressions, the

movement behaviour presented therein is informative not

only of pain level but also of the emotional state and

engagement level of people with chronic lower back pain

(CLBP). Specifically, the protective behaviour, e.g., hesi-

tation, guarding, stiffness, the use of support and bracing

[41], expression of fear or low-efficacy of movements, is

currently adopted by physiotherapists in tailoring their feed-

back and interventions [42], [43]. As the rehabilitation for

CLBP people is moving towards self-management outside

the hospital, researchers started to work on the establishment

of a virtual physiotherapist, where the first step is about the

automatic detection of protective behaviour. Early studies in

this direction mainly focused on feature-engineering meth-

ods to extract discriminative features from motion capture

(MoCap) and surface electromyographic (sEMG) data with

shallow classifiers like Random Forests and Support Vector

Machine applied on top of them [7], [44], [45]. To name

a few, features used include the range of joint angle, the

mean of the angular velocity and the mean of the upper-

envelope of the sEMG data. One limitation of these works

is the lack of generalisability across different types of move-

ment. Recently, efforts are also seen in using deep learning

for the detection of protective behaviour. A comparison of

different vanilla neural networks is provided in [46], while

some data augmentation techniques were also explored. The

result achieved is much higher than previous feature-based

methods, on the data pooled from different movement types.

Later on, a collaboration of LSTM network with attention

mechanism is presented in [47], where better and explainable

results are reported. However, challenges still exist, such

as the dependence on the pre-segmented activity sequences

which is not able to provide real-time encouragements and

feedback, and the lack of exploitation of the bio-mechanical

nature of MoCap and sEMG data especially, resulting from

the traversal data processing strategy.

III. CHALLENGE DESCRIPTION

This section describes the data collection protocol for the

benchmark data (EmoPain database), the Challenge’s tasks,

task data partitioning, and proposes real-world applications

of each task to clinical pain management.

A. EmoPain Dataset

The EmoPain dataset [7] provided for the challenge orig-

inally comprised of audiovisual, motion-capture and mus-

cle activity data, collected from 18 CLBP and 22 healthy

participants. Here need to note that, the real number of

participants provided for each challenge task differs. Each

participant went through at least one trial of the data col-

lection, either the normal or the difficult trial. Within a trial,

the participant performs a sequence of activities, namely one-

leg-stand, reach-forward, stand-to-sit, sit-to-stand and bend-

down. These activities are connected by transition activities,

like standing still, sitting still and self-preparation. In the

difficult trial, participant has to follow instructions set by the

experimenter and carry a 2Kg weight in each hand during

the performance of reach-forward and bend-down. There are

no such limitations in the normal trial.

For the facial expression video, several sets of features

are extracted for the challenge participant, which will be de-

scribed in detail in the next section. For the body movement

data, the joint angles and respective angular velocities are
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computed. The dataset for the challenge is split into train-

ing, validation and a held-out test partition. The participant

partition are shown in Table I. The class distribution is not

considered for the partition of the dataset, but we ensure each

partition has sufficient representation of healthy participants

and CLBP patients’ data.

B. Challenge Tasks

The EmoPain Challenge consists of three main tasks namely:

(i) pain estimation from facial expressions, (ii) pain recog-

nition from multi-modal movement, and (iii) protective

movement behaviour detection. Participants were expected

to compete in at least one or more tasks.

The Pain Estimation from Facial Expressions Task aims

to develop technology to automatically quantify pain from

face images of CLBP and healthy participants performing

physical activity. These technologies could potentially sup-

port real-time pain assessment for patients who are unable

to self-report pain, e.g., unconscious patients, and in con-

strained settings, e.g., ICUs, where continuous recording of

a person’s face is possible. Anchoring on facial properties

deemed suitable for facial expression analysis [20], [27], data

for this sub-task consists of anonymized face shape and ap-

pearance features extracted from the EmoPain video images

(see details in IV-A), as well as observer pain annotations

for each face image on an 11-point scale ranging from 0

(no pain) to 10 (maximum possible pain intensity).Due to

data protection and ethical constraints, we did not provide

the original video images.

Note that the values of the original pain annotations for

the face range from 0 to 1000. These labels are heavily

unbalanced, as the value of most labels are zero and for

some other values, only less than 10 frames have such pain

level. To alleviate this problem, we re-sampled all labels into

11 bins, from 0 to 10. Specifically, the values of all original

labels were divided by 100, and then allocated to the bin

whose value corresponds to their integral part, e.g., a label

value of 232 will be assigned to bin 2. The distribution of

the final provided labels are detailed in Table II. Participants’

submissions to this task were ranked using the Concordance
Correlation Coefficient (CCC) [48] which measures the tem-

poral association between the model predictions and ground

truth pain labels. CCC is preferred over similar measures—

Pearson’s CC and Spearman’s CC— because it encodes

precision and accuracy metrics in a single measurement and

is robust to location and scale variations [48].

The Pain Recognition from Multimodal Movement Task
aims to detect and classify levels of pain experienced by a

person with chronic pain during movement activities. Tech-

nology with this capability could help a person with chronic

pain more helpfully pace physical activity performance [40].

Data for this sub-task comprises of muscle activity data, 13

joint angles and angular energies (see full description in [47])

captured from CLBP and healthy participants while perform-

ing physical activities. Each activity instance is accompanied

by a three-class pain annotation: no pain, low pain and high

pain, which will serve as ground-truth labels for the task.

TABLE I

PARTICIPANT DISTRIBUTION IN EACH DATA PARTITION. CLBP -

CHRONIC LOWER BACK PAIN; HP - HEALTHY PARTICIPANTS

Partitions Face Tasks Body Tasks

Train 8 CLBP and 11 HP 10 CLBP and 6 HP
Validation 3 CLBP and 6 HP 4 CLBP and 3 HP
Test 3 CLBP and 5 HP 4 CLBP and 3 HP

The submissions for this task were evaluated using F1 scores

and accuracy, but final ranking was done based on Matthew

Correlation Coefficient (MCC) [49] which better accounts

for the negative classes.

The Multimodal Movement Behaviour Classification
Task aims to develop technology that can detect and classify

protective behaviours (e.g., rigid movement) in people with

chronic pain. Such technologies could provide immediate and

appropriate feedback or support to users, e.g., notifying the

user to adopt a correct posture if the use of maladaptive

strategy is detected [40], [46]. Data for this task consists of

13 bodily joint angular features and muscle activity for each

movement frame with corresponding activity-type labels and

binary protective behaviour annotations by 2 physiotherapists

and 2 psychologists. For this task, macro average F1 score

and the F1 score for each class (i.e. protective and non-

protective) were used for ranking participants’ submissions.

IV. BASELINE FEATURES AND SYSTEMS

In this section, we describe the features extracted from each

pain expression modality, the baseline models implemented

for each task, and present the results obtained from the

performance evaluation of the models.

A. Pain Estimation from Facial Expressions

For the pain estimation from face sub-challenge, we extracted

four facial descriptors using the OpenFace 2.0 toolkit [50],

and two deep-learned emotion-oriented feature representa-

tions [51]. The detailed descriptions of these features are as

follows:

• Facial landmarks: 68 2-D and 3-D fiducial facial points.

• Head pose: Pitch, yaw and roll angles.

• Gaze: 3-D gaze directions.

• HOG: a 4464-D Histogram of Oriented Gradients

(HOG) features.

• Action Unit (AU) occurrence: 18 AUs whose values are

1 (present) or 0 (absent).

• AU intensities: 17 AUs whose values range from 0 to 5

(max intensity).

• VGG-16 feature: 4096-D deep features extracted from

the second fully-connected layers of the VGG-16 net-

work [52].

• ResNet-50 feature: 2048-D deep features extracted from

the fully-connected layers of the ResNet-50 network.

[53]. The VGG-16 and ResNet-50 network are pre-

trained on the Affwild dataset [54] with valence and

arousal labels.
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TABLE II

LABEL DISTRIBUTION OF THE PAIN ESTIMATION FROM FACE SUB-CHALLENGE

Label value 0 1 2 3 4 5 6 7 8 9 10
Training 646634 39694 31032 61148 41286 17122 16958 9140 3734 626 2078

Development 475717 20731 31697 25613 20765 15416 7425 9972 198 176 218

Although the data labels are significantly imbalanced as seen

in Table II, we do not perform any data augmentation, to

enhance the reproducibility of the reported results. While

the task can be solved as an 11-class classification problem,

in this challenge, we treated it as a regression problem.

The face baseline system employed four different feature

sets: 2 hand-crafted features including geometric features (a

combination of 2-D facial landmarks and gaze directions)

and 4464-D HOG feature; and 2 emotion-oriented deep-

learned feature sets including 4096-D VGG-16 features and

2048-D ResNet features. Note that the 2-D facial landmarks

are transformed into a 136-D dimension feature vector for

each frame. The training process starts with feature normal-

isation. For each dimension of the input feature, the training

set was normalised using z-score as shown in Equation 1.

z =
x− μ

σ
(1)

where μ and σ are the mean and standard deviation of the

feature values over the entire training data. The obtained

mean value and standard deviation were then applied to nor-

malize the validation and test set. In this sub-challenge, we

trained an Artificial Neural Network (ANN) for each feature

subset. The employed ANNs follow the set-up presented

in [55], which consists of 4 fully connected hidden layers.

A dropout [56] with probability 0.5 and a ReLU layer is

placed after each fully-connected layer. RMSprop is used

as the training method, while Mean Square Error (MSE) is

employed as the loss function. The hyper-parameters and

topology chosen for the baseline systems are shown in Table

III. These hyper-parameters were determined by grid search

on validation set.

The baseline results of the Pain Estimation from Faces

sub-challenge are given in Table IV. They show that amongst

the single-feature models, the best correlation (CCC) on the

development set results was achieved by VGG-16 feature,

which also obtained good RMSE and MSE results. However,

while VGG-16 feature also achieved solid performance on

the test set in terms of the RMSE and MSE, its predictions

are not highly correlated with the ground-truth of the test

set. Instead, the combination of facial landmarks and eye

gaze features produced excellent RMSE and MSE results on

both development and test set, and also generated predictions

with the highest correlation (PCC) to the labels in the test

set. These results indicate that the pain level can be partially

reflected by the geometric information of the face and eyes.

The decision-level fusion of all modalities gave the best

results on both the development set (RMSE = 1.69, PCC

= 0.25, CCC = 0.18) and test set (MAE = 0.91, RMSE

= 1.41, PCC = 0.10, CCC = 0.06), except the MAE

returned on the development set (MAE = 1.26) is slightly

higher than the best one (MAE = 1.24). Based on the fusion

results, we can argue that though the individual features

were not very informative for pain intensity estimation when

simple ANNs are used as the back-end, their fusion still

seems to provide more valuable and positive information

for pain estimation. Based on all results, the recognition of

pain intensities from the face is still challenging when only

combining existing standard hand-crafted or deep-learned

features with a simple back-end. This observation opens

interesting research questions about how to extract pain-

related cues from complex facial expressions and emotions.

B. Pain Classification based on Body Movement and Muscle
Activity

Due to the limited data size available in this task, we chose

to build a single model for all movement types in the

dataset so as to maximise the training data. The features

that we extracted (see Table V) were based on findings in

[40]. We extracted range of joint angles, to characterise the

range of movement across anatomical regions relevant to

the movement types. We additionally computed speed of

movement over all joint angles and over each movement.

While it might ordinarily be valuable to compute speed

separately for each joint, it was necessary for us to constrain

feature dimensionality in order to further address the data

TABLE III

THE CHOSEN HYPER-PARAMETERS OF ANNS FOR FACIAL CHALLENGE

BASELINE SYSTEMS

Feature Hidden Layers Size Learning Rate Batch Size
FL+Gaze (128, 64, 32, 32) 0.001 128
HOG (2000, 512, 256, 64) 0.001 256
VGG-16 (1024, 256, 64, 64) 0.005 128
ResNet-50 (1024, 256, 64, 64) 0.001 256

TABLE IV

BASELINE RESULTS FOR THE PAIN ESTIMATION FROM FACIAL

FEATURES. BEST RESULTS ARE HIGHLIGHTED IN BOLD

Modality Partition MAE RMSE PCC CCC
FL+GAZE Valid. 1.51 1.74 0.04 0.003
FL+GAZE Test. 1.37 1.56 0.10 0.003
HOG Valid. 1.24 1.91 0.05 0.04
HOG Test. 0.93 1.61 0.03 0.02
VGG-16 Valid. 1.34 1.82 0.24 0.18
VGG-16 Test. 0.92 1.43 0.02 0.004
ResNet-50 Valid. 1.42 2.08 -0.08 -0.04
ResNet-50 Test. 1.14 1.74 -0.09 -0.06
Fusion Valid. 1.26 1.69 0.25 0.18
Fusion Test. 0.91 1.41 0.10 0.06
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TABLE V

BODILY FEATURES USED FOR PAIN CLASSIFICATION

Features Formulae Dimension

Range of joint angle ΔJi = maxt Ji −mint Ji 11

Speed

max maxi maxt
δJi
δt

1

min mini mint
δJi
δt

1

mean

∑
i

∑
t

δJi
δt

T

I
1

Range of muscle activity ΔEk = maxt Ek −mint Ek 4

where i = 2, 3, ..., I; I = 13; t = 1, 2, ..., T; k = 1, 2, 3, 4

size limitation. Finally, we computed the range of activity

for each of the four muscle groups in the sEMG data.

Each data instance is made up of one or more iterations

(up to 6) of a complete movement type, and so it was

important to additionally incorporate the dynamics within

each instance in the feature set. We addressed this by

extracting the 18 above-mentioned features in 4 identically-

sized non-overlapping window segments that together cover

the data instance. 4 was a compromise between limiting

the number of features and characterising movements which

had the maximum number of repetitions. This led to 72

dimensions for the feature vector for each data instance.

We explored three main algorithms for the three-level

classification of pain based on body movement and muscle

activity data: Random Forest (RF) [57], Support Vector Ma-

chines (SVMs) [58], and k-Nearest Neighbours (kNN). The

algorithms were evaluated using leave-one-subject-out cross-

validation, based on the challenge training set alone. The

hyperparameters for the algorithms were set based on grid

search using an inner validation set within each validation

fold, and among: 1, 5, 10, and 50 trees for the RF, and one,

square root of the total amount, and the total amount for

the number of features used to split each node in the RF; 1

to 5 degrees for the polynomial SVM, Gaussian or sigmoid

kernels for the SVM, and 0.001, 0.01, 0.1, 1, 10, and 100

as the box constraint size for either of the three SVMs; k

between 1 and 5, and minkowski, euclidean, manhattan, or

chebyshev distances for the kNN. Note that in the SVMs and

kNN setup, the feature set was normalised to zero and unit

variance.

The kNN, and sigmoid and Gaussian SVM, which

emerged as not worse off than chance-level detection based

on the cross-validation, were further evaluated in hold-out

validation, with the challenge training, validation, and test

sets for training, validation, and testing respectively. Table

VI shows the data sizes across the three pain classes (healthy,

low-level pain, and high-level pain) for both the leave-

one-subject-out cross-validation (LOSO-CV) and the hold-

out validation. Table VII shows the F1 scores, Matthews

Correlation Coefficients (MCCs) [49], and accuracies of the

SVM, RF, and kNN, for three-level pain classification based

on leave-one-subject-out cross-validation with the training

set. Both the RF and polynomial SVM perform worse than

chance-level detection (F1 score = 0.33; MCC = 0; accuracy

TABLE VI

DATA SIZES FOR MOCAP AND SEMG DATA FOR PAIN CLASSIFICATION

Pain Class Training Set Validation Set Test Set

Healthy 34 25 25

Low-Pain 44 30 4

High-Pain 35 5 26

TABLE VII

LOSO-CV BASELINE RESULTS FOR PAIN CLASSIFICATION FROM

MOCAP AND SEMG DATA

Algorithm F1 Score* MCC* Accuracy

Sigmoid/Gaussian SVM 0.41 0.19 0.44

kNN 0.34 0.05 0.37

RF 0.26 -0.10 0.27

Polynomial SVM 0.15 -0.16 0.26

= 0.33). As can be seen in Table VIII, although the non-

polynomial SVM has the best performance in the cross-

validation, it performs much poorly in further evaluation

on the test set, whereas the kNN has more or less the

same performance in both the cross-validation and the hold-

out validation, albeit only about as good as chance-level

detection. In the cross-validation, the kNN performs worst

in detection of the high-level pain class (F1 score = 0.16,

MCC = -0.02) compared with the healthy class (F1 score

= 0.44, MCC = 0.1) and the low-level pain class (F1 score

= 0.41, MCC = 0.08). However, in hold-out validation, its

performance is worst for the low-level pain class (see Table

VIII).

C. Protective Movement Behaviour Detection

To leave enough space for explorations, a stacked-LSTM

network adapted from [46] is used as the baseline for the

movement behaviour detection task. The architecture stays

the same, where three LSTM layers with 32 hidden units

are used together with a softmax fully-connected layer for

classification. The input to the network is a frame with size of

NxTxD, where N is the number of samples, T is the length

of timesteps and D is the dimension of features. The data

used is the 13 angles and their respective square of angular

velocities as well as the upper envelope of the sEMG data. As

a result, the data matrix has the dimension D=30. A sliding

window of 180 timesteps long and a 0.75 overlapping ratio

is used to extract consecutive frames from each activity type.

To enable the training of stacked-LSTM, we further applied

two augmentations: i) jittering, where Gaussian noise with

standard deviation of 0.05, 0.1 and 0.15 are globally applied

to the raw data; ii) cropping, where samples at random

timesteps and body parts are set to 0 with probability of

0.05, 0.1 and 0.15. Augmentation is only applied to training

data. The number of frames after segmentation is 6623 (with

protective frames totalling 1,330), which is augmented to

33,115 (with protective frames totalling 6,650). The hold-

out validation stays the same with the other two tasks. The
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TABLE VIII

HOLD-OUT VALIDATION BASELINE RESULTS FOR PAIN

CLASSIFICATION USING MOCAP AND SEMG DATA

kNN
(k=1, manhattan distance)

Sigmoid/Gaussian SVM
(Gaussian kernel,

box constraint=0.1)

Metric F1 Score MCC F1 Score MCC

Healthy (0) 0.39 -0.04 0.00 -

Low-Pain (1) 0.09 -0.06 0.14 -

High-Pain (2) 0.44 0.16 0.00 -

Average 0.31 0.02 0.34 -

Accuracy 0.35 0.07

TABLE IX

BASELINE HOLD-OUT VALIDATION RESULTS FOR PROTECTIVE

MOVEMENT BEHAVIOUR DETECTION WITH MOCAP AND SEMG DATA

Method Partition Class Acc F1 score

stacked-LSTM

Valid

Non-protective (0) - 0.9622

Protective (1) - -

Average 0.4636 0.4811

Test

Non-protective (0) - 0.9029

Protective (1) - 0.2465

Average 0.828 0.5747

groundtruth of each frame is determined by majority-voting:

a frame is labelled as protective if at least half of the samples

within it were coded as protective, and vice versa.

The results achieved by the stacked-LSTM network are

reported in Table IX. We can see from the result that

all the frames in the validation set are detected as non-

protective. This can be due to the fact that the protective

and non-protective samples included in the training set are

very imbalanced, while the baseline method does not apply

any technique to solve it. On the other hand, the size of

the training data is still limited. The result on the test set

is slightly better with some frames correctly detected as

protective (F1 score of protective class=0.2465). This proved

the feasibility of using deep learning for the detection of

protective behavior. Except for processing the MoCap and

sEMG in a traversal way that ignored the biomechanical

connectivity, challenges remain on i) how to deal with the

imbalance problem in the data set; ii) how to design better

data augmentation approaches.

V. CONCLUSION

In this paper, we introduced the first EmoPain 2020 Chal-

lenge on automatic pain recognition from multimodal face

and body expressions based on the EMOPAIN dataset and

guidelines for participation in the competition. It featured

three tasks: (i) pain estimation from face shape and ap-

pearance features, (ii) pain recognition from muscle ac-

tivity and joint angle statistical features, and (iii) classifi-

cation of protective body movement behaviour. For each

task, we described the expressive behavioural features ex-

tracted, the baseline system implementations and perfor-

mance on the benchmark dataset. In this challenge, par-

ticipants only received the extracted expression features

rather than the video data, thus the baseline implementa-

tions do not employ feature optimisation or augmentation

methods to allow for reproducibility of the results. Lastly,

the baseline program code, results and participant rankings

can be found on the EmoPain2020 Challenge’s webpage:

https://mvrjustid.github.io/EmoPainChallenge2020/.
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