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Abstract— This paper presents the first investigation into the
use of fully automated deep learning framework for assessing
neonatal postoperative pain. It specifically investigates the use
of Bilinear Convolutional Neural Network (B-CNN) to extract
facial features during different levels of postoperative pain
followed by modeling the temporal pattern using Recurrent
Neural Network (RNN). Although acute and postoperative pain
have some common characteristics (e.g., visual action units),
postoperative pain has a different dynamic, and it evolves in a
unique pattern over time. Our experimental results indicate a
clear difference between the pattern of acute and postoperative
pain. They also suggest the efficiency of using a combination of
bilinear CNN with RNN model for the continuous assessment
of postoperative pain intensity.

I. INTRODUCTION

Postoperative pain, or pain after surgery, occurs as a result
of a tissue injury and it usually lasts for up to seven days
[1]. The inadequate treatment of postoperative pain leads to
chronic pain and, therefore, increases the financial burden on
the patients and significantly reduce the quality of their life.
It can also lead to serious physiological outcomes [1] such as
changes in respiratory, cardiovascular, and immune functions
[1]. In addition to the physiological outcomes, inadequate
management of postoperative pain can lead to impaired sleep,
depression, and anxiety [1]. Because high medication doses
have several side effects (e.g., drowsiness and addiction[1]),
the main goal of postoperative pain assessment and manage-
ment is to provide maximum pain relief with minimum side
effects.

Neonatal postoperative pain is currently assessed using
validated multidimensional score-based scales such as N-
PASS (Neonatal Pain, Agitation and Sedation Scale) [2] and
PIPP (premature infant pain profile) [3]. These scales inte-
grate several physiological (e.g., vital signs) and behavioral
(e.g., facial expression, body movement) indicators to assess
the neonate’s state as: normal, slight pain, moderate pain, se-
vere pain, moderate sedation, or severe sedation. This score-
based standard for assessing pain suffers from inconsistency
and discontinuity. The inconsistency of assessment occurs as
a result of the variations between observers due to different
idiosyncratic factors (e.g., gender and experience). The dis-
continuity of assessment can lead to missing pain changes
and patterns, and therefore, result in inaccurate management.
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Recently, health professionals emphasized, in a guideline for
managing postoperative pain [4], the importance of frequent
assessment since pain is a temporal event that changes in a
particular pattern over time.

To mitigate these limitations, several traditional and auto-
mated solutions were proposed by clinicians and engineers
in the past decade. Presentations of existing automated solu-
tions or methods for assessing neonatal procedural pain are
presented in [5]. In case of postoperative pain, Sikka et al. [6]
used traditional handcrafted (action unit-based) method for
assessing postoperative pain in children. To the best of our
knowledge, our work is the first to investigate the automated
assessment and monitoring of neonatal postoperative pain
using deep learning methods. Specifically, it introduces a
method for monitoring and assessing the intensity of neonatal
postoperative pain. It makes the following contributions:
• It proposes a fully automated deep learning-based

method for assessing the intensity of postoperative pain
in neonates.

• It presents the first investigation into the use of bilinear
CNN [7] with LSTM [8] for pain recognition. The
bilinear model, which consists of two CNNs, allows
modeling local pairwise feature interactions in a transla-
tionally invariant manner while LSTM allows modeling
temporal pain pattern.

• It presents a neonatal pain dataset, with over 600 min-
utes, collected from premature and newborns while they
are undergoing postoperative pain. The dataset includes
visual (face and body), vocal, and physiological signals.
It also includes manual pain scores documented by
trained NICU nurses. To the best of our knowledge,
this is the first neonatal postoperative pain dataset.

Section II presents technical background. Section III de-
scribes our pain dataset. We present our methodology in
Section IV followed by the experimental results in Section
V. Finally, Section VI concludes the paper.

II. TECHNICAL BACKGROUND

This section provides brief introductions to the architec-
tures that are used to develop the proposed framework. These
architectures include VGG16, bilinear CNN, and LSTM.

A. VGG Architecture

VGG [9] is a state-of-the-art architecture that consists of
several convolution blocks. Each block has several convo-



lutional layers followed by a max-pooling layer. Finally,
3 consecutive Fully Connected (FC) layers are added as
classification layers. VGG16 made significant improvement
over AlexNet by using large kernel size filters. Although
VGG has several architectures, VGG16 and VGG19 are the
most popular since they achieved state-of-the-art accuracy in
different classification tasks. In this paper, two pre-trained
VGG16 networks, trained on VGGFace2 [10] and ImageNet
[11] datasets, are used to build and train the bilinear model.

B. Bilinear CNN

Bilinear CNN [7] model is a recent novel solution for fine-
grained image classification. It can effectively collect local
pairwise information and produce orderless texture features.
This Bilinear model merges two CNN models through a
bilinear vector. Mathematically, a bilinear model B can be
represented as B = (FX ,FY ,P,C), where FX and FY are the
two feature functions applied on an image I and a location L,
P is the pooling function, and C is the classification function.
The features of the two functions are then merged as follows.

B = (I,L,FX ,FY )−→ FX (I,L)T FY (I,L) (1)

To create the feature descriptor, sum pooling is applied across
the image to gather all the bilinear features. The final bilinear
vector u = ∑B(I,L) is passed to a signed square root and a
l2 normalization step as follows.

v
sqrt←−− (sign(u)∗

√
|u|) (2)

w normalization←−−−−−−− (v/||v||2) (3)

As the entire network creates a directed acyclic graph,
the network parameters can be easily updated through the
backpropagation by end-to-end training. This type of model
can robustly handle intra-class variations caused by large
pose, lighting, and background [7] variations, which are
common in our postoperative pain dataset.

C. LSTM Network

Recurrent Neural Network (RNN) is typically used for
modeling temporal changes. RNN uses the past state to
update the current and future states. RNN suffers from lack
of preserving long-term dependencies [12], [8]. Hence, Long
Short-Term Memory (LSTM) [8] was introduced. LSTM
solves the problem of long-term dependency by the con-
trolled memory cell of input, output, and forget gate. In this
work, we used the deep features extracted by the Bilinear
CNN model to train the LSTM network to capture temporal
changes in pain intensity.

III. NEONATAL PAIN ASSESSMENT DATASET

Our dataset contains acute and postoperative pain data
(visual, vocal, and physiological) collected from 45 neonates
during their NICU hospitalization at Tampa General hospital.
Portion of this dataset is available at no cost to other
academic researchers after signing an agreement1 form and
obtaining a clearance.

1https://rpal.cse.usf.edu/project neonatal pain/

Fig. 1. Equipment setup of the data collection

A. Equipment Setup

A GoPro Hero 5 Black camera was used to record audio
and video signals from the neonates. The recording reso-
lution is 1080p with a frame rate of 30 FPS. The camera
was installed in a camera stand and positioned facing the
incubator to capture the face and body regions. Most of
the neonates were lying supine facing the camera; some
neonates were lying prone. In addition to the vocal and
visual data, physiological data (heart rate, breathing pattern,
saturation rate, and blood Pressure) were also simultaneously
collected from the bedside vital sign Phillips MP-70 monitor.
To ensure synchronization between visual, vocal, and phys-
iological data, we manually marked the start and end points
of an event by simultaneously inserting that event to the
Vital SyncTM and using clapperboard with the video/audio
stream. We made sure that our data collection setup does
not cause any impediments for the regular clinical activities.
Illustration of the equipment setup is shown in Fig. 1.

B. Procedural Pain Dataset

Procedural (Acute) pain data (visual, vocal, and vital
signs) were collected from a total of 36 neonates (17 females)
with a gestational age that ranges from 30 to 41 weeks.
Data were collected prior to the painful procedures to get the
baseline state, during scheduled painful procedures (e.g., heel
lancing) and immediately after the procedures. Pain scores
were provided for all periods (prior, during, and after) by
trained nurses using the Neonatal Infant Pain Scale (NIPS)
[13]. This scale has three pain levels (no-pain, moderate,
and severe) generated by combining scores of different pain
indicators. Further description of the dataset is provided in
[14].

C. Postoperative Pain Dataset

Postoperative pain data (face, body, vocal, and vital signs)
were collected from a total of 9 neonates (5 males) with a
gestational age that ranges from 32 to 39 weeks. Three of
the neonates are White, four Caucasian, and two Black. All



Fig. 2. Examples from our challenging and real-world postoperative dataset

the data were collected prior to a scheduled major surgery
(e.g., omphalocele-repair) to get baseline state and up to three
hours after the surgery to get postoperative pain state. Pain
scores were provided by trained nurses for the baseline state
as well as the postoperative state using N-PASS [2]. This
scale has three pain levels (normal, moderate, and severe)
generated by combining the scores of facial expression with
the scores of other pain indicators.

Fig. 2 shows examples from our postoperative dataset.
The images were randomly selected and masked to ensure
confidentiality. The challenges of the dataset can be easily
observed from the images, which show face and body
occlusion, different lighting conditions, noise, and cluttered
background.

IV. METHODOLOGY

Our main aim is to automatically estimate the intensity
of neonatal postoperative pain based on the provided N-
PASS [2] scores. These scores are obtained from different
indicators, including facial expression, crying sound, behav-
ior states, extremities of tone, and vital signs. In this paper,
we focus on estimating the intensity based on the analysis
of facial expression only. We used both procedural and
postoperative data to learn the spatial information of different
levels of pain. We then used RNN to learn the unique pattern
of postoperative pain over time. This temporal network
(RNN) outputs the final intensity assessment of postoperative
pain. We believe this approach can lead to better performance
since our postoperative dataset is relatively small to train
the network. Also, although the dynamic and intensity of
postoperative pain are different from procedural pain, they
both trigger a similar visual response or facial movements
(spatial information). Therefore, we used both procedural and
postoperative pain data for bilinear network training and only
postoperative pain for LSTM training. The overall pipeline
of the proposed approach is shown in Fig. 3.

A. Pre-processing

Pre-processing stage involves segmenting the recorded raw
videos into pain and no-pain events. We found that the
minimum length of a complete pain event in our dataset
is > 9 seconds. Therefore, we excluded all events with a
length shorter than 9 seconds from further analysis. Because
the number of the no-pain events is significantly larger than
pain events, we balanced our dataset by reducing the number
of events that belong to the majority class (no-pain); i.e.,
we under-sampled the no-pain events to balance it with the

number of pain events. This sampling process generates 101
and 86 postoperative pain and no-pain events, respectively.

B. Key-Frame Extraction and Image Augmentation

After segmenting all events, we extracted key-frames
from these events using FFmpeg libraries. Since key-frames
represent the position or timing of the movements within
a given sequence or the points of any smooth transition,
each sequence would generate a different number of key-
frames. Instead of using varying lengths of key-frames, we
used a fixed length, determined empirically, of size 32 key-
frames. These frames are arranged in order and used as the
representation for the video segment. We would like to note
that we decided to use a fixed length of size 32 key-frames to
obtain a vectorized representation with equal length, which
allows to perform training or matrix operations in batch
easily. To detect the face regions in all key-frames, we
applied YOLO-based [15] face detector, which was trained
using the WIDER face dataset [16], to each key-frame. The
total number of final key-frames with detected face region,
extracted from postoperative pain dataset, is 5984 (101×32
+ 86×32).

Finally, we performed image augmentation to enlarge our
training set by randomly rotating all images up to 30 degrees,
flipping them horizontally, and changing their brightness
(±25%).

C. Feature Extraction using Bilinear CNN Model

We trained using both acute and postoperative data a
bilinear CNN model [7] to extract features of different
levels of pain. The billinear model allows to capture local
pairwise feature interactions in a translationally invariant
manner. For the bilinear CNN model, we used two VGG16
[9] models, pre-trained with VGGFace2 [10] and Imagenet
[11] dataset, as the backbones for the bilinear model. We
then concatenated the features of both models (Stream A
and B in Fig. 3) through the bilinear vector. Next, we added
two fully connected layers of 64 units followed by a dense
layer of 1 unit with linear activation. To prevent over-fitting,
we used Dropout (0.5) layers between FC layers.

D. Pain Intensity Estimation using LSTM Model

As pain changes in a particular pattern over time, temporal
information plays a critical role in estimating pain intensity.
Hence, we used the RNN network, specifically LSTM [8],
to capture the temporal pattern and changes of postoperative
pain over time. In particular, the facial features extracted by
the bilinear CNN were passed to the LSTM network. As
shown in Table I, we used two consecutive LSTM layers of
16 units, followed by two consecutive times distributed fully
connected layers of 16 units. Finally, a dense layer of 1 unit
with a linear activation function was used to continuously
measure the pain intensity. We also used Dropout (0.3) layer
after each time Distributed Dense Layer to avoid over-fitting.



CNN
Stream A

CNN
Stream B Bi

lin
ea

r V
ec

to
r

Li
ne

ar
 A

ct
iv

at
io

n

FC
 L

ay
er

FC
 L

ay
er

LSTM
Stream

Linear
Activation

Pain
Intensity

LSTM
Stream

Linear
Activation

Pain
Intensity

Pain
Intensity

Linear
Activation

LSTM
Stream

Frame 1 Frame 2 Frame N

Fig. 3. Pipeline of the proposed framework for neonatal postoperative pain estimation. We used data of procedural and postoperative pain for training
bilinear VGG16-based network; for LSTM training, we only used postoperative data.

TABLE I
DETAILS OF LSTM ARCHITECTURE

Layer Type Configurations

RNN LSTM 16, Activation = Tanh,
Recurrent Activation = Hard Sigmoid

RNN LSTM 16, Activation = Tanh,
Recurrent Activation = Hard Sigmoid

FC Time Distributed Dense 16, Relu
FC Time Distributed Dense 16, Relu
FC Time Distributed Dense 1, Linear

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

We report the results based on three datasets: our acute
dataset, COPE acute dataset [17], and our postoperative
dataset. Before proceeding, we note that the intensity of
facial expression ranges from 0 (no-pain) to 1 (pain) in
case of acute pain (our dataset and COPE). In the case
of postoperative pain, the intensity of facial expression is
scored as 0 (no-pain), 1 (moderate pain), and 2 (strong pain).
Because the number of images with score 2 is very small,
we combined images of score 1 and score 2 into one pain
class. This also allows to generate the same range of facial
pain levels (0−1) of the acute pain.

In addition to the key-frames extracted from our dataset,
we used static images of the COPE dataset [17] as a second
acute pain dataset for training the bilinear CNN. This dataset
consists of 204 static images of 26 babies (13 females)
with a gestational age that ranges from 18 hours to 3 days.
The images were collected during four different stimuli:
crib change, air stimulus, friction, and pain (heel lancing).
In this work, we divided these images into pain images
(heel lancing) and no-pain images (crib change, air stimulus,
friction). We rotated and aligned COPE images to obtain the
frontal view of the face.

Finally, the proposed LSTM model is used to estimate
the final pain intensity of the postoperative pain. In N-
PASS [2], the total pain score ranges from -10 to +10.
Table II shows the distribution of pain intensity levels in our
postoperative dataset. Note that our dataset has instances for
only 8 intensity levels (0−7).

TABLE II
PAIN INTENSITY (0−7) DISTRIBUTION OF THE NEONATAL

POSTOPERATIVE PAIN AFTER PRE-PROCESSING

Pain intensity Number of images
0 1728
1 160
2 512
3 352
4 928
5 960
6 352
7 992

Total 5984

B. Training and Evaluation Protocol

In our experiments, we resized all key-frames to the
standard input size (224× 224) for most CNN models. For
the bilinear VGG16-based [7] model, we fine-tuned the
model from the last convolutional blocks, which means after
the fourth pooling layers of the network. Similar to this [18],
both models were trained using a regression function instead
of classification which is more suitable to the nature of the
problem. We used mean square error (MSE) to measure
the loss. We trained the bilinear CNN model using gradient
Adam optimizer with a learning rate of 0.0001 and a batch
size of 16. In the case of LSTM, features were extracted
by the bilinear model and fed into the LSTM network. We
used MSE to measure the loss and Adam optimizer with a
learning rate of 0.0001.

For both CNN and LSTM training, we used leave-one-
subject-out evaluation protocol for postoperative pain. While
training the CNN models with acute datasets, we randomly
split the dataset to 80% (training and validation) and 20%
(testing). All the models were trained using 150 epochs and
early stopping was used to avoid over-fitting.

C. Results Analysis

We trained CNN models using a regression function
to estimate the pain intensity of the expression. Table III
shows the performance of (a) VGG16 alone and (b) bilinear
VGG16 reported using the mean square error (MSE) and
mean absolute error (MAE). VGG16 CNN (a) [9] alone
was used to model facial pain intensities. Similar to [14],



TABLE III
NEONATAL POST-OP ASSESSMENT (FACIAL PAIN INTENSITY [0-1])

Approach Pretrain Retrain MSE MAE
VGG16 VGGFace2 COPE 0.4170 0.5412
VGG16 VGGFace2 Acute 0.1979 0.4035
VGG16 VGGFace2 Post-Op 0.3606 0.5155
VGG16 Acute Post-Op 0.3716 0.5211
Bilinear VGG16 VGGFace2, ImageNet COPE 0.4272 0.5208
Bilinear VGG16 VGGFace2, ImageNet Acute 0.1917 0.3458
Bilinear VGG16 VGGFace2, ImageNet Post-Op 0.2955 0.4575
Bilinear VGG16 Acute Post-Op 0.2695 0.4173

TABLE IV
NEONATAL POST-OP ASSESSMENT (PAIN INTENSITY [0-7]) USING LSTM

Approach MSE MAE
VGG16 + LSTM 4.8612 1.7274
Bilinear VGG16 + LSTM 3.999 1.5565

we used a shallow network for VGG16 which is shown to
be optimum for relatively small datasets. We replaced the
last 3 fully connected layers by two dense layers of 512
units, followed by a dense layer of 1 unit with a linear
activation function. To prevent over-fitting, we used Dropout
(0.5) layers between Fully Connected (FC) layers. We fine-
tuned the fully connected layers of VGG16 model (a) with
images from COPE dataset, our acute, and postoperative
pain dataset. This baseline model (a) was trained using
a regression function and gradient Adam optimizer with
a learning rate of 0.0001 and a batch size of 16. The
architecture and training parameters of the bilinear VGG6-
based CNN (b) are presented in Fig. 3 and Section V.B.

As shown in the Table, bilinear VGG16 performs better
than VGG16 and fine-tuning the models with our acute
pain dataset achieves better performance than fine-tuning
with COPE [17] dataset. The Table also shows that the
performance of acute pain is higher than postoperative in
all cases. This can be attributed to the small number of
subjects and the low variations of pain intensities in the
postoperative pain data as compared to the acute, which
has a larger number of subjects with higher variations. In
most cases, the bilinear VGG16 achieves better performance
than the regular VGG16, which suggests that pain intensity
estimation can be considered a fine-grained classification
problem. To measure the temporal changes of postoperative
pain, we used the best two feature extractors (2nd and 6th
in Table III) to train the LSTM. The performance of pain
intensity assessment using the best CNN models with LSTM
is presented in Table IV. The results suggest that bilinear
CNN can better represent the facial pain intensity feature
than the general CNN model. These results are encouraging
and suggest the efficiency of using a combination of bilinear
CNN with LSTM for assessing postoperative pain intensity.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a fully automated deep learning-based
system that aims to mitigate the limitations of the current
assessment practice by providing standardized and continu-

ous monitoring of neonatal postoperative pain. A bilinear
CNN model followed by LSTM architecture is proposed
to estimate the neonatal postoperative pain intensity. The
experimental results are encouraging and prove the feasibility
of using the proposed framework for assessing neonatal
postoperative pain. Future work will focus on evaluating the
proposed framework on a larger postoperative pain dataset
and incorporating other pain modalities.
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