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Abstract
We introduce a computationally-efficient CNN micro-architecture Slim Module to

design a lightweight deep neural network Slim-Net for face attribute prediction. Slim
Modules are constructed by assembling depthwise separable convolutions with point-
wise convolution to produce a computationally efficient module. The problem of facial
attribute prediction is challenging because of the large variations in pose, background,
illumination, and dataset imbalance. We stack these Slim Modules to devise a compact
CNN which still maintains very high accuracy. Additionally, the neural network has a
very low memory footprint which makes it suitable for mobile and embedded applica-
tions. Experiments on the CelebA dataset show that Slim-Net achieves an accuracy of
91.24% with at least 25 times fewer parameters than comparably performing methods,
which reduces the memory storage requirement of Slim-net by at least 87%.

1 Introduction
The introduction of Convolutional Neural Networks (CNN) has led to the advancement of
state-of-the-art performance on several fundamental computer vision tasks such as image
classification [18], semantic segmentation [1], and object detection [13]. The success of
popular CNN architectures such as VGG-Net [16] and Res-Net [6] has steered the research
into building deeper and more parameter intensive networks. While these networks yield
higher accuracy than their predecessors, they are not very economical. This is particularly
important when considering deployment on mobile-powered platforms, where the storage
burden and computational cost of parameter intensive networks are most noticeable. In re-
cent years, a few efficient architectures, like Mobile-Net [8] and Shuffle-Net [21], have been
proposed to address these concerns. Their key idea is to design a deep network using com-
putationally economical types of convolution such as depthwise separable convolution and
group convolutions.

Analysis of facial attributes provides a very important visual cue for a range of applica-
tions like surveillance, biometric recognition systems, retrieval, fraud detection, etc. Over
the last few years, there has been significant interest in the multi-label face attributes prob-
lem as shown in Fig.1. Most of the previous work on facial analysis have used Alex-Net [10]
inspired architectures that made the final network architecture more computationally expen-
sive and parameter exhaustive. This makes it unsuitable for mobile or embedded applications
where face attribute prediction is used as one of the main building blocks.
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Figure 1: Facial Attribute Prediction: Given an image, the task is to detect the presence or
absence of attributes. Consider the figure shown above. If an attribute is present, the cor-
responding box is colored green otherwise it is colored red. Images are taken from CelebA
dataset [14].

The aim of our work is to design a computationally efficient, high performance CNN
architecture that is lighter parameter wise than existing architectures. To achieve this goal
we focus on the use of CNN micro-architectures, that is the arrangement of convolutional,
pooling, fully-connected, and dropout layers into individual modules. Micro-architectures,
like Inception module[18] and Residual blocks[6], have been shown to give good discrimi-
native feature representations. In this paper, we propose to use our novel micro-architecture
Slim Module to build an efficient deep neural network. The Slim Module is composed of
convolutional layers of two different types (depth separable convolution for 3x3 kernel and
pointwise convolution for 1x1 kernel) along with skip-connections.

To summarize, our main contributions are as follows:

• We introduce a novel CNN micro-architecture Slim Module that is compact, computa-
tionally efficient, has a smaller memory footprint, and still yields very good discrimi-
native features.

• We thoroughly investigate our proposed micro-architecture for different values of ker-
nel sizes and compare it with other micro-architectures in the literature.

• We compare the performance of a stacked Slim Module deep neural network Slim-
CNN with state-of-the-art methods on face attribute prediction in terms of accuracy,
parameter size, and on-disk memory space.

2 Related Work
We will review two lines of related work: face attribute prediction and micro-architectures
in CNNs.

2.1 Face Attribute Prediction
Kumar, et al. [11] were the first to introduce the classification of facial attributes for the
task of face verification. They used binary classifiers to detect the presence or absence of
attributes which they called attribute classifiers. Liu, et al. [14] introduced the large scale
CelebFaces Attribute (CelebA) Dataset for prediction of facial attributes in the wild. They
proposed a deep learning framework of cascading DNNs consisting of two localization net-
works (LNet) and an attribute recognition network (ANet) for face localization and face
attribute classification. Zhong, et al. [23] used mid-level CNN features to construct deep
hierarchical feature representations for facial attribute prediction. The authors argue that
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Figure 2: Slim Module: The micro-architecture shown on the left is the Separable Squeeze-
Expand Block (SSE), while on the right is the Slim Module.

some attributes are more locally-defined and earlier layers of CNNs are more suitable for
the identification of these attributes. In [15], Rudd uses a multi-task approach to solve the
problem of attribute classification. In order to deal with the multi-label imbalance problem in
the dataset, they introduce mixed objective optimization network(MOON). Since the learn-
ing of each facial attribute is treated as a different task, the cost function is set-up for joint
optimization.

Hand [5] leveraged the relationships between attributes to build a multi-task deep convo-
lutional network (MCNN) wherein they manually divided 40 attributes into 9 groups accord-
ing to each attribute’s location. The lower layers of MCNN are shared among all the groups
while the higher layers are shared only for related attributes. They attached a fully-connected
layer to the output of the MCNN (MCNN-AUX) to identify relationships between different
attribute scores and to improve the final accuracy. Han et al. [4] used a multi-task approach
to estimate facial attributes by modeling both attribute correlation and attribute heterogeneity
in a single network. The authors initialized the network by training it for face verification on
the CASIA-Webface dataset [20]. Gunther [3] suggested using data augmentation to learn
facial attributes on a ResNet architecture without the need of any sort of facial alignment.
Note that all of the mentioned works on facial attribute prediction have focused primarily on
performance without addressing the need for compact and efficient models.

2.2 Micro-Architecture in CNN

Micro-architecture refers to the organization of individual layers and modules. Over the
last few years, micro-architectures such as Inception Modules and Residual Modules have
become very popular as building blocks for constructing deep neural networks. Lin [12]
proposed a DNN "Network In Network" which consists of stacking multiple micro neural
network structures "mlpconv layer" to enhance the abstraction ability of the model. In [18],
Szegedy stacked these Inception Modules to get superior performance while still keeping the
computational complexity in check. They implemented dimension reduction by using 1x1
convolution kernels in order to lower the number of parameters. Landola [9] presented a
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compact Fire Module to design a small deep network to get same performance as Alex-Net,
but with 50 times fewer parameters. In [6], He introduced a residual learning framework for
training DNNs with very large depths without sustaining a loss of performance. The idea
behind He’s work is to fit a residual mapping with a reference to the input rather than to the
desired underlying mapping. Several works [7, 19] have since used this principle to build
smaller residual modules for training different tasks.

3 Method
Our goal is to design a new CNN micro-architecture to be used as the building blocks of our
deep neural network. There has been extensive research into neural network architectures,
which has led to many structural innovations. These innovations have contributed signifi-
cantly toward improving the performance of CNNs across many different computer vision
tasks. As such, they were considered when designing our micro-architecture. The following
structural innovations have been incorporated into our Slim Module:

1. Multiple Branches: From the success of Inception and ResNets, it can be inferred that
having multiple branches in the network provides better feature representations. Multiple
branches in a network means multiple paths through the network which would lead to good
discriminative features.

2. Small Kernels: VGG-Net [16] and GoogleNet [18] showed that smaller kernels such
as [1x1, 3x3, 5x5] can improve the performance of a deep neural network while also reducing
the number of parameters of the network. Smaller kernels have the added advantage of being
more computationally efficient. Also, stacking two 3x3 convolutional layers have effectively
the same receptive field as that of 5x5 convolutional layer. This means that combination
of smaller kernels can simulate a larger kernel while keeping the number of parameters
significantly lower.

3. Skip-Connections: Skip-Connections [6, 17], also called by-pass connections, are
defined as the connections between nodes in different layers of a neural network that skip
one or more layers of processing. Skip-connections allow neural networks to regulate infor-
mation by providing paths along which information can go through several layers without
any attenuation. This has been highlighted by the success of architectures that utilize skip-
connections like in ResNets and HighWay [17] Networks.

3.1 Proposed Micro-Architecture:

CNN micro-architecture, as higher level building blocks, present a modular approach to de-
signing deep neural networks by reducing the need to manually choose the type and filter
dimensions of each convolutional layer. The proposed Slim module, shown in Figure 2, is
made up of Separable Squeeze-Expand (SSE) blocks and depthwise separable convolutional
layers. Depthwise separable convolutions consists of depthwise convolution, a spatial convo-
lution performed independently over each channel yielding a new channel space, followed
by pointwise convolution, a 1x1 convolution over the channel-space output of the depth-
wise convolution. These convolutions have fewer parameters than the standard convolutions
which make them less prone to overfitting. Additionally, these convolutions are computa-
tionally cheaper and faster than the standard convolutions which make them a great fit for
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Table 1: Configuration Details of the proposed Slim-Net
Layer
Name

Filter Size/
Stride Squeeze Expand

(1x1)
Expand

(3x3)
DW Separable

(3x3)
Input Layer of size 178 x 218 x 3

Conv2D
(96 filters) 7x7/ 2x2

MaxPool 3x3/2x2
Slim Module 16 64 64 48

MaxPool 3x3/2x2
Slim Module 32 128 128 96

MaxPool 3x3/2x2
Slim Module 48 192 192 144

MaxPool 3x3/2x2
Slim Module 64 256 256 192

MaxPool 3x3/2x2
Global Average Pooling

Fully-Connected 40

mobile and embedded applications.
The SSE block is a multi-layered arrangement consisting of two 1x1 pointwise convolu-

tional layers and a single 3x3 depthwise separable convolutional layer. The first layer, called
the "Squeeze" layer, is a 1x1 convolutional layer with fewer filter dimensions than the previ-
ous layer which compresses the feature representation. The next layer is a concatenation of
a 1x1 pointwise convolutional filter and a 3x3 depthwise separable convolution filter. This
is the "Expand" layer as it significantly widens the number of output channels, increasing
the filter dimensions to four times that of the squeeze layer. The SSE block is similar to the
fire module described in the paper[9], but we improve on it by using depthwise separable
convolution.

The Slim Module stacks two SSE blocks together followed by a 3x3 depthwise separable
convolution layer. Additionally, there is a skip-connection over the first SSE block, resulting
in the sum of the input and output of the first block being used as the input to the second SSE
block. In our micro-architecture design, the convolutional layers are followed by a batch
normalization layer and a ReLu activation layer.

In addition to making the Slim Module cost-effective, we sought to make it easy to config-
ure. To that end, we define a hyperparameter for the Slim Module called FilterCount which
is the number of filters in the squeeze layer of the SSE Blocks for a given Slim Module.
The number of filters for the other convolutional kernels in that module are just multiples of
the FilterCount. To get the number of convolutional filters in the Expand layer and the 3x3
depthwise separable convolutional layer after the second SSE Block, the FilterCount was
multiplied by 4 and 3, respectively.

3.2 Network
We use Slim Modules as the building blocks of our deep neural network Slim-CNN. The pro-
posed micro-architecture yields better discriminative features, while reducing the number of
required parameters due to the presence of the SSE blocks within the micro-architecture.
Four Slim Modules are stacked together to construct the feature extractor portion of the net-
work. Each Slim Module is followed by max-pooling layer. The feature extractor is followed
by global average pooling layer whose output is shared by a fully-connected classification
layer of size 40 (.i.e. the total number of attributes). A Global Average Pooling layer was

Citation
Citation
{Iandola, Moskewicz, Ashraf, Han, Dally, and Keutzer} 2016



6 SLIM-CNN: LIGHT-WEIGHT CNN
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Figure 3: Full Architecture of our Slim-CNN. The network consists of 4 stacked Slim
Modules. Each module is followed by a max-pooling layer. For each Slim Module, the
value of filter dimensions for different layers are shown in brackets in the following order:
Squeeze, Expand and last 3x3 depthwise separable layer.

compared to fully-connected layers of size 512 and 1024. The Global Average Layer is
preferred as it both reduces the number of parameters and improves the performance of the
network. In this work, the FilterCount values are set, in order, to [16, 32, 48, 64] for the
four Slim Module comprising the Slim-CNN as shown in Figure 3. In this manner, we can
design the complete network without exhaustively trying different configurations for each
convolutional layer. The design details of Slim-Net is shown in Table 1.

Since the task at hand is a binary, multi-label classification problem, we use a sigmoid
cross-entropy loss function for each attribute during training. The loss function for each
attribute is defined as:

Lattr =− (y) log(p)+(1− y) log(1− p) (1)

where y is the attribute label and p is the prediction from corresponding attribute label.

4 Experiments and Results

4.1 Implementation Details
All experiments in this work were run using GeForce GTX 1080 Ti on Intel Core i7 with 31
GiB of memory using the Keras Python Deep Learning Library with a TensorFlow backend.
For training the network, we used the ADAM optimizer with a learning rate of 0.0001.
The network was trained with glorot initialization [2]. The batch-size is set to 64 and the
depthwise separable convolution layers in the Slim modules apply L2 regularization(0.0001).

4.2 Dataset
In this work, we use the CelebA dataset, which consists of over 200,000 celebrity im-
ages where each image has been annotated with 40 different attributes. The dataset covers
large variations in pose, background, and illumination which makes predicting attributes ex-
tremely challenging. The images in the dataset are split in the following fashion: 160,000
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Table 2: Accuracy, memory and parameter count comparison with state-of-the-art methods.
Memory usage reported here is on-disk space used by the model.

Attributes Liu
[14]

MOON
[15]

Hand
[5]

DMTL
[4]

AFFACT
[3]

PSE
[22] Slim (this work)

5 O’Clock Shadow 91 94.03 94.51 95 94.87 94.85 94.75
Arched Eyebrows 79 82.26 83.42 86 84.21 83.75 83.2

Attractive 81 81.67 83.06 85 82.86 82.95 82.85
Bags Under Eyes 79 84.92 84.92 99 85.31 85.35 85.33

Bald 98 98.77 98.9 99 99.09 98.99 98.84
Bangs 95 95.8 96.05 96 96.1 95.54 96.23

Big Lips 68 71.48 71.47 88 72.7 71.9 71.44
Big Nose 78 84 84.53 92 84.38 84.09 84.28

Black Hair 88 89.4 89.78 85 90.36 89.76 90.13
Blond Hair 95 95.86 96.01 91 96.2 95.5 95.55

Blurry 84 95.67 96.17 96 96.37 96.29 95.42
Brown Hair 80 89.38 89.15 96 88.4 88.66 88.5

Bushy Eyebrows 90 92.62 92.84 85 92.46 91.77 92.79
Chubby 91 95.44 95.67 97 95.74 95.94 95.57

Double Chin 92 96.32 96.32 99 96.52 96.45 96.3
Eyeglasses 99 99.47 99.63 99 99.61 99.65 99.64

Goatee 95 97.04 97.24 98 97.5 97.15 97.55
Gray Hair 97 98.1 98.2 96 98.31 98.23 97.76

Heavy Makeup 90 90.99 91.55 92 92.1 90.39 91.71
High Cheekbones 88 87.01 87.58 88 87.77 87.12 87.8

Male 98 98.1 98.17 98 98.5 98.21 98.12
Mouth Slightly Open 92 93.54 93.74 94 94.06 93.85 93.79

Mustache 95 96.82 96.88 97 97.11 96.85 97
Narrow Eyes 81 86.52 87.23 90 87.69 87.35 87.7

No Beard 95 95.58 96.05 97 96.45 96.22 96.26
Oval Face 66 75.73 75.84 78 77.41 73.98 75.43
Pale Skin 91 97 97.05 97 97.05 97.04 97.18

Pointy Nose 72 76.46 77.47 78 76.9 77.3 77.13
Receding Hairline 89 93.56 93.81 94 93.67 93.55 93.1

Rosy Cheeks 90 94.82 95.16 96 95.16 95.08 95.1
Sideburns 96 97.59 97.85 98 97.84 97.87 97.73

Smiling 92 92.6 92.73 94 92.96 91 92.93
Straight Hair 73 82.26 83.58 85 85.26 84.93 83.14

Wavy Hair 80 82.47 83.91 87 86.25 85.35 83.77
Wearing Earrings 82 89.6 90.43 90 90.98 90.26 90.38

Wearing Hat 99 98.95 99.05 99 99.1 99 99.07
Wearing Lipstick 93 93.93 94.11 93 93.96 93.41 94.18
Wearing Necklace 71 87.04 86.63 89 89.27 88.01 87.12
Wearing Necktie 93 96.63 96.51 97 97.29 97.03 96.7

Young 87 88.08 88.48 90 88.98 88.67 88.14
Average 87 90.94 91.27 92.1 91.67 91.23 91.24
Memory - 457MB 63.8MB 260MB 98.2MB - 7.9MB

#Parameters >100M 136M 15M 65M 26M 62M 0.6M

images for training, 20,000 images for validation, and 20,000 images for final testing. Some
of the images from the CelebA dataset are shown in Fig 1. The CelebA database is an
imbalanced set which further illustrates the difficulty of the task.

4.3 Attribute Prediction Results

In this section, we describe the results of many experiments comparing our Slim-CNN
against other methods and micro-architectures.
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4.3.1 Comparison with other methods

Table 2 shows how our Slim-Module inspired deep neural network performs as compared to
other methods in terms of both accuracy for each of the 40 attributes and overall model size.
As can be seen, our Slim-CNN is very competitive with state-of-the-art methods, while only
using a fraction of the parameters of its competitors. Some of these methods use compu-
tationally expensive network architecture as the backbone of their proposed solutions. For
example, PSE [22], DMTL[4], and Liu [14] are inspired by the parameter intensive Alex-Net
(60M parameters) while AFFACT [3] is built on top of a ResNet-50 architecture with more
than 25M parameters. The reduction in number of parameters of our proposed network is
staggering, making it ideal for mobile and embedded applications. We report the on-disk
memory needed by the networks for several methods. The proposed Slim-Net is extremely
light and require significantly less memory space as compared to other methods, while still
achieving high accuracy.

4.3.2 Comparison of Slim-CNN with other Micro-Architecture-Based DNNs

Here, we compare our Slim-CNN with other micro-architecture-based DNNs such as Squeeze-
Net. To construct the Squeeze-Net DNN used in our experiments, we removed the 3x3 depth-
wise separable convolution layer after the second SSE Block and the skip connection in each
Slim Module. The filter sizes for all the convolutional layers in the resulting Fire mod-
ules remain the same as those of the Slim Module. We also construct two different CNNs
for comparing the Slim Module with inception modules and residual blocks. These CNNs
were constructed by replacing Slim Modules with their corresponding micro-architectures
i.e. inception modules and residual blocks. For a fair comparison, we try to keep the con-
figurations of these CNNs consistent with Slim-CNN. For the inception inspired CNN, the
number of filters in the 3x3 kernels of the inception module is the same as the number of
filters in the 3x3 kernel in the expand layer of SSE blocks of the Slim Module. Similarly
for the residual block CNN, the number of filters for the 1x1 and 3x3 kernels in the residual
block is twice that of the 1x1 kernel in the squeeze layer and the 3x3 kernel in the expand
layer of SSE Block. We tested different configurations for these two CNNs and reported
the best results here. We provide more details on the configurations for residual block CNN
and inception module CNN in the supplementary material. Table 3 shows that Slim-CNN
performs better than inception CNN and residual CNN despite having fewer parameters than
both. This shows that the Slim Module can efficiently generate good feature representation
for faces. Slim-Net improves on the Fire module[9] based DNN results by over 11% which
shows that the addition of a 3x3 kernel after the SSE Blocks and the skip-connection to
micro-architecture yields better feature representations.

4.3.3 Varying the kernel size of the layer after SSE Block

The Slim Module uses 3x3 depthwise separable convolution layer after the two SSE Blocks.
We opted to use a kernel of this size for the final layer of the Slim Module after running
several experiments on different kernel sizes. The final layer configurations that were tested
are: (i) a single 3x3 depthwise separable convolution layer (ii) a single 5x5 depthwise sep-
arable convolution layer (iii) a single 7x7 depthwise separable convolution layer and (iv)
two 3x3 depthwise separable convolution layers in series. Table: 4 shows nearly identical
performance from each configuration, suggesting that increasing the size of kernels does not
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Table 3: Comparing Performance of Slim-Net with other micro-architectures based DNN
Models Parameters Memory Accuracy

Fire Module[9] 764,968 9.8MB 80.10%
Inception 1,224,288 15.5MB 90.62%

Residual Block 1,905,096 23.5MB 90.67%
Slim Module 570,600 7.5MB 91.24%

Table 4: Effect of varying the kernel size of the layer after SSE Block.
Kernel Size 3x3 5x5 7x7 3x3+3x3
Accuracy 91.24% 91.18% 91.16% 91.20%

Parameters 570,600 591,080 615,848 680,320

necessarily increase performance. As such, the single 3x3 kernel, having the fewest parame-
ters, was chosen as the configuration for the final layer of the module. This choice was made
to be consistent with our design goal of minimizing the parameter space.

5 Conclusion

We proposed an efficient micro-architecture Slim Module for designing deep neural net-
works to be used in mobile and embedded applications. Our Slim-CNN has shown compa-
rable performance to the state-of-the-art methods while significantly reducing the number
of parameters. Specifically, Slim-CNN achieves an average accuracy of 91.24% with only
600K parameters. The next smallest state-of-the-art architecture [5] has more than 25 times
the number of parameters at 16M. We verify the effectiveness of the Slim Module for the
face attribute task by comparing it with other well-known micro-architectures in literature.
The Slim Module micro-architecture outperforms the Inception module, Residual block, and
Fire-Module based SqueezeNet [9]. Moreover, the incredibly low parameter footprint of
Slim-CNN makes it very well suited to resource limited environments.
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