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Figure 1. Extraction of 3D facial mesh from raw in-the-wild speech signal.

Abstract

Synthesising 3D facial motion from speech is a crucial
problem manifesting in a multitude of applications such
as computer games and movies. Recently proposed meth-
ods tackle this problem in controlled conditions of speech.
In this paper, we introduce the first methodology for 3D
facial motion synthesis from speech captured in arbitrary
recording conditions (”in-the-wild”) and independent of
the speaker. For our purposes, we captured 4D sequences
of people uttering 500 words, contained in the Lip Read-
ing Words (LRW) a publicly available large-scale in-the-
wild dataset, and built a set of 3D blendshapes appropriate
for speech. We correlate the 3D shape parameters of the
speech blendshapes to the LRW audio samples by means
of a novel time-warping technique, named Deep Canoni-
cal Attentional Warping (DCAW), that can simultaneously
learn hierarchical non-linear representations and a warp-
ing path in an end-to-end manner. We thoroughly evaluate
our proposed methods, and show the ability of a deep learn-
ing model to synthesise 3D facial motion in handling differ-

ent speakers and continuous speech signals in uncontrolled
conditions.

1. Introduction

Synthesis of 3D talking faces is very crucial to many
applications including but not limited to computer games,
movies post-production (e. g., dubbing), talking faces in vir-
tual reality applications, etc. Currently, the highest quality
3D face synthesis is performed by using facial capture rigs
which make use of markers or sensors. Recently, machine
learning methods [11, 16, 25], and in particular deep neural
networks, have been used in order to train systems that re-
construct the 3D facial geometry of talking faces directly
from audio sources. Nevertheless, till now the proposed
methods are person or rig-specific [42] 1, hence do not

1In [16] even though the method was trained on a single person, the
authors claim that they used the method on other people and the results
were meaningful. The above contradicts the current practices in machine
learning which require large and diverse sets for good generalisation. Be-
cause we could not reproduce their experiments, we contacted the authors

1

ar
X

iv
:1

90
4.

07
00

2v
1 

 [
cs

.C
V

] 
 1

5 
A

pr
 2

01
9



generalise to arbitrary audio sequences. In this paper, we
present the first methodology for estimation of the 3D facial
motion related to speech directly from raw audio stream.

Estimating the 3D facial motion directly from raw audio
samples captured in arbitrary recording conditions is an ill-
pose problem since a great number of people uttering a large
amount of diverse words need to be captured in 4D (i.e. 3D
geometry in time). Even though many efforts have been per-
formed towards collecting 4D expressive faces [7, 38, 37]
there is a lack of datasets with talking 4D faces (i.e., 3D
speech in time). One such dataset has been proposed by
Marshall et al. [20], which captured four people in dyadic
interaction (17 mins in total). A limited number of words
have been captured in [7] for biometric application, never-
theless the data are not publicly available. Hence, it is very
difficult to train a generic method for 3D facial motion re-
construction from audio streams. The most closely related
work to ours is by Phamend et al. [25], which used a statisti-
cal blendshape model, trained on facial expressions. As we
show, these blendshapes cannot model adequately 3D facial
motion related to speech.

In this paper, we make the first, to the best of our knowl-
edge, comprehensive effort to estimate 3D facial motion
from arbitrary audio streams. To this end, we first capture
4D sequences of people uttering 500 words, contained in
an in-the-wild dataset named Lip Reading Words (LRW).
After registering the 3D meshes with an adaptive template
approach, we learn 3D blendshapes for the speech, which
we make publicly available. Each 3D mesh can be param-
eterised as a set of 3D shape parameters through these 3D
blendshapes. Employing a novel time-warping algorithm,
named Deep Canonical Attentional Warping (DCAW), we
align the speech, that we have 3D ground-truth on, with
the corresponding ”in-the-wild” speech signals in LRW, and
propagate the 3D shape parameters, creating the ”in-the-
wild” LRW-3D dataset. We train a deep learning model
on this dataset and show the ability of the model to pre-
dict 3D face motion for speech captured under uncontrolled
conditions. Fig. 1 shows the pipeline of our approach. In
summary, the contributions of this work are the following:

1. We collect a 4D dataset of people uttering 500 words
and learn the first statistical blendshape model for
speech which we provide publicly available.

2. In order to train accurate blendshapes, we propose an
adaptive shape template method to accelerate the con-
vergence of registration algorithms and achieve a bet-
ter final shape correspondence.

3. We propose Deep Canonical Attentional Warping
(DCAW), a method which learns hierarchical non-
linear representations and temporal alignment of two

but received no reply.

Figure 2. Pipeline of our approach. The proposed methods are
represented in light blue, whereas the dataset and models, that we
provide publicly available, are shown in light green.

audio signals in an end-to-end manner. Using DCAW
we create LRW-3D, and we make publicly available
the aligned 3D shape parameters.

4. Finally, we train a speech to 3D deep facial motion
model that can operate in nearly real-time, and inde-
pendently of the speaker in uncontrolled conditions of
speech.

2. Related Work
There are several traditional approaches [13, 17, 21, 28,

29, 30, 35, 36] that exploit audio signal for 2D or 3D fa-
cial animation. More recent approaches utilise deep neural
networks (DNN) for this task. These can be categorised
in two main groups: linguistic-driven and audio-driven ap-
proaches.

Linguistic-driven approaches. Language-based meth-
ods take advantage of the mapping between phonemes and
their visual counterpart visemes. For example, Edwards et
al. [11] proposed the JAw and LIp (JALI) model, a two-
dimensional space that represents the jaw and lip move-
ments of a facial animation based on psycholinguistic con-
siderations. The main disadvantage of their study is the
need for the speech signal, its text transcript and their align-
ment to create the facial animation. In another study, Taylor
et al. [33] first proposed generating dynamic units for vi-
sual speech for realistic visual speech animation. In a more
recent study, the authors [32] initially transcribe the speech
signal to phoneme labels, which are then fed to a deep fully
connected network to predict person-specific shape and ap-
pearance parameters obtained by Active Appearance Model
(AAM). A main limitation of this work is the need for
speech to phoneme labels conversion.

Audio-driven approaches. Audio-based methods drive
facial animations using only audio cues. Zhou et al. [42]
utilises audio features for an automatic and near real-time
animation by driving a JALI face-rig. The authors pro-
pose VisemeNet, a three stage deep learning model based
on Long Short-Term Memory (LSTM) networks that are fed



with audio features. The first two stages comprises of ex-
tracting phonemes and landmarks, while the third extracts
visemes. In a different study, Karras et al. [16] proposed a
deep convolutional neural network for 3D facial animation
using auto-correlation audio features. The network models
unknown variation of the audio cues by learning a small di-
mensional vector. Its output is the entire face and is trained
using a three-way loss function that ensures temporal stabil-
ity and correct responses under animation. The main limi-
tation of their method is that the trained network is person-
specific and as such it cannot generalise well to different
speakers. Pham et al. [25] used the same network archi-
tecture as Karras et al. but with melspectrograms as input.
Their model was trained to predict the rotation and expres-
sion blending parameters extracted by a 3D face tracker.
Suwajanakorn et al. [31] used audio features to synthesize
videos of Obama focusing on the mouth region and taking
the rest of the head and torso from stock footage. However,
their method is person-specific with tens of hours of audio
signal, and requires heavy hand-engineered work.

In comparison with the aforementioned methods, our ap-
proach is able to provide 3D face motion estimation not
only in uncontrolled speech conditions but also is speaker-
independent, i. e., independent of the speaker. On top of
that, we are the first to propose a statistical blendshape
model appropriate for speech.

3. Building Speech Blendshapes Model
In this section, we describe the pipeline for building the

speech blendshapes model. The process consists of: (a) col-
lecting a dataset of 3D meshes with various people uttering
a set of words (Sec. 3.1), (b) registering all the meshes to
a common template (Sec. 3.2), and (c) building a statistical
model on the registered meshes (Sec. 3.3).

3.1. Data Acquisition

To construct a set of blendshapes appropriate for speech
we needed to capture 4D sequences (i. e. 3D geometry in
time) of people talking. The choice of the utterance spoken
by our participants is driven by our goal to train a model
that can operate under unconstrained audio conditions (in-
the-wild), and is speaker independent. To this purpose, we
utilise the 500 words contained in the publicly available Lip
Reading Words (LRW) in-the-wild dataset [9] which con-
tains almost 1000 videos per word, summing to approxi-
mately 450, 000 videos. These videos were captured from
TV broadcasts (e. g. news or interviews) in uncontrolled
environments and contain 1000 speakers, making it an ex-
cellent fit for our purposes.

We used the DI4D dynamic system2 to capture and build
4D faces. This system consists of six cameras (two pairs

2http://www.di3d.com

of stereo cameras and one pair of texture cameras, 30FPS,
1200 × 1600). Before every recording, a calibration was
necessary and was performed by utilising a 10× 10, 20 mm
checkerboard. Two 4-lamp fluorescent lights were placed
on each side to provide consistent and uniform lights. One
microphone is used to capture the audio signal in 44, 1 kHz
sampling rate.

We captured 2 native and 2 non-native English speakers
reading out the 500 words from the aforementioned dataset.
We should note that the choice of the non-native speakers is
to add extra variability to the mouth region when we de-
velop our blendshapes. In total, the whole process took
20 min for each participant, and, approximately, 20, 000
3D meshes were acquired for each individual (equivalent
of 660 s of recording).

3.2. Registration

Automatic Annotation. Before processing our 3D cap-
tured meshes, we need to re-parameterise them such that all
the meshes have the same number of vertices joined into a
common triangulation. Two approaches exist that perform
such task and they differ on the space the registration is per-
formed. The first method performs the dense registration in
the 2D space, namely the UV-space [24, 10]. The second
method registers directly (i. e. in the 3D space) the mesh
and the template [1, 22].

In this paper, we follow the latter approach as UV-based
correspondence approaches introduce non-linearities into
the process and require an extra step for rasterizing the UV
image [5]. To this end, we perform the registration in the
3D space between a neutral 3D mesh and the mean shape
of Large Scale Facial Model (LSFM) [5]. The registration
is performed by utilising Non-rigid Iterative Closest Point
(NICP), which has as a prerequisite the template and the
mesh to be close in terms of euclidean distance.

The high number of 3D meshes do not allow us to manu-
ally annotate 3D facial landmarks. To automate the process
we utilise a sparse alignment method proposed by Booth
et al. [6] that can automatically compute sparse annotations
on the 3D meshes. More specifically, for each mesh we ap-
ply the face detection and alignment framework proposed
by Zhang et al. [40] on its corresponding 2D texture im-
age, where the correspondence to the 3D coorditanes are
known, to robustly locate a set of 68 sparse annotations
(landmarks) [39] in the 2D space. Exploiting the correspon-
dence between the texture image and the 3D mesh, we get
the corresponding 3D positions of the landmarks.

Adaptive Template and Dense Registration. The ma-
jority of NICP shape registration methods use the same 3D
template shape to deform all 3D meshes of a dataset [5].
Even though this approach can be sufficient for large
datasets with neutral shapes, it is not the case when there
is a large variation in terms of expressions and lip move-



ments in each mesh. In our captured 3D meshes the posi-
tion and shape of the mouth change frequently so if a single
template shape is used important parts of it would not be
close to the corresponding parts of 3D meshes. Hence, the
registered results would have visible errors and inaccurate
correspondences.

To alleviate from this problem, we propose an adaptive
template approach where for each 3D mesh in our dataset
we adapt the original template using sparse shape informa-
tion (i. e. 68 landmarks).

In particular, by leveraging the expression blendshapes
created by Cheng et al. [7], we compute the 3D shape pa-
rameters for each mesh through linear regression between
the landmarks of the neutral shape and the landmarks of the
reconstructed instance as

co = argmin
c
||ln −A(xn + Usc)||2F (1)

where ln ∈ R3m is a vector with m landmarks of the
neutral shape, A ∈ R3m×3n is an indicator matrix, in-
dicating the position of the 3D landmarks on the recon-
structed mesh, xn ∈ R3n is the neutral registered shape,
Us ∈ R3n×q is a matrix with the q blend shapes and c ∈ Rq
is the 3D shape parameters vector.

After the calculation of the 3D shape parameters co that
minimise the expression in Eq. 1, we can adapt the neutral
template to the current mesh: xadapt = xn+Usco. Finally,
NICP can be performed between the adaptive template and
the mesh. We should note that even though the blendshapes
(Us) describe various expressions and not speech, they give
a good prior for our template. The registration process is
illustrated Fig. 3.

3.3. Creating Speech Blendshapes

Our final step is to build a set blendshapes appropriate
for speech. We start by subtracting the neutral mesh from
each registered mesh in the sequence, creating vectors of
differences, i. e., d = xn − xadapt ∈ R3n. After we stack
these vectors into a matrix D = [d1, . . . ,dT ] ∈ R3n×T ,
we apply Principal Component Analysis (PCA) to iden-
tify the deformation components Ub. We keep 28 blend-
shapes corresponding to 99.9% of the total variance in the
sequence. Hence, a new shape instance can be generated:
xnew = xn + Ubλ, where λ are the 3D shape parameters
of our model. Finally, for each mesh in our sequence, we
compute the 3D shape parameters that constitute our ground
truth.

4. Lip Reading Words in 3D (LRW-3D)
With the construction of our speech-driven statistical

model, we can now use the speech signal of our participant
to propagate the 3D shape parameters to the speech signals
of the LRW dataset. Our process starts by segmenting our

participants’ speech signal to the 500 words, which is ac-
complished in a semi-automatic manner. More particularly,
we first utilise the approach proposed by Elsner et al. [12]
to segment our speech signal. This step is crucial to our
pipeline as a single faulty segmentation can result in almost
a thousand false samples in our dataset, which can lead to
ill-generalisable models. To this purpose, we listened each
segment, and, when required, we manually adjusted them.

4.1. Deep Canonical Attentional Warping (DCAW)

To accurately propagate the 3D shape parameters of our
participant to the LRW dataset, we need to eliminate any
temporal variations arising in the data. Hence, we compute
a temporal alignment between the signal of each word ut-
tered by our participant and the corresponding signals of the
LRW. To compute this alignment, we propose Deep Canon-
ical Attentional Warping (DCAW), a novel method that can
maximally correlate two data sequences (or views) and find
a temporal alignment in an end-to-end manner. We lever-
age deep recurrent convolutional neural networks to spa-
tially transform the raw speech signals, and utilise attention
mechanism for the alignment.

The attentional warping is performed by computing at-
tention weights between each feature frame of the one view
(source) with all the features from the other view (target).
We should point out that our data are monotonic and as such
we utilise a monotonic attention mechanism [27]. Mathe-
matically, given two views Xk ∈ Rdk×Tk , and their fea-
tures hki , i = {1, 2, ..., Tk}, where dk and Tk are the dimen-
sionality and length of view k ∈ {1, 2}, respectively, the
attention between each target feature and the source ones is
computed as follows:

αh1
i ,h

2
j
=

exp(score(h1
i ,h

2
j ))∑T2

k=1 exp(score(h
1
i ,h

2
k))

, (2)

where exp is the exponential function, and score can be
any attention function, such as Bahdanau [4] or Luong [19].
For our purposes, we use the Bahdanau score:

score(h1
i ,h

2
j ) = vTi tanh(Wth

1
i + Wsh

2
j ), (3)

where vTi , Wt and Ws are learnable parameters of the
model.

The outcome of Eq. 2, is the attentional matrix A ∈
RT1×T2 that includes the weights between the two views.
We use this matrix to warp the target features with the
source ones by multiplying it with the source features, i. e.,
H1A, where H1 ∈ Rd×T1 is the feature matrix containing
all the features of the first view.

The alignment between the two views is found such that
the features between the views are maximally correlated.
This optimisation is formulated as a least-square problem:



Figure 3. Registration pipeline. The process starts by extracting 2D landmarks from the texture image, and then their corresponding position
in the 3D mesh. By applying a regression between the 3D landmarks of the raw mesh and the neutral registered mesh we create an adaptive
template. Using this template and the 3D shape of the raw mesh NICP can accurately register the raw mesh.

argminθ1,θ2 ||f1(X1; θ1)− f2(X2; θ2)||2F

subject to f1(X1; θ1)f1(X1; θ1)
T = I

f2(X2; θ2)f2(X2; θ2)
T = I

f1(X1; θ1)f2(X2; θ2)
T = D

f1(X1; θ1)1 = f2(X2; θ2)1 = 0,

(4)

where fk(Xk; θk) with k ∈ {1, 2} represents the output of
the two neural networks with parameters θk and input Xk,
respectively, D is a diagonal matrix, and 1 is an appropriate
dimensionality vector of all ones.

We find the optimal parameters for each network with
the use of backpropagation. Our problem is a vari-
ant of Deep Canonical Correlation Analysis (DCCA) [2],
and as such the optimal objective value can be com-
puted as the sum of the k largest singular values
of KDCAW = Σ

−1/2
11 Σ12Σ

−1/2
22 , where Σij =

1
T2−1fi(Xi; θi)CT fj(Xj ; θj)

T and CT = I − 1
T2

11T is
the centering matrix. The optimal objective is found by
maximising the nuclear norm ||KDCAW ||∗ = tr(

√
KKT ),

i. e.,

argmax
θ1,θ2
||KDCAW ||∗ (5)

We use gradient ascent to optimise Eq. 5. Since the gra-
dient cannot be computed analytically we use the subgradi-
ent [3] by computing the singular value decomposition of
KDCAW = USVT , then the subgradient for the last layer
of the network can be defined as follows

L+ = Σ
−1/2
11 UVTΣ

−1/2
22 f2(X2; θ2)CT (6)

L− = Σ
−1/2
11 USUTΣ

−1/2
11 f1(X1; θ1)CT (7)

ϑ||KDCAW ||∗
ϑf1(X1; θ1)

=
1

T2 − 1
(L+ − L−). (8)

Finally, we should point out that DCAW can be extended
to handle multiple data sequences by utilising an objective
similar to Multi-set CCA, i. e.,

∑
i,j

||Ki,j
DCAW ||∗. (9)

4.2. Word Alignment

We can now use DCAW to compute an alignment path
between the speech signal of words uttered by our partici-
pant and the corresponding signals of the LRW dataset. To
this end, we train a recurrent convolutional neural network
for each word (i. e. 500 networks - see Sec. 5 for topology)
by fixing one of the views to our participant’s speech signal
and the other to the corresponding speech signals of LRW,
and get the alignment path between them.

Utilising the alignment path of the speech signals, we
propagate the 3D shape parameters computed for our partic-
ipant to the LRW dataset. In the case where an audio frame
of the LRW is aligned to multiple frames from our dataset,
the mean of the 3D shape parameters of these frames is
computed and assigned as the ground truth of that frame. If
the opposite holds, namely, an audio frame from our speech
signal is aligned to multiple audio frames of the LRW, then
the same ground truth is assigned to all LRW audio frames.

By transferring our 3D shape parameters to the LRW
dataset, we create a large word-level dataset in-the-wild for
3D dense shape estimation from speech. This allows us to
train models that can generalise to every speaker, and at the
same time to in-the-wild speech signals.

5. Training
Three aspects are relevant to our training: (i) the input

representation, (ii) the network topology, and (iii) the objec-
tive function utilised for training and evaluating the model.
We describe in detail in the rest of the section.

Input Representation. All audio signals have sampling
rate at 44.1 kHz, and after we remove the DC offset, we



normalise its volume to 0 dB, namely, using the full [−1, 1]
range. No other pre-processing step takes place.

We use mel-spectograms as our input represenation of
the audio signal. This representation is appropriate for our
task because it is derived by approximating the frequencies
perceived by the human cochlea [26]. Thus, the information
is similar to the perceived human hearing.

For each visual frame, we derive mel-spectrograms in
an audio window of length 400ms so that we can take
into account co-articulation effects in the signal. For each
audio window, we compute 128 mel-frequency parame-
ters utilising a window of length 20ms (882 samples) with
10ms (441 samples) overlap. Hence, a 2D representation is
formed of size 41× 128. By calculating its first and second
temporal derivatives, and place all three 2D representations
in a different channel, we form a 41 × 128 × 3 representa-
tion, which is the input to our convolutional recurrent neural
network.

Network Topology. Our deep neural network topology
is inspired by Karras et al. [16], and is comprised of four
parts: (a) frequency extractor, where features are extracted
vertically, namely, exploiting the frequency domain of the
input representation, with kernel and stride size of 3 and 2,
respectively, (b) short term temporal extractor, where fea-
tures are extracted horizontally, namely, from the tempo-
ral domain of the extracted representation of the previous
step, with kernel and stride size of 3 and 2, respectively,
(c) a non-linear transformer, that non-linearly transform of
the convolutional extracted features 128 dimensionality, and
(d) a long term temporal extractor represented with a recur-
rent neural network of 1-layer LSTM cell of 128 dimen-
sions, which captures the long term temporal dynamics in
the data. The last layer is a fully connected that produces
the 3D shape parameters of our model. The filter size for all
convolution layers is set to 64.

Objective Function. Most of the studies in the literature
use as objective function the Mean Squared Error (MSE).
However, we propose to use an objective function that
is based on the Concordance Correlation Coefficient (ρc),
which is also used as our evaluation metric. The correla-
tion coefficient evaluates the agreement level between the
predictions and the ground truth by scaling their correlation
coefficient with their mean square difference. More particu-
larly, for each shape parameter i we define the concordance
loss Lic between the ground truth x and the prediction y as
follows:

Lic = 1− ρc = 1−
2σ2

xy

σ2
x + σ2

y + (µx − µy)2
,

(10)

where µx = E(x), µy = E(y), σ2
x = var(x), σ2

y = var(y)
and σ2

xy = cov(x,y).

For our purposes we train our networks to simultane-
ously predict all 28 3D shape parameters. We should note
that each shape parameter explains different variability per-
centage in our data, and hence contributes differently to the
final 3D reconstructed mesh. We take this fact into ac-
count and we add as weight wi to each shape parameter
concordance loss Lic, the variability percentage the shape
parameter represents. Our overall loss function is defined
as L =

∑28
i=1 wiLic.

6. Experiments
We perform extensive evaluation of our proposed meth-

ods by: (i) comparing the DCAW with the current state-
of-the-art method for maximally correlating two views and
finding an alignment (Sec. 6.2), (ii) comparing the proposed
speech blendshapes with the blendshapes of the FaceWare-
house (Sec. 6.3), and (iii) validating our approach for 3D
face motion from ”in-the-wild” speech (Sec. 6.4).

6.1. Experimental Setup

The hyperparameters of the models are kept the same
throughout all of the experiments. As our optimisation
function, we use the Adam optimiser [18] with β1 = 0.9,
β2 = 0.99, and a initial learning rate of 5 × 10−4, with
batch size set to 50. Finally, the initialisation of the feature
extraction network was performed following He et al. [15],
whereas our recurrent network weights are initialised fol-
lowing Glorot based initialisation [14]. We should note that
zero padding was used to samples that do not match the
maximum sequence length of the batch. We discard the
zero-padded frames that do not belong to the sample by ap-
plying a mask.

6.2. Deep Canonical Attentional Warping

We compare our proposed DCAW with the state-of-the-
art method for representation learning and temporal warp-
ing, the Deep Canonical Temporal Warping (DCTW) [34].
The performance of the two methods is evaluated on two
datasets: (a) the MMI Facial Expression Dataset [23],
which contains more than 2900 videos of 75 different sub-
jects, each performing a particular combination of Action
Units (i. e., facial muscle activations). We predict the AU12
and utilise the same approach and network architecture
(with a recurrent network on top) as in [34]. (b) We use
the LRW dataset to perform template matching, where one
of the views is a speech signal of a word and the other is
a speech signal of a sentence containing, in a random lo-
cation, the word. The methods need to accurately find the
word in the sentence. For our purposes, we use 10 randomly
chosen words with 100 samples.

The performance measure is the alignment error intro-
duced in [41]. More particularly, given m sequences,
each algorithm infers a warping path, i. e., Palg =



[p1alg, ..., p
m
alg] ∈ Rlalg×m, and the alignment error is com-

puted with the ground truth path Pgrd = [p1grd, ..., p
m
grd] ∈

Rlgrd×m as follows:

Error =
dist(Pgrd, Palg) + dist(Palg, Pgrd)

lgrd + lalg
, (11)

where dist(Pgrd, Palg) =
∑l1
i=1min

l2
j=1||p

(i)
1 − p

(j)
2 ||2.

Table 1 depicts the results for both experiments. Our
method outperforms DCTW in both of them, and for the
LRW one we find the result to be statistically significant
(a < 0.05). These results validate our choice of using
DCAW for aligning our participant’s speech signal with the
ones from the LRW dataset.

Dataset DCTW DCAW

MMI 0.59 0.61
LRW 0.64 0.72

Table 1. Results (wrt the mean alignment error) of the DCAW and
DCTW methods on the MMI and LRW datasets.

6.3. Blendshapes Comparison

We compare quantitatively and qualitatively the pro-
posed blendshapes with the FaceWarehouse ones, that were
used by Pham et al. [25], by testing the generalisation ca-
pacity of the blendshapes to represent unseen 3D facial
meshes.

More particularly, we compute the error as the per-vertex
Euclidean distance between every mesh of the test subject
(i. e. not included in the training process) and its corre-
sponding projection to the subspace defined by the blend-
shapes. An average value is computed over all vertices. For
the whole sequence the mean error of the FareWarehouse is
1.29, and our proposed blendshapes is 0.87. Fig. 4 depicts
the error in a sequence of 2, 550 frames. It is clear that the
proposed blendshapes outperform the FaceWarehouse ones
by a high margin. Finally, for qualitative purposes, we show
three samples of the original 3D facial shapes and how they
are reconstructed by the FaceWarehouse and the proposed
blendshapes.

To further demonstrate the generalisation capability of
our speech blendshapes, we show our model’s prediction
and the ground truth 3D shape parameters on three individ-
uals. Fig. 5, shows the results.

6.4. Audio Experiments

We start the validity of our method by performing two
kind of experiments using the LRW-3D dataset: (i) speaker-
independent, where we measure the performance of our
model on different speakers that pronounce the same words,

Figure 4. Average Euclidean distance for a sequence of frames
between the FaceWarehouse and the proposed blendshapes. - Best
viewed in colour.

Figure 5. Depicting the ground truth 3D shape parameters (left
column) and the predictions (right column) for three individuals. -
Best viewed in colour.

and (ii) word- and speaker-independent, where we evalu-
ate our model on different speakers that pronounce differ-



Dataset Methodology µ28 c1 c2 c3 c4 c5

LRW Speaker Ind. .621 (.679) .643 (.712) .607 (.684) .563 (.596) .652 (.683) .582 (.641)
Word/Speaker Ind. .502 (.554) .536 (.556) .582 (.618) .557 (.624) .395 (.405) .411 (.426)

LRS Continuous Speech .463 .482 .414 .443 .475 .504
Table 2. Results with respect to ρc for the experiments: speaker independence, word/speaker independence, and sentences. The mean value
of the estimation of the 28 3D parameters (µ28), and the first five 3D parameters is depicted. In parenthesis the results on the validation set.

ent words. For both experiments our test set is comprised of
one of the participant’s audio signal with the corresponding
3D shape parameters, which are excluded from the training
process. Finally, we measure the performance of our model
on continuous speech signal.

Speaker-Independent. In our first experiment we test
the performance of the model when the same words are
uttered by different individuals. To this end, we split the
1000 speakers of the dataset to 900 for training, and the rest
100 for validation. Hence, our training set is comprised of
370, 000 samples, and our validation set of the rest 80, 000.
Table 2 depicts the results of the mean, and the first five
shape parameters in terms of the ρc metric. The results
indicate the validity of our method to generalise to every
speaker and in uncontrolled conditions.

Word- and Speaker-Independent. Considering the
high performance of the model for different speakers, in this
experiment we test its performance for different words and
speakers. Hence, we split our dataset to a training set that
contains 450 words and 900 speakers, and the validation set
contains the rest of the 50 words and 100 speakers. In total,
the training set contains approximately 355, 000 samples,
and the validation set approximately 95, 000 samples. We
should point out that the words that comprise the validation
set were chosen such that they contain the same phonemes
as the ones in the training set.

To improve the generalisation capacity and reduce
overfitting of our model, we perform a random time-
segmentation of our training samples. More particularly,
each sample in the training batch is randomly segmented
from its both ends but always keeping at least 50% of the
frames of the original sample. This is particularly beneficial
to our recurrent network architectures as now the temporal
dynamics in the training set vary.

Table 2 depicts the results of the mean, and the first five
shape parameters in terms of the ρc metric. The perfor-
mance drops compared to the previous experiment as now
the temporal information in the validation set is different
from the training one. However, this does not limit the ca-
pacity of the model to be able to accurately reconstruct the
3D meshes.

Sentence-level Experiments. We also test the perfor-
mance of our model in continuous speech signals. More
specifically, we captured a native speaker (different than the
previous experiments) pronouncing 50 sentences (3 to 8 sec

long), taken from the Lip Reading Sentences (LRS) in-the-
wild dataset [8], and extracted his 3D parameters. After the
extraction of mel-spectrograms from the raw waveform, we
feed them to the model and estimate its test performance in
continuous speech signals. Table 2 depicts the results of the
mean, and the first five shape parameters in terms of the ρc
metric. We observe that the performance of our model re-
mains also high in this experiment. We should point out that
our model is trained with short temporal dynamics (10 to 30
frames long), and as such it cannot accurately predict 3D
shape parameters for longer sequences such as sentences.
We tackle this difficulty by splitting the speech signal of
the sentences to sequences of 15 frames long and feed them
separately our model. We apply a temporal filter on the pre-
dictions of our model, to remove temporal discontinuities
added by the LSTM. In the supplementary material videos
are provided that show the effectiveness of our method.

7. Conclusions
We presented a methodology for constructing 3D facial

meshes from speech cues captured in uncontrolled condi-
tions. More particularly, we learned a statistical blendshape
model by capturing 4D sequences of people uttering 500
words selected from the Lip Reading Words (LRW) in-the-
wild dataset. To align the words uttered from our participant
with the words of the LRW, we proposed Deep Canonical
Attentional Warping (DCAW), a novel method that simulta-
neously learns deep representations and an alignment path
between two sequences. We thoroughly experimented with
our proposed methods and showed the ability of a trained
deep learning model on the create LRW-3D to generalise to
different speakers and in uncontrolled conditions of speech.

For future work we intend to incorporate expression in
our blendshapes such that accurate emotional speech can be
obtained. In addition, we will test our model on languages
different than English. On top of that, we will capture indi-
viduals talking on different languages to expand the gener-
alisation capacity of our blendshapes.
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