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Abstract— Automatic kinship verification aims to determine
whether some individuals belong to the same family. It is of
great research significance to help missing persons reunite
with their families. In this work, the challenging problem is
progressively addressed in two respects. First, we propose a
deep siamese network to quantify the relative similarity between
two individuals. When given two input face images, the deep
siamese network extracts the features from them and fuses
these features by combining and concatenating. Then, the fused
features are fed into a fully-connected network to obtain the
similarity score between two faces, which is used to verify the
kinship. To improve the performance, a jury system is also
employed for multi-model fusion. Second, two deep siamese net-
works are integrated into a deep triplet network for tri-subject
(i.e., father, mother and child) kinship verification, which is
intended to decide whether a child is related to a pair of parents
or not. Specifically, the obtained similarity scores of father-child
and mother-child are weighted to generate the parent-child
similarity score for kinship verification. Recognizing Families In
the Wild (RFIW) is a challenging kinship recognition task with
multiple tracks, which is based on Families in the Wild (FIW),
a large-scale and comprehensive image database for automatic
kinship recognition. The Kinship Verification (track I) and
Tri-Subject Verification (track II) are supported during the
ongoing RFIW2020 Challenge. Our team (ustc-nelslip) ranked
1st in track II, and 3rd in track I. The code is available at
https://github.com/gniknoil/FG2020-kinship.

I. INTRODUCTION
Automatic kinship verification, as a classical Boolean

problem, is used to predict whether given face images have
kin relations. It is essential in various real-world applications
such as genealogical studies [1], social-media analysis [2],
and tracking missing persons [3].

The most basic kinship verification is 1-vs-1 verification,
where two face images are given as inputs and the output is
a decision whether the two persons are members of the same
family, is shown in Fig. 1 (a). As a natural extension of 1-
vs-1 verification, tri-subject verification is a special kinship
verification problem of deciding whether a child is related to
a pair of parents, which is essentially a 2-vs-1 verification,
as shown in Fig. 1 (b). For example, when comparing two
faces, one is a father and the other is a son, the prospective
mother could be known if an image of the wife of the father
is available. Thus, tri-subject verification aims to check the
kinship between a pair of parents and a child.

Kinship verification has been proposed and extensively
researched in the early years [3]–[6], [24]–[30]. Fang et al.
[3] first attempted kinship verification on parent-child face
pairs by selecting several effective hand-crafted features to
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Fig. 1: Schematic view of kinship verification. (a) 1-vs-1 kin-
ship verification. (b) 2-vs-1 (tri-subject) kinship verification.

recognize kinship. Following this, some researchers [4], [5]
recognized that a childs face more closely resembles their
parents at younger ages. They adopted transfer learning to
narrow the appearance gap between the older faces and the
younger faces. Lu et al. [6] used a metric learning method
in euclidean space and its multi-view counterpart that learns
a common distance metric for multiple feature types. Qin
et al. [19] adopted a spatially voted method for feature
selection and a relative symmetric bilinear model to simulate
the similarity for tri-subject kinship verification.

Recently, deep learning [7] has been proved successful in
a wide range of machine learning tasks. With the release of
large-scale kinship datasets [8], deep learning has achieved
significant progress in several kinship recognition tasks [9]–
[11], [13]–[16], [31]–[35]. Dahan et al. [11] used two VGG-
Face [12] models to extract face features, and then concate-
nated them and fed them to a fully-connected network for
metric learning. Duan et al. [13] integrated multiple deep
models to verify kinships. Li et al. [14] fine-tuned a pre-
trained model on the FIW dataset using a soft triplet loss for
backpropagation. Nandy et al. [15] used a siamese network
for kinship recognition. Laiadi et al. [16] checked kinships
by deep face descriptors and tensor features.

In this work, we present a deep siamese network to achieve
kinship verification. The deep siamese network consists of
two branches, which are used to extract the features of two
input face images respectively. The extracted features are
combined with different operations and then concatenated
into a long vector. Next, the long vector is fed into a fully
connected network to measure the relative similarity between
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Fig. 2: Some samples of FIW dataset, including relationship
pairs and relationship triplets. (a) 11 types of 1-vs-1 kinships.
(b) 2 types of 2-vs-1 (tri-subject) kinships.

two persons. Finally, we set a threshold parameter to divide
the similarity score into 1 or 0, which indicates whether two
persons are related or not. In order to benefit from different
models, we introduce a jury system for multi-model fusion.
In addition, we propose a deep triplet network for tri-subject
kinship verification, which is constructed based on two deep
siamese networks. The two deep siamese networks share a
branch to extract the features of the child. Therefore, the deep
triplet network has three branches for extracting the features
of father, mother, and child respectively. The features are also
fused by combining and concatenating, then they are fed into
two fully connected networks to obtain the similarity scores
of father-child (FC) and mother-child (MC). Finally, by a
threshold parameter, the weighted sum of the two similarity
scores is quantified as 1 or 0, which indicates whether a child
is related to a pair of parents or not. The main contributions
of this paper are summarized as follows.

(1) A deep siamese network is proposed for bi-subject
kinship verification. We employ multiple feature fusion op-
erations to improve similarity metric learning in the network,
instead of concatenating features directly [15]. Meanwhile,
we adopt a jury system to benefit from multi-model fusion.

(2) By fusing two deep siamese networks, we present
a deep triplet network for tri-subject kinship verification.
Compared to [16], several hyper-parameters are additionally
used to flexibly improve the performance of the network.

(3) Our team (ustc-nelslip) has already made remarkable
achievements in the RFIW2020 Challenge, where we achieve
1st place in the Tri-Subject Verification (track II), and 3rd
place in the Kinship Verification (track I).

II. DATASET DESCRIPTION
Families In the Wild (FIW) [8] is the largest and most

comprehensive image database for kinship recognition. Its
motivation is to provide the resources needed for kinship

(a)

(b) (c) (d)

Fig. 3: The data distribution of FIW dataset. (a) The number
of image pairs in training set, val set and test set, including
11 types of 1-vs-1 kinships. From (b) to (d): The number of
image triplets in training set, val set and test set, including
2 types of 2-vs-1 (tri-subject) kinships.

recognition to transition from research-to-reality. With over
11,932 family photos of more than 1,000 families, FIW
closely reflects the true data distribution of families world-
wide. With the launch of Recognizing Families In the Wild
(RFIW) Challenge [35], FIW has received a lot of attention.

FIW dataset consists of 11 types of relationship pairs, i.e.,
brother-brother(B-B), sister-sister(S-S), brother-sister(SIBS),
father-daughter(F-D), mother-daughter(M-D), father-son(F-
S), mother-son(M-S), grandfather-granddaughter(GF-GD),
grandmother-granddaughter(GM-GD), grandfather-grandson
(GF-GS), grandmother-grandson(GM-GS), as shown in Fig.
2 (a). Thus, it contains relationships across three generations
and is suitable for kinship verification research. These rela-
tionship pairs can be flexibly extended to relationship triplets
(i.e., tri-subject kinships), like father-mother-daughter (FM-
D) and father-mother-son (FM-S), as shown in Fig. 2 (b).
Thus, it also applies to tri-subject verification research.

RFIW [35] is a large-scale kinship recognition challenge
based on FIW, which supports multiple tracks, such as the
kinship verification (track I) and tri-subject verification (track
II). For track I, the goal is to determine whether a pair of
faces are blood relatives. The data distribution of FIW in
track I is illustrated in Fig. 3 (a), covering the number of
image pairs in training set, val set and test set, including 11
types of relationship pairs. For track II, the main focus is to
decide whether a child is related to a pair of parents. The
data distribution of FIW in track II is shown in Fig. 3 (b) to
(d), including 2 types of tri-subject kinships.

III. PROPOSED METHOD

Modern genetic studies clearly show that there is a high
similarity of traits between family members, e.g., behavior
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Fig. 4: Overview of the proposed Deep Siamese Network. The deep siamese network consists of feature extraction, feature
fusion and similarity quantization, where the schematic diagram of feature fusion takes (x2-y2)⊕(x-y)2⊕(x·y) as an example.

and appearance. Therefore, it is possible to identify the
kin relations between family members based on their face
images. General kinship verification is a 1-vs-1 verification
task, which is to check two persons are related by blood. Tri-
subject verification, as a natural extension of 1-to-1 kinship
verification, is a 2-vs-1 verification task, which is to verify
whether a child is related to a pair of parents. In this work,
we propose a Deep Siamese Network for 1-vs-1 (bi-subject)
kinship verification and a Deep Triplet Network for 2-vs-1
(tri-subject) kinship verification.

A. Deep Siamese Network

The deep siamese network is built to verify the kinships
between two individuals, where there are two branches with
shared weights used to extract the features of two input face
images respectively, as shown in Fig. 4. In this work, we
adopt ResNet50 [20] or SENet50 [21] as backbones for fea-
ture extraction, which are pre-trained on the VGGFace2 [17]
dataset. The extracted features are then fused by combining
and concatenating. Next, the fused features are fed into a
fully-connected network to quantify the relative similarity
score between two persons. By setting a threshold t, we can
obtain the final predicted outcomes, Kin or non-Kin (i.e., 1
or 0 respectively). The final prediction is defined as

Prediction =

{
1, if Score > t,

0, otherwise.
(1)

The proposed deep siamese network can verify 11 types
of 1-vs-1 kinships. The verification accuracy, as a common
metric, is employed to evaluate the performance of relevant
methods, which can be formulated as

Accj =
Correct Predictions for jth type

Total of pairs for jth type
(2)

where jth ∈ {all 11 relationship types}. The overall accuracy
is calculated as a weighted sum (i.e., weight by the pair count
to determine the average accuracy).

B. Feature Fusion

Feature fusion is helpful to improve the nonlinear ability
of the deep siamese network. Furthermore, the essence of
feature fusion is to encode two input face features abstractly,
which is beneficial for the fully-connected network to learn
better similarity metrics. Suppose that X and Y denote the
two input face images, x and y denote the extracted features
of two faces, ⊕ represents the feature concatenation opera-
tion. In this work, there are 5 different types of feature fusion,
i.e., x⊕ y, (x+y)⊕(x-y), (x+y)⊕(x-y)⊕(x · y), (x2-y2)⊕(x-
y)2, (x2-y2)⊕(x-y)2⊕(x · y). Fig. 4 shows the details of
feature fusion, taking (x2-y2)⊕(x-y)2⊕(x ·y) as an example.

The extracted face features x and y undergo a variety of
operations such as element-wise multiplication (e.g., x2, y2,
x·y), element-wise addition (x+y), and element-wise subtrac-
tion (x-y, x2-y2). After that, they are fused by combining and
concatenating. Next, the fused features are fed into a fully-
connected network. The fully-connected network is built with
two fully-connected layers and a sigmoid activation layer,
where the first fully-connected layer (fc1) is 128 dimensions
and the second (fc2) is only 1 dimension. The output of fc2
is activated by a sigmoid function, obtaining the similarity
score for deciding whether the two persons are related.

C. Loss function

In this work, two different loss functions are tried out, i.e.,
binary-cross entropy (BCE) loss and focal loss [18].

BCE loss. The binary cross entropy loss is given as

Lbce = −y log(p)− (1− y) log(1− p), (3)
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Fig. 5: Overview of the proposed Deep Triplet Network. The deep triplet network consists of feature extraction, feature
fusion and similarity quantization, where the schematic diagram of feature fusion takes x⊕ y and y ⊕ z as examples.

where y is the target label that is either 0 or 1, and p is the
predicted value by a sigmoid activation function.

Focal loss. The focal loss is helpful to alleviate the sig-
nificant imbalance of the proportion of positive and negative
samples, which can be formulated as

Lfocal = −at(1− pt)γ log(pt), (4)

at =

{
a, if y = 1

1− a, otherwise
(5)

pt =

{
p, if y = 1

1− p, otherwise
(6)

where γ is a focusing parameter, a is a weight that controls
the contribution of positive and negative samples to the total
loss, and p is the output of the sigmoid activation function.
When a = 0.5, the focal loss is equivalent to BCE loss.

D. Jury System

In order to benefit from models with different configu-
rations such as backbones, losses, and feature fusions, we
adopt a jury system for multi-model fusion. Specifically, we
choose the best single model as the major model and several
excellent models as the auxiliary models. Moreover, we set
3 thresholds, i.e., a low value, a median value, and a high
value. In this work, the low value is 0.1, the median value is
0.3, and the high value is 0.5. These values are used to divide
into different intervals, corresponding to different calculation
methods of the predictions. The similarity score of the major
model is compared with the low value and the high value to
obtain the binarized predictions. The average of the similarity
scores of multiple models is compared with the median value
to obtain the predicted results. The following pseudocode
Algorithm 1 shows the procedures of the jury system.

Algorithm 1: The Pipline of Jury System.
Input: a pair of input face images: x and y; a major

model: M1; 3 auxiliary models: M2, M3 and
M4; 3 thresholds: tlow, tmedian and thigh.

Output: a Boolean value: Prediction = 1 or 0 (Kin or
non-Kin respectively).

1 if M1(x, y) < tlow then
2 Prediction = 0;
3 end
4 else if M1(x, y) > thigh then
5 Prediction = 1;
6 end
7 else if

mean(M1(x, y) +M2(x, y) +M3(x, y) +M4(x, y))
< tmedian then

8 Prediction = 0;
9 end

10 else if
mean(M1(x, y) +M2(x, y) +M3(x, y) +M4(x, y))
> tmedian then

11 Prediction = 1;
12 end

E. Deep Triplet Network

Tri-subject verification is a special kind of kinship verifi-
cation task, because when you know one parent, the other
parent is likely accessible. Therefore, tri-subject verification
is to determine whether a child is related to a pair of parents.
The deep triplet network is built based on two deep siamese
networks for tri-subject kinship verification, which can learn
two kinship pairs, i.e., father-child (FC) and mother-child
(MC). As shown in Fig. 5, the two siamese networks share



TABLE I: Number of image pairs or triplets on FIW dataset.

Kinships
Number of image pairs or triplets

training set val set test set

B-B 39,608 8,340 3,459
S-S 27,844 5,982 2,956

SIBS 35,337 21,204 967
F-D 30,746 7,575 3,019
M-D 29,778 7,587 3,273
F-S 46,583 9,399 3,184
M-S 46,969 8,441 2,660

GF-GD 2,003 762 121
GM-GD 1,741 714 71
GF-GS 2,097 879 96
GM-GS 1,834 701 84
FM-D 419,892 1,673 1,569
FM-S 635,492 1,895 1,901

the same branch to extract the features from a child image.
Therefore, there are three branches without sharing weights
employed to extract the features of father, mother, and child
respectively. We also introduce ResNet50 or SENet50 as a
backbone for feature extraction, which are pre-trained on the
VGGFace2 dataset. The extracted child features are fused
with the extracted features of father and mother respectively.
Then the fused features are fed into fully-connected networks
for obtaining the similarity scores, i.e., SFC and SMC .
The operations of feature fusion and similarity quantization
are consistent with that of the deep siamese network. By
weighting and summing the two similarity scores, the final
parent-child similarity score is obtained as

Score = λ1SFC + λ2SMC , (7)

where λ1 and λ1 are the hyper-parameters for balancing the
relative importance between SFC and SMC . In addition, a
threshold t is used to output the final predicted results, i.e.,
Kin or non-Kin, formulated as Eq. 1.

IV. EXPERIMENTS

A workstation with Intel i7-7700K 4.2G CPU, 64G mem-
ory and NVIDIA GTX2080 8G GPU is used for the experi-
ments. We evaluate our method on the FIW dataset, and the
essential ablation studies are elaborately designed, as well as
quantitative evaluations with other contestants.

For implementation details, all face images are resized to
224×224 pixels as the inputs. The numbers of image pairs or
triplets for the training set, val set, and test set are shown in
Tabel I. An equal number of negative samples are constructed
for training. For optimization, we choose the Adam optimizer
[22], where the initial learning rate is set to 0.001 and other
settings are default. The model is trained with a mini-batch
size of 32 and over 60 epochs, which is based on Keras using
TensorFlow backend. In addition, we evaluate our method
on the val set of FIW dataset and compare it with other
contestants on the test set of FIW dataset.

TABLE II: Ablation Studies of Deep Siamese Network.

Backbone Loss Feature Fusion Accuracy

ResNet50
BCE loss

(x+y)⊕(x-y)⊕(x · y) 0.725
(x2-y2)⊕(x-y)2⊕(x · y) 0.738

Focal loss
(x+y)⊕(x-y)⊕(x · y) 0.721

(x2-y2)⊕(x-y)2⊕(x · y) 0.735

SENet50
BCE loss

(x+y)⊕(x-y)⊕(x · y) 0.712
(x2-y2)⊕(x-y)2⊕(x · y) 0.733

Focal loss
(x+y)⊕(x-y)⊕(x · y) 0.698

(x2-y2)⊕(x-y)2⊕(x · y) 0.719

TABLE III: The Effect of Jury System for model fusion.

Kinships
Using jury system or not (w/ js or w/o js)

best single model (w/o js) multi-model (w/ js)

B-B 0.729 0.751
S-S 0.732 0.744

SIBS 0.714 0.721
F-D 0.741 0.755
M-D 0.725 0.747
F-S 0.783 0.818
M-S 0.740 0.752

GF-GD 0.682 0.786
GM-GD 0.651 0.758
GF-GS 0.673 0.691
GM-GS 0.648 0.670
Average 0.738 0.759

A. Ablation Studies of Deep Siamese Network

In this work, we implement the ablation studies of the deep
siamese network based on 2 backbones (i.e., ResNet50 and
SENet50), 2 loss functions (i.e., binary-cross entropy loss
and focal loss) and 2 types of feature fusions (i.e., (x+y)⊕(x-
y)⊕(x·y) and (x2-y2)⊕(x-y)2⊕(x·y)). As shown in Table II,
a total of 8 combinations are evaluated on the val set of FIW
dataset, where the best result is marked red and the second-
best is marked blue. When the backbone is ResNet50, the
loss function is BCE loss, and the feature fusion operation
is (x2-y2)⊕(x-y)2⊕(x · y), we obtain the highest verification
accuracy, which is up to 0.738. In addition, experimental
results show that BCE loss performs better than the focal
loss in most cases, and ResNet50 is superior to SENet50 as
a backbone in the deep siamese network.

B. The Effect of Jury System

In order to benefit from multiple models, we introduce a
jury system for fusing different models. As shown in Table
III, we evaluate the best single model and the fused multi-
model on the test set of FIW dataset. Experimental results
show that the verification accuracy of the best single model is
0.738, and the multi-model is 0.759. Thus, the performance
of the multi-model fused by the jury system is superior to
the best single model in all kinship pairs.



TABLE IV: Leaderboard of RFIW Kinship Verification (Top 10 contestants and baseline).

user
Verification Accuracy

BB SS SIBS FD MD FS MS GFGD GMGD GFGS GMGS Average

vuvko 0.80(1) 0.80(1) 0.77(1) 0.75(4) 0.78(1) 0.81(4) 0.74(6) 0.78(2) 0.76(1) 0.69(5) 0.60(8) 0.78(1)

DeepBlueAI 0.77(2) 0.77(2) 0.75(3) 0.74(5) 0.75(4) 0.81(5) 0.74(7) 0.72(5) 0.67(7) 0.73(3) 0.68(1) 0.76(2)

ustc-nelslip 0.75(3) 0.74(4) 0.72(6) 0.76(2) 0.75(5) 0.82(1) 0.75(3) 0.79(1) 0.76(1) 0.69(6) 0.67(2) 0.76(3)

haoxl 0.75(5) 0.74(6) 0.71(8) 0.76(2) 0.75(5) 0.81(3) 0.75(3) 0.73(4) 0.63(11) 0.65(10) 0.64(5) 0.76(4)

lemoner20 0.75(4) 0.74(3) 0.72(5) 0.75(3) 0.74(6) 0.81(6) 0.75(4) 0.72(6) 0.62(13) 0.67(8) 0.65(3) 0.75(5)

Early 0.75(6) 0.74(5) 0.73(4) 0.73(6) 0.72(8) 0.79(8) 0.74(5) 0.66(15) 0.52(16) 0.69(7) 0.65(4) 0.74(6)

stefhoer 0.66(13) 0.65(13) 0.76(2) 0.77(1) 0.77(2) 0.80(7) 0.78(1) 0.70(10) 0.64(10) 0.73(2) 0.60(7) 0.74(7)

bestone 0.69(11) 0.67(12) 0.62(13) 0.75(3) 0.75(3) 0.81(2) 0.75(2) 0.73(3) 0.65(9) 0.69(5) 0.62(6) 0.73(8)

danbo3004 0.71(8) 0.72(10) 0.71(9) 0.72(7) 0.72(10) 0.78(9) 0.72(8) 0.71(8) 0.53(15) 0.70(4) 0.56(11) 0.73(9)

ten elven 0.72(7) 0.73(7) 0.71(7) 0.70(8) 0.70(11) 0.77(10) 0.71(9) 0.70(11) 0.63(11) 0.75(1) 0.67(2) 0.72(10)

baseline 0.71(-) 0.73(-) 0.66(-) 0.61(-) 0.69(-) 0.66(-) 0.62(-) 0.68(-) 0.64(-) 0.57(-) 0.50(-) 0.64(-)

Fig. 6: Verification accuracy line chart for 11 types of kinship
pairs, including top 10 contestants in the leaderboard.

Fig. 7: Verification accuracy boxplot for 11 types of kinship
pairs, including top 10 contestants in the leaderboard.

C. Quantitative Evaluations of Kinship Verification

The leaderboard of RFIW2020 Challenge in Kinship Ver-
ification (track I) is illustrated in Table IV, where we only
show the top 10 contestants and the baseline. For our method,
the average verification accuracy of all types of kinship pairs
is up to 0.76, achieving the 3rd place. The line chart of
verification accuracy is drawn in Fig. 6, where the accuracy
of F-S is the highest of all kinship pairs, and that of GM-GS
and GM-GD are unstable. As shown in Fig. 7, the mean,

TABLE V: The Effect of Hyper-parameter λ1 and λ2.

λ1 λ2
Verification Accuracy

FM-D FM-S Average

0.3 0.7 0.653 0.642 0.648
0.4 0.6 0.682 0.669 0.676
0.5 0.5 0.712 0.719 0.716
0.6 0.4 0.687 0.723 0.705
0.7 0.3 0.647 0.663 0.655

TABLE VI: The Effect of Hyper-parameter t.

t
Verification Accuracy

FM-D FM-S Average

0.2 0.652 0.634 0.643
0.3 0.714 0.702 0.708
0.4 0.712 0.719 0.716
0.5 0.638 0.646 0.642
0.6 0.561 0.565 0.563

median and standard deviations of the boxplot reflect the
comprehensive performance of each method for all kinships.

D. The Effect of Hyper-parameters

In the deep triplet network, several hyper-parameters are
set to improve the final outcomes. As shown in Table V,
changing λ1 and λ2 has the effects on kinship verification
accuracy. With the increase of λ1, the accuracy of FM-S first
increases and then decreases. One possible explanation is
that non-relatives with the same gender are sometimes more
similar than relatives with the opposite gender. As shown in
Table VI, different t have different effects on the accuracy
of FM-D and FM-S. When t = 0.3, the accuracy of FM-D
is best, while that of FM-S is best when t = 0.4. The best
average accuracy on the test set is up to 0.79 when λ1 = 0.5,
λ2 = 0.5, t = 0.3 in FM-D and t = 0.4 in FM-S.



TABLE VII: Ablation Studies of Deep Triplet Network.

Backbone Loss Feature Fusion
Verification Accuracy

FM-D FM-S Average

ResNet50

BCE loss

x⊕ y 0.672 0.676 0.674
(x+y)⊕(x-y) 0.688 0.685 0.687

(x+y)⊕(x-y)⊕(x · y) 0.699 0.705 0.702
(x2-y2)⊕(x-y)2 0.704 0.708 0.706

(x2-y2)⊕(x-y)2⊕(x · y) 0.712 0.719 0.716

Focal loss

x⊕ y 0.657 0.668 0.663
(x+y)⊕(x-y) 0.670 0.676 0.673

(x+y)⊕(x-y)⊕(x · y) 0.685 0.692 0.689
(x2-y2)⊕(x-y)2 0.691 0.704 0.698

(x2-y2)⊕(x-y)2⊕(x · y) 0.708 0.715 0.712

SENet50

BCE loss

x⊕ y 0.634 0.642 0.638
(x+y)⊕(x-y) 0.645 0.662 0.654

(x+y)⊕(x-y)⊕(x · y) 0.667 0.671 0.669
(x2-y2)⊕(x-y)2 0.673 0.678 0.676

(x2-y2)⊕(x-y)2⊕(x · y) 0.689 0.693 0.691

Focal loss

x⊕ y 0.626 0.634 0.630
(x+y)⊕(x-y) 0.641 0.648 0.645

(x+y)⊕(x-y)⊕(x · y) 0.656 0.661 0.659
(x2-y2)⊕(x-y)2 0.670 0.673 0.672

(x2-y2)⊕(x-y)2⊕(x · y) 0.678 0.683 0.681

TABLE VIII: Leaderboard of RFIW Tri-Subject Verification.

user
Verification Accuracy

FM-D FM-S Average

ustc-nelslip 0.78 (1) 0.80 (1) 0.79 (1)

lemoner20 0.76 (4) 0.80 (2) 0.78 (2)

DeepBlueAI 0.76 (2) 0.77 (3) 0.77 (3)

Early 0.76 (3) 0.77 (4) 0.77 (4)

stefhoer 0.72 (5) 0.74 (6) 0.73 (5)

Ferryman 0.70 (6) 0.74 (5) 0.72 (6)

will go 0.66 (7) 0.70 (7) 0.68 (7)

baseline 0.68 (-) 0.68 (-) 0.68 (-)

E. Ablation Studies of Deep Triplet Network

For the deep triplet network, we do ablation studies based
on 2 backbones (i.e., ResNet50 [20] and SENet50 [21]),
2 loss functions (i.e., binary-cross entropy loss and focal
loss) and 5 types of feature fusion operations (i.e., x ⊕ y,
(x+y)⊕(x-y), (x+y)⊕(x-y)⊕(x ·y), (x2-y2)⊕(x-y)2 and (x2-
y2)⊕(x-y)2⊕(x · y)). As shown in Table VII, a total of 20
combinations are evaluated on the val set of FIW dataset,
where the best result is marked red and the second-best is
marked blue. The highest average accuracy is up to 0.716,
when the backbone is ResNet50, loss function is BCE loss,
and the operation of feature fusion is (x2-y2)⊕(x-y)2⊕(x·y).

Fig. 8: Verification accuracy line chart for 2 types of kinship
triplets, including top 7 contestants in the leaderboard.

F. Quantitative Evaluations of Tri-Subject Verification

As illustrated in Table VIII, our team (ustc-nelslip) ranks
the 1st place in the leaderboard of RFIW2020 Tri-Subject
Verification (track II) Challenge, and the average accuracy of
our method is up to 0.79, which is better than that of other
contestants. As shown in Fig. 8, the verification accuracy of
FM-S is always higher than that of FM-D in all contestants,
and our method is at the highest point in the line chart.

V. CONCLUSION

This paper proposes a deep siamese network for bi-subject
(1-vs-1) kinship verification and a deep triplet network for
tri-subject (2-vs-1) kinship verification. By the operations of
feature extraction, feature fusion, and similarity quantifica-



tion, the deep siamese network is to determine whether two
persons belong to the same family. Besides, the deep triplet
network is built based on two deep siamese networks, which
can quantify the similarity of parent-child kinship, deciding
whether a child is related to a pair of parents. In RFIW2020
Challenge, our team (ustc-nelslip) ranked 1st in Tri-Subject
Verification track, and 3rd in Kinship Verification track.
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