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Abstract—In this paper, we present Multi-view Facial Ren-
dezvous (MiFaR): a novel multi-view self-supervised learning
model for 3D/4D facial affect recognition. Our self-supervised
learning architecture has the capability to learn collabora-
tively via multi-views. For each view, our model learns to
compute the embeddings via different encoders and robustly
aims to correlate two distorted versions of the input batch.
We additionally present a novel loss function that not only
leverages the correlation associated with the underlying facial
patterns among multi-views but it is also robust and consistent
towards different batch sizes. Finally, our model is equipped
with distributed training to ensure better learning along with
computational convenience. We conduct extensive experiments
and report ablations to validate the competence of our model
on widely-used datasets for 3D/4D FER.

I. INTRODUCTION

Self-supervised learning aims to achieve the capability
of learning useful feature representations from the provided
input data on its own without the need of manually-injected
human annotations. The recent advances in this regard [1],
[2], [3] advocate that self-learned representations can be as
competitive as the supervised representations. Most of these
methods follow a similar underlying theme where the aim is
to learn representations that are invariant to various distortion
conditions [4]. Typically, this is achieved by maximizing the
similarity of distorted samples and finding correlated patterns
to help cluster similar batches of data.

Inspired by the scaling victory of self-supervised learn-
ing, we work towards developing a self-supervised learning
architecture to exploit the underlying similarity stored as
correlated patterns in 3D/4D faces for effective facial expres-
sion recognition (FER). Specifically, contrary to the 2D faces
(e.g., [59], [6], [7], [8]), such expression recognition involves
predicting emotions from 3D/4D faces with complementary
spatial and temporal facial features, and the significant re-
sults [9], [10], [11], [12] have proven its merits.

Literature contains several methods to learn from the
underlying 3D facial geometry. However, the most popular
approaches are divided into local feature-based [13], [14],
[12], template-based [15], [16], [17], curve-based [18], [19]
and 2D projections-based [20], [21] methods. Over the past
years, 4D FER attracted a lot of interest by allowing deep
learning models to learn discriminative facial features. For
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instance, Yin et al. [22] and Sun et al. [23] utilized Hidden
Markov Models (HMM) to learn temporal facial features via
4D facial scans. Similarly, Ben Amor et al. [24] used the
random forest classifier to demonstrate that a deformation
vector field based on Riemannian analysis can yield effective
performance. Likewise, Sandbach et al. [25] relied on HMM
and GentleBoost for learning the free-form representations of
the 3D frames. Furthermore, the authors in [26] represented
geometrical coordinates and its normal as feature vectors, and
as dynamic local binary patterns (LBP) in another work [27]
for recognizing facial expressions with support vector ma-
chine (SVM). In a similar way, the authors in [28] acquire
features from polar angles and curvatures, and proposed a
spatio-temporal LBP-based feature extractor for recognition.

On the other hand, Li ez al. [29] proposed an interesting
framework for automatic 4D FER via dynamic geometrical
image network. They produced geometrical images by com-
puting the differential quantities from the provided 3D facial
point-clouds. The emotion prediction is then a combination
of score-level fusion from the probability scores of different
geometrical images. Another latest work [30] takes into
account the sparse coding-based representations of LBP
difference. Firstly, the authors used mesh-local binary pattern
difference to extract appearance and geometric features, and
then applied sparse coding to recognize facial expressions.
Importantly, although all these works demonstrate desirable
performance, the use of manually and locally extracted cues
make these solutions potentially inconvenient.

A. Motivations

Recently, some works [31], [32] have applied self-
supervised methods for 2D FER but to the best of our
knowledge, the literature is missing work on self-supervised
models for 3D/4D FER because utilizing such models is
not straightforward and trivial. This is mainly due to the
complexity and variations in the data structure of the 3D data,
hence, asking for appropriate self-supervised methods. Most
importantly, it is worth mentioning that a good framework
should look beyond the existent learning representations to
formulate a robust FER system. For instance, despite the
fact that multi-views acquired from an input 3D point-
cloud contain highly correlated patterns along with local
dependencies, their contribution is frequently overlooked.
Similarly, another desirable feature of robust frameworks
is the capability of leveraging prominent emotion cues to
explore its significance in the improvement of performance.
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B. Contributions

Our proposed architecture is substantially significant to tai-
lor multi-view data from point-clouds. Precisely, the salient
features of our method are as following:

1) We propose a novel multi-view self-supervised learn-
ing architecture with the capability to learn collabo-
ratively via multi-views, hence the name: Multi-view
Facial Rendezvous.

2) The multi-views in our method independently aim to
maximize the representations’ similarity via distorted
versions of batches of data sampled from the dataset.

3) Importantly, instead of relying on similar embeddings,
we propose to extract representation embeddings via
different encoders for each view. This significantly
helps the network to learn the underlying patterns in
each view and distinguish inter-class patterns.

4) We also formulate an innovative loss function to facil-
itate better learning via cross-correlation among multi-
view patterns and gradient updates across multi-views
during backward propagation.

5) For computational and practical convenience, we equip
our code with faster distributed training performance.

To the best of our knowledge, this is the pioneer multi-
view self-supervised learning architecture for 3D/4D facial
data. Additionally, our pre-trained networks can also be used
for other 3D/4D tasks such as, face recognition, face anti-
spoofing, etc.

II. PROPOSED METHOD

Since our self-supervised learning model is capable of
incorporating multi-views, one tremendous benefit of this
incredibly robust setup is its effective and scalable imple-
mentation — which can be used almost out of the box.

A. Multi-view Facial Rendezvous (MiFaR)

We present an overview of our proposed Multi-view Facial
Rendezvous (MiFaR) model in Fig. The model inputs
2D images in multi-views extracted from the dataset. For
each view, the idea is to independently compute the cross-
correlation matrix between the embeddings of two identical
networks fed with two different distorted versions of the
same data, and then try to collaboratively make variants of
this matrix closer to identity matrix.

Motivated by recent works [3], [4], our model first creates
pairs of different distorted versions of the input data [X?,
xP1, [xe, Xf] and [X%, XP] for left, front and right view,
respectively. However, these distortions are obtained from a
set of distribution of data augmentations, i.e., 7;,7; and 7..
More importantly, to avoid over-fitting, these augmentations
are different for each view. The distorted data is fed to
corresponding encoders to yield output embeddings [V,
Ylﬁ ], [Y&, Yf ] and [V%, Y,ﬁ ] for computing cross-correlation
matrices. Having different encoders and augmentation dis-
tributions not only realize the network to penalize it more
when the embeddings have a higher anti-correlation, but it

also makes it prune to over-fitting by learning only from a
specific distribution. More importantly, this helps the network
to generalize well to unseen data. For each view, this solution
ensures that the embedding vectors from the two identical
networks are similar, while minimizing the irrelevant infor-
mation among these embeddings. This conceptually robust
network model makes it competitive even towards the state-
of-the-art methods for supervised learning for 3D/4D FER.

B. Loss Function

Our self-supervised learning framework distinguishes it-
self from the other frameworks by its unique and novel
loss function that helps the network learn and converge
faster. Unlike common approaches, we aim to collaboratively
optimize the loss via each view. We formulate our loss
function as following:

L,,: weighted loss
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where u,, and ug are the positive constants trading off
the importance of the invariance and redundancy terms of
the weighted and view loss, respectively in (I)). Here, 6 =
{20°,0°,—20°} is the rotation angle for each view, while C,,
refers to the weighted cross-correlation matrix computed as
Cw =1C+ ¢Cr+,C,. The variables ;, r and , are weights of
the left, front and right view, respectively, while C;, Cy and
C, are the corresponding cross-correlation matrices computed
between the outputs of two identical networks for each view:
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where a,b index the vector dimensions of the the networks’
outputs, while k indexes the batch samples. Theoretically
from (I)), we demonstrate the learning-friendly nature of our
loss function which also advocates its efficiency for faster
network training. In fact, the weighted and view invariance
terms aim at pushing its diagonal elements closer to the
diagonal elements of the identity matrix, hence, making the
embeddings invariant to the applied distortions for effective
learning. Similarly, the redundancy terms try to decorrelate
the different vector components of the embeddings, hence,
removing irrelevant information for faster learning.

Ce,ab £ ,VB, (2)

C. Distributed Performance

An important feature of our model is its ability to
learn in a distributed manner. For faster training capabili-
ties, we use PyTorch’s distributed communication package
(torch.distributed), that helps distribute the pro-
cessing requirements over available resources. To facilitate
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this, we utilize NVIDIA Collective Communications Library
(NCCL). Importantly, to avoid inevitable synchronization
issues of distributed processes, especially in case of mul-
tiple GPUs/nodes, we dynamically allocate available and
accessible network’s |<port > and <IP> to form a dynamic
TCP communication socket. This solution allows efficient
communication primitives towards multi-process parallelism
for resource-efficient 3D/4D FER.

III. RESULTS AND DISCUSSIONS

We use Bosphorus [33], BU-3DFE [34], BU-4DFE [22]
and BP4D-Spontaneous [35] datasets to validate our model.
Following previous works [29], [36], [37], [38], [39], we first
compute projected 2D images in multi-views from the 3D/4D
point cloud data. For video data, we use rank pooling [40]
for each view [37] to form dynamic images which are then
fed to the model. As far as we know, there are no available
self-supervised methods for 3D/4D FER yet, so we compare
our method with all the supervised methods. Importantly, a
10-fold subject-independent cross-validation (CV) is used for
the experiments. Lastly, we bypass FC layers of encoders in
training, and finetune it for the downstream task.

A. Performance on 3D FER

Following existing protocols [20], [21], the BU-3DFE
dataset with 101 subjects is grouped into: Subset I — the
standard dataset including expressions with two higher levels
of intensities, and Subset II — rarely applied in 3D FER,
containing all four levels of intensities except the 100 neutral
samples. In Bosphorus dataset, only 65 subjects perform the

TABLE I
ACCURACY (%) COMPARISONS WITH STATE-OF-THE-ART METHODS ON
THE BU-3DFE SUBSET I AND SUBSET II, AND BOSPHORUS DATASETS.

Method Subset I (1)

Zhen et al.[10] 84.50 (4.031) Method Subset II (1)  Bosphorus (1))
Yang et al.[11] 84.80 (3.731) Li et al.[12] 80.42 (2.251) 79.72 (0.88])
Li et al.[12] 86.32 (2.211) Yang et al.[11] 80.46 (2.211) 77.50 (1.341)
Li e al.[20] 86.86 (1.671)  Li ef al.[20] 81.33 (1.341)  80.00 (1.16))
Oyedotun et al.[21]  89.31 (0.78]) MiFaR (Ours) 82.67 78.84
MiFaR (Ours) 88.53
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Ilustration of our proposed multi-view facial rendezvous (MiFaR) model.

six expressions with each subject. Table [l summarizes the
accuracy results from our extensive experiments for 3D FER
advocating the effectiveness of our method. Specifically, for
Subset I and Bosphorus datasets, we show that, although
slightly behind by 0.78% and 1.16%, respectively, our model
nearly reaches the results by state-of-the-art method [21].
With Subset II, however, we surpass the prediction results
by 1.34% when compared against the most efficient state-
of-the-art supervised method. These results highlight that
despite being a self-supervised method, our model is capable
of learning expressions effectively.

B. Performance on 4D FER

To compare the performance on 4D FER, we carry out ex-
tensive experiments on the popular BU-4DFE dataset which
contains posed video clips of 101 subjects with six facial
expressions. In Table |ll} we demonstrate that with additional
information from temporal domain in terms of 4D facial data,
our model attains higher recognition results and reaches the
accuracies of competing supervised methods for 4D FER.
We report that our model outperform most of the methods
by a considerable margin thanks to its effective multi-view

TABLE 11
PERFORMANCE (%) COMPARISON OF 4D FER WITH THE
STATE-OF-THE-ART METHODS ON THE BU-4DFE DATASET.

Method

Experimental Settings

Accuracy (1))

Sandbach et al.[25]
Fang et al.[27]
Xue et al.[41]

Sun et al.[23]
Zhen et al.[42]
Yao et al.[43]

Fang et al.[26]

Li et al.[29]

Ben Amor et al.[24]
Zhen et al.[36]
Bejaoui et al.[30]
Zhen et al.[36]
Behzad et al.[37]

6-CV, Sliding window
10-CV, Full sequence
10-CV, Full sequence
10-CV, -
10-CV, Full sequence
10-CV, Key-frame
10-CV, -
10-CV, Full sequence
10-CV, Full sequence
10-CV, Full sequence
10-CV, Full sequence
10-CV, Key-frame
10-CV, Full sequence

64.60 (31.167)
75.82 (19.941)
78.80 (16.961)
83.70 (12.061)
87.06 (8.71)
87.61 (8.151)
91.00 (4.761)
92.22 (3.541)
93.21 (2.551)
94.18 (1.581)
94.20 (1.561)
95.13 (0.631)
96.50 (0.741)

MiFaR (Ours)

10-CV, Full sequence

95.76
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architecture and collaborative nature of the proposed loss
function. In the table, we also show the difference in accura-
cies against each method. Specifically, by comparing with the
most accurate state-of-the-art supervised method [37], our
method lag behind by merely 0.74%, reaching the highest
accuracy of 95.76%. Such superior performance illustrates
that our novel self-supervised method offers a tremendous
solution via collaboration among learned embeddings from
multi-views, without the need of manually-injected labels.

C. Towards Spontaneous 4D FER

For spontaneous 4D FER, we use the BP4D-Spontaneous
dataset which contains a total of 41 subjects showing sponta-
neous expressions with two additional expressions: nervous-
ness and pain. In Table lll we compare the recognition
performance and also report the results of cross-dataset
evaluation. For recognition, our method outperforms [43]
by 0.55%, while remains slightly behind by 1.42% when
compared against [44].

More importantly, following the experimental settings
in [35], [45], we also show cross-dataset evaluations to
highlight our model’s generalizability and robustness. For
this, the BU-4DFE dataset is used for training, while a
subset of the BP4D-Spontaneous dataset (i.e., Task 1 and
Task 8, containing happy and disgust expressions) is used for
validation. As illustrated in the table, our method achieves a
notable accuracy of 79.05%, leaving behind [35] by 8.05%,
while lagging behind by [45] by merely 2.65%, thereby,
demonstrating promising results indicating its robustness.
Consequently, our model shows the potential to be gener-
alized well to spontaneous situations making it desirable for
real-world scenarios.

D. Ablations

Distributed Learning: We mainly use NVIDIA Am-
pere A100 GPUs (machine-C) for experiments, but we
also compare the distributed performance on GP100GL,
NVIDIA Tesla P100-PCIE GPUs (machine-A) and Xeon
Gold 6230, NVIDIA Volta V100 GPUs (machine-B). In
Fig. 2| we compare the average time to complete one epoch
in training. With 1000 epochs, the reported training times
for 256x256, 512x512 and 1024 x1024 on machine-C are
roughly 32.5 hours, 21.1 hours, and 17.7 hours, respectively.
This shows that distributed processing produces better results
by leveraging available resources efficiently.

Loss Function: We also discuss the ablation of our loss
function illustrated in Fig. 3] Specifically, we compare the
results from our proposed loss function Ly p,r with the
view loss Lg to show the role of our collaborative strategy.

TABLE III
ACCURACY (%) COMPARISON ON THE BP4D-SPONTANEOUS DATASET.

(A) RECOGNITION (B) CROSS-DATASET EVALUATION

Method Accuracy (1)) Method Accuracy (1))
Yao et al.[43] 86.59 (0.551) Zhang et al.[35]  71.00 (8.05T)
Danelakis et al.[44]  88.56 (1.42]) Zhen et al.[45] 81.70 (2.65))
MiFaR (Ours) 87.14 MiFaR (Ours) 79.05

350 batch size 256 x 256 350 batch size 512x512 350

1o [IMDistributed (8 GPUs) EIDistributed (8 GPUs)
< IMDistributed (4 GPUs) MlDistributed (4 GPUs)
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Fig. 2.  Comparison of distributed learning on different machines.

We notice that our proposed loss function results in better
performance by converging to a smaller loss value from
the beginning. To validate the consistency and robustness of
Lyirar, we conduct experiments with different batch sizes on
machine-C, i.e., 256 x 256, 512 x 512 and 1024 x 1024. It can
be clearly seen that Lysir,g shows dominant performance by
exploiting collaboration across multi-views via the weighted
cross-correlation term in £,, that helps identify similar pat-
terns in the 3D facial structure.

Effect of Embeddings: Similarly in Fig. 3] we show
the effect of using same and different encoders/embeddings
for multi-views on the model’s performance. We find that
while using same embeddings could be equally useful in
converging the loss, using different embeddings not only
yields this faster but also helps achieve lower loss. More
importantly, as demonstrated, this trend holds true for all
batch sizes used in the experiments.

IV. CONCLUSION

We presented Multi-view Facial Rendezvous (MiFaR): a
novel multi-view self-supervised learning model for 3D/4D
facial affect recognition. MiFaR is equipped with the ca-
pability to learn collaboratively via multi-views in a self-
supervised fashion. Our proposed loss function leverages
the correlation associated with the underlying facial patterns
among multi-views. With the help of several experiments,
we showed that our model not only demonstrates a superior
performance, but it is also robust towards 3D/4D FER.
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Fig. 3. Ablation comparisons of the loss under different scenarios.
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