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Abstract— Many existing facial action units (AUs) recognition
approaches often enhance the AU representation by combin-
ing local features from multiple independent branches, each
corresponding to a different AU. However, such multi-branch
combination-based methods usually neglect potential mutual
assistance and exclusion relationship between AU branches or
simply employ a pre-defined and fixed knowledge-graph as
a prior. In addition, extracting features from pre-defined AU
regions of regular shapes limits the representation ability. In
this paper, we propose a novel Local Global Relational Network
(LGRNet) for facial AU recognition. LGRNet mainly consists
of two novel structures, i.e., a skip-BiLSTM module which
models the latent mutual assistance and exclusion relationship
among local AU features from multiple branches to enhance
the feature robustness, and a feature fusion&refining module
which explores the complementarity between local AUs and the
whole face in order to refine the local AU features to improve
the discriminability. Experiments on the BP4D and DISFA AU
datasets show that the proposed approach outperforms the
state-of-the-art methods by a large margin.

I. INTRODUCTION

Facial expression recognition has wide potential applica-
tions in diagnosing mental disease [26], improving e-learning
experiences [24], detecting deception [3], face recognition
and attribute estimation [10], [7], [6], assisting teaching in
education [1], [27], efc. As a fundamental research problem,
facial action units (AU) recognition is beneficial to facial
expression recognition and analysis, and has received in-
creasing attention in recent years. However, AU recognition
is challenging because of the difficulty in identifying the sub-
tle facial changes caused by AUs. Looking from biological
perspective, the activation of AU corresponds to the move-
ment of facial muscles, which inspired earlier works such
as [34], [15] to design hand-crafted features to represent the
appearance of different local facial regions. However, hand-
crafted features are not discriminative enough to represent
the facial morphology due to their shallow natures. Hence,
in recent years deep learning based AU recognition methods
have been studied to enhance the AU’s feature representation.

Many existing automatic facial AU recognition methods
aim to enhance the facial feature representation by combining
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Fig. 1. Illustration of the different AU feature learning and classification
schemes: (a) the traditional grid-based feature extraction and classification,
(b) the multi-branch combination-based recognition methods, and (c) our
LGRNet method. Compared with (a) and (b), our LGRNet exploits mutual
assistance and mutual exclusion relations of local facial patch-based multiple
branches via a novel bi-directional structure with skipping gates and refines
their irregular representations by the global facial feature (best viewed in
color).

local features from multiple independent branches, which are
related to regions of different AUs. Some grid-based deep
learning frameworks [16], [18] incorporate regional (patch-
based) Convolutional Neural Network (CNN) features from
a face with equal grids, as shown in Fig. 1 (a). For instance,
the scheme in [23] combines local CNN features from
equal partition grids by an LSTM [8]. However, dividing
images into fixed grids leads to a number of issues: (i) it is
difficult to focus exactly on the muscle area corresponding to
each AU; (ii) ROIs for AUs with irregular shapes may not
be well represented by grid-based features. To address the
above issues, recent popular multi-branch combination-based
methods [39], [30], [29] fuse global or local features from
independent AU branches based on the corresponding muscle
region detection, to refine the features for AUs with irregular
regions, as shown in Fig. 1 (b). For instance, an end-to-end
multi-branch framework in [28] is proposed to combine the
features from independent branches for individual AU related
muscle regions according to some predefined attention maps
based on detected landmarks.

While the multi-branch combination based AU recognition
methods show their effectiveness in local AU feature fusion,



there are still limitations in modeling their mutual relation-
ship as well as the local-global context. On one hand, the
multiple patches related to individual AUs, may have a strong
positive or negative latent correlation in most expressions
Here, if multiple AUs jointly affect the target AU category,
it is defined as positive correlation (mutual assistance), oth-
erwise negative correlation (mutual exclusion). For example,
adjacent AU2 (“Outer Brow Raiser”) and AU7 (“Lid Tight-
ener”’) will be activated simultaneously when scaring. And
non-adjacent AU6 (“Cheek Raiser”) and AU12 (“Lip Corner
Puller”) will be activated simultaneously when smiling. In
addition, some AUs may not to be activated simultaneously,
e.g., we cannot simultaneously stretch our mouth (“AU20”)
and raise our cheek (“AU6”). Inspired by these biological
phenomenons, we argue that capturing the interactive in-
formation delivery between patch-based branches, such as
sequential/skipping delivery of adjacent/non-adjacent related
regions, is important for enhancing the representation of AU
features. On the other hand, the global face feature provides
important cues to refine the limited regular patch features,
which is important to deal with irregular muscle shapes. This
is because the local AU patches may not cover the entire
face, and other non-AU regions may also be activated due
to muscle linkage. To the best of our knowledge, the above
two key issues are left unexploited in the literature.

To address the above problems, we propose a novel
LGRNet for facial AU recognition. In particular, we first
extract the grid-based global feature by multi-layer CNNs
and local AU features based on the detected facial landmarks.
Then, we use spatially ordered AU branches as initialization
to replace the conventional disordered AU branches, which
is based on the muscle positions of AUs from top to bottom
(see Fig. 1 (c¢)). This is because adjacent muscle areas have
a natural potential for correlation from biology. We then
design a skip-BiLSTM to capture the potential assistance
and exclusion relations among these sequential branches,
where the adjacent patches are adjustable transfer in BILSTM
[5] while the distant patches are connected via skipping-
type gates. We argue that each AU branch is independent
and equal, so such a skip connection manner can minimize
the loss of information compared with traditional BiLSTM.
Moreover, we design a novel feature fusion&refining module
to refine the local features from skip-BiLSTM guided by
global grid-based features. Different with previous feature
fusion methods [4], our gated fusion architecture in feature
fusion&refining module can appropriately supplement global
information, even non-AU region information, for each local
AU patches. It is very important because different AUs may
focus on different global information. Finally, the features
learned by LGRNet are fed to a multi-branch classification
network for AU recognition.

The contributions of our LGRNet for facial AU recogni-
tion are as follows:

e We propose a skip-BiLSTM approach to model the
mutual assistance and exclusion relationship of individ-
ual AUs, which leads to improved robustness in AU
recognition;

o We propose a method for local AU feature refinement
with the assistant of global grid-based features, making
the local AU features more discriminative;

o The proposed LGRNet outperforms the state-of-the-art
approaches for AU recognition on two benchmarks, i.e.,
BP4D and DISFA.

II. RELATED WORK

AU recognition has been studied for decades and several
methods have been proposed for this problem. Most existing
methods for AU recognition are based on patch learning [40],
[38], [9], [13], [19]. For instance, [33] used sparse coding
to recover facial expressions using the composition rules of
different fixed patches for different AUs. [38] performed
a patch selection approach, where patches for AUs were
selected by group sparsity learning for structure learning
with shallow representations. [9] proposed to use domain
knowledge and facial geometry to pre-select a relevant image
region for a particular AU and feed it to a convolutional
and bi-directional Long Short-Term Memory (LSTM) neural
network. However, all above methods need to predefined the
patch location first. To address these issues, [40] proposed a
set of adaptive ROI cropping nets, based on local convolu-
tional neural network, to learn regional features separately.
[28] jointed facial AU recognition and face alignment in an
end-to-end framework, where the face alignment results can
aid AUs to learn the irregular attention distribution of the
ROI of AU patches. [23] leveraged the facial shape as a
regularization term in order to learn person-independent AU
features.

Recent works in facial AU recognition also pay attention
to capture the interactions of different AUs for local fea-
ture enhancement with multi-label learning. On one hand,
taking into account the relationship of multiple face patches
can provide more robustness than using single patch. [22]
embedded the relations among AUs through a predefined
graph convolutional network (GCN). [12] incorporated AU
knowledge-graph as an extra guidance for the enhancement
of facial region representation. However, these methods
need the prior connections by co-occurrence probability in
different datasets. On the other hand, some approaches tried
to apply the local relationship information into multi-label
learning. For instance, [39] proposed a joint patch learning
and multi-label learning method, in which the local regions
of AUs are defined as patches centered around the facial
landmarks.

In contrast to previous studies, LGRNet automatically
models the relation structure of the facial AUs by the use of
a contextual structure along with a skipping operation. The
most relevant existing works to ours are [28], [29], which
combine facial AU recognition and face alignment into a
multiple independent branches network. Different from these
methods, our LGRNet is capable of exploiting the learned
correspondence of different AUs to enhance the target local
AU, as well as considering other non-AU regions. Doing so
allows us to provide more robustness than [29], which also
improves the interpretability of the model.
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The overall architecture of the proposed LGRNet for facial AU recognition. We utilize a simple but efficient landmark localization network

to detect the landmarks of AU centers, which are used to compute local AU patches. The AU patches are fed into our multi-branch LGRNet, with one
branch per AU, and a skip-BiLSTM module is proposed to model mutual assistance and exclusion relationship among different AU branches. Then, a
feature fusion&refining module is designed to refine the local features with the assistance of the global grid-based features; so that they can capture more
discriminative features for AU with irregular shapes. Finally, a multi-classifier is used to predict the activation probabilities of individual AUs (best viewed

in color).

III. APPROACH

Fig. 2 shows the overall diagram of the proposed LGR-
Net approach, which consists of a skip-BiLSTM module
for mutual assistance and exclusion modeling, a feature
fusion&refining module for refining features of irregular AU
regions, and a multi-classifier module for predicting the AU
activation probability. We provide the details below.

A. Overview of LGRNet

Similar to [2], [28], we also employ a multi-branch
network for the multi-label facial AU recognition task.
However, different from previous approaches, we argue that
exploiting the relationship among multiple patches plays a
vital role in building a robust AU recognition model. In
this way, we design two modules (skip-BiLSTM module
and Fusion&Refining module) based on the foundation of
existing multi-branch network, which can fully mine the local
and global interactive relations among the AU patches and
non-AU regions, and obtain a more discriminative and robust
representation.

We first employ a region learning module and face align-
ment module simultaneously as our stem network from the
widely used multi-branch network [28]. Given a face image
1, we adapt these modules by getting the patch regions based
on the extracted landmarks. In particular, [28] contains a hi-
erarchical and multi-scale region learning network which can
extract features from each local patch with different scales,
thus obtaining multi-scale AU representations. Different from
other complex face alignment methods, we utilize an efficient
landmark extraction network similar to [29], including three
convolutional layers connected to a max-pooling layer. Note

that stem network is shared for all branches, which greatly re-
duces training costs and the complexity of network training.
According to the learned landmarks, i.e., L = {l1,la, ..., Lin },
local patches A = {A4;,A,,...,A,} are calculated and
their features V' = {v1,vq,...,v,} are learned via the stem
network, where m and n are the numbers of landmarks
and selected patches, respectively. For simplicity, we do not
repeat the detailed structure of the stem network here.

In order to overcome the lack of adequate delivery of
local patch information among individual patches, we design
a novel skip-BiLSTM module (detailed in Section III-B),
which can transmit information in two ways (sequential
delivery or skipping delivery). The sequential delivery of
information can fully explore the contextual relationship
between adjacent patches. The skipping delivery focuses on
the information interactive of non-adjacent related patches.
Different from the traditional sequence spreading of LSTM,
our skip-BiLSTM can directly calculate the correlation be-
tween a target AU and all previous AUs in the forward
and backward directions. This is beneficial because there
is little information loss during multi-branch transmission.
After skip-BiLSTM, we get a set of local patch features
S = {s1,52,..., 8}, which are expected to have all the
useful information from adjacent and non-adjacent patches.

Furthermore, we argue that the non-AU regions can be
helpful for refining the local patch features and obtain salient
micro-level features for the global face, which may be useful
for handling irregular AU regions. Hence, we design a novel
feature Fusion&Refining module (detailed in Section III-
C), which can concentrate on the salient information from
global facial feature G. Finally, the local patch features are
integrated with global facial features as new patch-based



representation R = {ry, 7o, ..., 7 }.

The face alignment and facial AU recognition are inte-
grated into an end-to-end learning model. Our goal is to
jointly learn all the parameters by minimizing both face
alignment loss and facial AU recognition loss over the
training set. The face alignment loss is defined as:

1 m
Ealign = ﬁ Z[(I
0 =1

where (z;,y;) and (&;,9;) denote the ground-truth (GT)
coordinate and corresponding predicted coordinate of the -
th facial landmark, and d, is the ground-truth inter-ocular
distance for normalization [29]. In this paper, we also regard
facial AU recognition as a multi-label binary classification
task. It can be formulated as a supervised classification
training objective as follows,

2% 4 (v — 9i)?), (1)

Tec - _ Z w; szngz 1 - pl)IOg(l - ﬁi)]v (2)
where p; denotes the GT probability of occurrence for the
i-th AU, which is 1 if occurrence and 0 otherwise, and p;
denotes the predicted probability of occurrence. w; is the
data balance weights, which is employed in [28]. Moreover,
we also employ a weighted multi-label Dice coefficient loss
[21] to overcome the sample imbalance problem, which is
formulated as:

Ldice = Z wz

where 7 is the smooth term. Finally, the facial AU recogni-
tion loss is defined as:

Acau = l:rec + ‘cdic& (4)

_ 2pipi + T)

3
2 4T 3)

Finally, the joint loss of our LGRNet is defined as:
L= Eau + )\ﬁalign- )
where )\ is a balancing parameter.

B. Skip-BiLSTM

Fig. 2 (b) shows the detailed structure of our skip-BiLSTM
module for contextual and skipping relationship learning.
Specifically, we extract a set of local patch features V' =
{v1,v2,...,v,} from the stem network, and feed them to
skip-BiLSTM. Distinct from the prior works [23], we regard
the multiple patches as a sequence structure from top to
bottom, which can transfer information by a Bi-directional
LSTM based model [5] with our skipping-type gate. Dif-
ferent from the traditional BiLSTM, our skip-BiLSTM can
directly calculate the correlation between a target AU and all
other AUs. For the ¢-th patch (¢ > 1), the extracted feature
vy is used to learn the weights with forward hidden states
H = {hy,...,hs—1} by the skipping-type gates, which can
determine the correlation coefficient between past AUs and
current AU. And then the new states H = {hAl, ey Bt,l}
and v, are fed into the ¢-th forward cell in the skip-BiLSTM
to learn the association weights, which can promote the

1, Normal Conv2D @ Sum O Product @ Sigmoid

N—O
P

OO
{ Conv
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Fig. 3. The architecture of our feature fusion&refining module guided by
global face feature.

transfer of relevant AUs information. The above process can
be formulated as:

t—1 —
= Cell Z 31 0t), (6)
j=1
ilj = /pr 7N
J; = o(GAP(W; (hyv,)), (8)

where Cell(-) denotes the basic ConvLstm cell [31], o is
sigmoid function, and GAP denotes the global average
pooling operation. W is the parameters of mapping function,
in which we used Conv2D. For the backward delivery, we
get the ¢-th patch feature which goes to the same forward
process as:

nog
he = Cell( 37 hyow0), )
j=t+1

In order to fully promote the information interactive
among individual AUs, the final representation for each patch
is computed as the average of the hidden vectors in both
directions, as well as the original patch feature:

s = v + (h + he)/2, (10)

C. Feature Fusion&Refining

To exploit the useful global face feature, we design a
gated fusion architecture and a refining architecture (F&R)
that can selectively balance the relative importance of local
patches and global face grids. We add these two architectures
on each local AU branch because different AUs may focus
on different global information. The grid-based global face
feature GG is extracted using a simple CNN with the same
structure as the face alignment network [29]. As shown in
Fig. 3, after obtaining the learned t¢-th local patch feature, it
is fused with the grid-based global feature G by the fusion
architecture, which can be formulated as:

a=0(C,G + Cysy),
ft =aO||CyGl2 & (1 — @) ©[|Cisl]2,

Y
12)

where o is the sigmoid function, and || - || denotes the I5-
normalization. C; and C, denote the Conv2D operation.
@ denotes the element-wise weighted sum of ||CyG]||2 and
[|Cyst||2 according to the learned gate vector c.

The final local fusion feature s, for ¢-th patch refined by
our F&R module is shown in Fig. 3. F&R module contains



TABLE I
COMPARISONS OF AU RECOGNITION FOR 8 AUS ON DISFA IN TERMS OF F1-FRAME SCORE (IN %).

Method AU Index Avg.
1 2 4 6 9 12 25 26
EAC-Net [14] 415 264 664 50.7 80.5 893 889 156 574
JAA-Net [28] 4377 462 56.0 414 447 69.6 883 584 56.0
LP-Net [23] 299 247 727 468 49.6 729 938 650 569
ARL [30] 439 421 63.6 418 400 762 952 668 587
JAA-Net [29] 624 607 67.1 41.1 451 735 909 674 63.5
LGRNet (Ours) 62.6 644 725 466 488 757 944 730 673
TABLE II

COMPARISONS OF AU RECOGNITION FOR 12 AUS ON BP4D IN TERMS OF F1-FRAME SCORE (IN %).

Method AU Index Avg.

1 2 4 6 7 10 12 14 15 17 23 24
EAC-Net [14] 39.0 352 486 761 729 819 862 588 375 59.1 359 358 559
MLCR [22] 424 369 481 775 776 836 858 61.0 437 632 421 556 59.8
JAA-Net [28] 472 440 549 715 746 840 869 619 436 603 427 419 600
LP-Net [23] 469 453 556 77.1 767 838 872 633 453 605 481 542 61.0
ARL [30] 458 39.8 551 757 772 823 86.6 588 476 62.1 474 554 6l1.1
JAA-Net [29] 538 47.8 582 785 758 827 882 637 433 618 456 499 624
LGRNet (Ours) 50.8 47.1 57.8 776 774 849 882 664 498 615 468 523 634

three blocks. Each block consists of two convolutional layers
and a maxpooling layer. Then multi-patch features R are sent
to the multi-label binary classifier to calculate the occurrence
probabilities of individual AUs.

1V. EXPERIMENTS
A. Dataset and Implementation Detail

Dataset. We evaluate the effectiveness of the proposed
approach on the popular BP4D [37] and DISFA [20] datasets.
BP4D consists of 328 facial videos from 41 participants (23
females and 18 males) who were involved in 8 sessions.
Similar to [13], [30], [29], we consider 12 AUs and 140K
valid frames with labels. DISFA consists of 27 participants
(12 females and 15 males). Each participant has a video of
4,845 frames. We also limited the number of AUs to 8 sim-
ilar to [13], [29]. In comparison to BP4D, the experimental
protocol and lighting conditions deliver DISFA to be a more
challenging dataset. Following the experiment setting of [29],
we evaluated the model using the 3-fold subject-exclusive
cross-validation protocol.

Training strategy. Our model is trained on a single NVIDIA
Tesla V100 GPU with 32 GB memory. The whole network
is trained with the default initializer of PyTorch [25] with
the stochastic gradient descent (SGD) solver, a Nesterov
momentum [32] of 0.9 and a weight decay of 0.0005. The
learning rate is set to 0.01 initially with a decay rate of
0.5 every 2 epochs. Maximum epoch number is set to 20.
To enhance the diversity of training data, aligned faces are
further randomly cropped into 176 x 176 and horizontally
flipped. Regarding face alignment network and stem network,

we set the value of the general parameters to be the same
with [29]. The filters for the convolutional layers in refining
architecture are used 3 x 3 convolutional filters with a stride
1 and a padding 1. In our paper, all of the mapping Conv2D
operations are used 1 x 1 convolutional filters with a stride
1 and a padding 1. The dimensionality of hidden state in
ConvLstm cell is set to 64 and the filters for the convolutional
layers in ConvLstm cell are used 3 x 3 convolutional filters
with a stride 1 and a padding 1. A is set to 0.5 for the jointly
optimizing of face alignment and facial AU recognition. For
comparison purpose, the numbers of AUs are 12 (as in [13],
[30], [29] ) and 8 (as in [13], [29]) for BP4D and DISFA
respectively. During training, each frame is annotated with
49 landmarks detected and calculated by SDM [35].
Performance Metric. For all methods, F1 score for all the
AUs on BP4D and DISFA are calculated and then averaged
(denoted as Avg.) for comparison.

B. Comparison with State-of-the-art Methods

We compare our proposed LGRNet with several baselines
on the BP4D and DSIFA datasets in Table II and Table
I, including EAC-Net [14], MLCR [22], JAANet [28], LP-
Net [23], ARL [30], and JAA-Net [29]. Note that, the best
and second best results are shown using bold and underline,
respectively. The performances of the baselines in Table I
and II are the reported results. We omit models [11], [36],
[17] that require additional annotated data.

Quantitative comparison on DISFA: AU recognition re-
sults by different methods on DISFA are shown in Table I,
where the proposed LGRNet shows clear improvements for



TABLE III
EFFECTIVENESS OF KEY COMPONENTS OF LGRNET EVALUATED ON DISFA IN TERMS OF F1-FRAME SCORE (IN %).

Methods Setting AU Index Ave,
S-B F&R 1 2 4 6 9 12 25 26
w/o full 47.1 61.1 663 447 522 749 922 662 63.1
wlo F&R  / 62.6 642 724 423 499 761 935 726 66.7
w/o S-B V4 587 652 735 439 535 722 94.1 647 657
w/ Bi Vv 61.1 584 709 455 479 749 925 708 652
LGRNet v 4 62.6 0644 725 46.6 488 757 944 730 673
TABLE IV

EFFECTIVENESS OF KEY COMPONENTS OF LGRNET EVALUATED ON BP4D IN TERMS OF F1-FRAME SCORE (IN %).

Methods Setting AU Index Ave,
S-B F&R 1 2 4 6 7 10 12 14 15 17 23 24
w/o full 50.1 47.1 543 773 751 825 88.1 61.7 449 6277 452 499 61.6
w/o F&R  / 504 469 534 79.0 774 847 874 63.0 453 633 470 557 628
w/o S-B Vv 513 476 563 782 762 837 881 644 49.1 619 46.1 498 62.7
w/ Bi 4 50.7 50.0 552 770 757 841 882 634 49.1 623 473 520 629
LGRNet Vv V4 508 471 578 776 774 849 882 664 498 615 468 523 634
TABLE V

MEAN ERROR (%) RESULTS OF DIFFERENT FACE ALIGNMENT MODELS
ON DISFA AND BP4D (LOWER IS BETTER).

proposed LGRNet for facial AU recognition.

1) Effects of skip-BiLSTM: In Table III and IV, LGRNet
decreases absolutely by 1.6% and 0.7% in terms of average
F1 score when removing skip-BiLSTM (indicated by w/o S-

Methods | DISFA  BP4D
= B) on DISFA and BP4D, respectively. Furthermore, in order
JAA-Net | 4.02 3.80 . . . .
to fully verify the effectiveness of our skipping operation, we
LGRNet | 3.68 3.34 replace skip-BiLSTM with the basic BILSTM [5] (indicated

several AUs annotated in DISFA compared with the state-
of-the-art methods. Specifically, compared with the state-of-
the-art method JAA-Net [29], our LGRNet achieves 3.8%
improvements in terms of average F1 score and also achieves
significantly outperforms for all AUs annotated in DISFA.
Furthermore, we achieve the best performance in terms of
average F1 score compared with all baselines.
Quantitative comparison on BP4D: AU recognition results
by different methods on BP4D are shown in Table II,
where the proposed LGRNet outperforms the state-of-the-art
methods with impressive margins. LGRNet achieves 1.0%
higher average F1 score compared with JAA-Net. Further-
more, LGRNet achieves the best or second-best recognition
performance for most of the 12 AUs annotated in BP4D
compared with the state-of-the-art methods.

Experimental results of our LGRNet demonstrate its ef-
fectiveness in improving AU recognition accuracy on BP4D
and DISFA, as well as good generalization ability.

C. Ablation Studies

We perform detailed ablation studies on DISFA and BP4D
to investigate the effectiveness of each component of our

by w/ Bi) for information delivery between multiple branches
in our LGRNet (also with Fusion&Refining module), LGR-
Net achieves lower average F1 scores of 65.2% and 62.9% on
DISFA and BP4D, respectively. These observations indicate
that a rough definition of the relationship between AUs from
top to bottom may not be the best way to simulate the
real relationship between AUs. And skipping operation can
significantly boost the performance, which suggests that our
skipping-type gates play a vital role in our model. In addition,
these results also indicate that using skip-BiLSTM to model
the mutual assistance and exclusion relationship between
AUs is effective for improve AU recognition accuracy.

2) Effects of feature fusion&refining module: Without
fusion&refining module (indicated by w/o F&R in Table
Il and IV), we directly conduct classification over the
output of skip-BiLSTM. Great AU recognition performance
degradation can be observed, i.e., 0.6% average F1 score
drop on DISFA and BP4D. It suggests that the proposed
fusion&refining module, which refines local AU feature
guided by grid-based global feature, plays a vital role in
our model.

Finally, when we simultaneously drop the skip-BiLSTM
and fusion&refining modules (indicated by w/o full in Table
IIT and IV), the average F1 score of our method reduces
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Fig. 4. Visual comparisons of the predicted heatmaps by different methods for four examples from the BP4D dataset (in the first row) and DISFA dataset
(in the second row). The learned weights are visualized with different colors in the color bar, which are overlaid on the images. “l” denote the different
muscle regions of corresponding AUs with different colors, which are calculated by the detected landmarks. Note that the “IF” of different colors in the
original image on the right are only for a clearer distinction between different AUs (best viewed in color).

from 67.3% to 63.1% on DISFA, and from 63.4% to 61.6%
on BP4D, respectively. We have observed that considering
both of skip-BiLSTM and fusion&refining modules can
significantly boost the performance of facial AU recognition.

D. Results for Face Alignment

We jointly take face alignment network into our LGRNet
via auxiliary training, which can provide effective muscle
regions based on the detected landmarks corresponding to
each AU. Table V shows the mean error results of our
LGRNet and baseline method JAA-Net [29] on DISFA
and BP4D. Compared with JAA-Net, our LGRNet achieves
competitive 3.68 and 3.34 mean error on DISFA and BP4D
respectively, which indicates the effectiveness of our joint
training.

E. Visualization of Results

To better understand the effectiveness of our proposed
model, we visualize the learned heatmaps of LGRNet (the
outputs of F&R module) and other methods, corresponding
to different AUs, as shown in Fig. 4. Four examples from
two different datasets are given, two of which are from BP4D
and two are from DISFA, containing visualization results of
different genders with different AU categories. Through the
learning of LGRNet, local patches not only concentrate on
their own regions, but can also establish a positive correlation
with other patches as well as other non-AU regions. Different
from the excessive localization of JAA-Net [29] and the bad

influence of unrelated regions of ARL [28], our LGRNet
accurately captures potential mutual assistance (in red) and
mutual exclusion (in blue) relationships of the local patch
feature for each AU and other assistance AUs, as well
as non-AU regions in global face, which can improve the
discriminative ability of each AU. The heatmaps of the same
AU category in different examples are roughly consistent,
but there are also differences due to individual differences.
This reveals that our LGRNet can learn certain rules in
different datasets and automatically make adjustments based
on different samples, compared with the predefined GCN
methods [12], [22].

V. CONCLUSION

In this work, we study the problem of facial action units
recognition and propose a novel multi-branch multi-label
based approach namely LGRNet. The proposed approach en-
ables efficient information delivery via a novel skip-BiLSTM
and models the potential mutual assistance and exclusion
relationships among spatially ordered branches for local AU
features. LGRNet also consists of a feature fusioné&refining
module that exploits complementarity between local AU fea-
ture and grid-based global feature to obtain refined local AU
features. Extensive experimental evaluations on two widely
used AU recognition benchmarks show that our LGRNet is
able to learn more robustness and discriminative features for
facial AU recognition.
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