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Abstract— Image synthesis has raised tremendous attention
in both academic and industrial areas, especially for conditional
and target-oriented image synthesis, such as criminal portrait
and fashion design. The current studies have achieved encourag-
ing results along this direction, but they mostly focus on class la-
bels where spatial contents are randomly generated from latent
vectors. Some recent studies have explored spatial constraints
for generative models guided by semantic segmentation, but
most of them are designed for scene generation and lack ran-
dom variation. Such methods are not suitable for face or fashion
image synthesis, where different images may share the same
semantics. Different from all the current methods, we decouple
the image synthesis task into three independent dimensions and
propose a novel Spatially Constrained Generative Adversarial
Network (SCGAN) to model it. SCGAN uses a simple yet
effective way to decouple spatial constraints and attribute
conditions from latent vectors, and treat them as additional
controllable signals via a segmentor and a specially designed
generator. Other unregulated contents are left to be generated
from latent vectors. Experimentally, we provide both qualitative
and quantitative results on CelebA and DeepFashion datasets
to demonstrate that the proposed SCGAN is very effective in
synthesizing spatially controllable and attribute-specific images
with high visual quality and large variations. Our code is
provided at https://github.com/jackyjsy/SCGAN.

I. INTRODUCTION

The success of Generative Adversarial Networks
(GAN) [10] upsurges an increasing trend of realistic image
synthesis [49], [47], [42], where a generator network
produces artificial samples to mimic the real samples from
a given dataset and a discriminator network attempts to
distinguish between the real samples and artificial samples.
These two networks are trained adversarially as two players
in a game, and eventually, the two-player game will end
up with the Nash Equilibrium. In such equilibrium, the
generator is capable of mapping latent vectors from a
simple distribution to real data samples from a complex
distribution, while the discriminator can hardly distinguish
the artificial samples from the real ones. GANs have been
widely used in many applications such as natural language
processing [48], [46], image super-resolution [23], [30],
domain adaptation [14], [5], object detection [25], activity
recognition [26], video prediction [34], face aging [29],
semantic segmentation [33], face frontalization [44], [45],
and image translations [15], [50], [17].

Beyond generating arbitrary images, conditional and
target-oriented image generation is highly needed in var-
ious practical scenarios, such as criminal portraits based
on victims’ descriptions, clothing design with certain fash-
ion elements, data augmentation, and artificial intelligence

Fig. 1. SCGAN decouples the image synthesis task into three dimensions
(i.e., spatial, attribute and latent dimensions). SCGAN synthesizes face
and fashion images guided by target semantic segmentations, specified
attributes and achieves large variations on other unregulated components
(e.g., textures, skin colors, hair styles, fashion design, and color shades).

imagination. cGAN [35] first provided a way of conditional
generation according to input class labels, which is further
extended by [37] and [8] that additional classifiers are uti-
lized to guide the image generation. They focus on available
class labels as the condition where spatial contents are still
randomly constructed from latent vectors. The edge details
are usually blurred and the boundary information is difficult
to preserve due to the lack of spatial constraints. Semantic-
guided image synthesis has been recently explored in [38],
[40] for scene image synthesis. Those methods use image-
to-image translation networks to generate scene images from
semantic segmentations. However, when applied to face and
fashion image synthesis, those methods cannot provide much
diversity with given semantic segmentations. In other words,
they are deterministic and tend to synthesize fixed outputs
with given input semantics. Some efforts such as SPADE [38]
encode a style image to a style vector to obtain diverse
outputs. Such design works well for scene images, however,
our experiments reveal that such method does not provide a
good diversity for face or fashion synthesis.

For face and fashion synthesis, inherently, there exists a
one-to-many mapping from semantic segmentations to real
images. Many distinct faces and clothes could share very
similar semantics but retain diverse textures and attributes.
This is a major reason why those image-to-image translation-
based semantic-guided image synthesis methods are not
suitable for face and fashion synthesis tasks. To solve the
problem, we propose to decouple the face and fashion
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synthesis tasks into three dimensions, which are spatial
dimension, attribute dimension, and latent dimension, and
make the first two dimensions explicitly controllable. The
spatial configurations of generated images are regulated by
input semantic segmentations, the attributes are specified by
input attribute labels and the other uncontrolled components
are automatically synthesized from input latent vectors.

We propose a Spatially Constrained Generative Adversar-
ial Network (SCGAN) to learn the mapping of the three-
dimension image synthesis. SCGAN consists of three net-
works, a generator network, a discriminator network with
an auxiliary classifier, and a segmentor network, which are
trained together adversarially. The generator is specially
designed to take a semantic segmentation, a latent vector,
and an attribute label as inputs step by step to synthesize a
fake image. The discriminator network tries to distinguish
between real images and generated images as well as clas-
sifying them into multi-label attributes. The discrimination
and classification results guide the generator to synthesize
realistic images with correct target attributes. The segmen-
tor network attempts to estimate semantic segmentations
on both real images and fake images to deliver estimated
segmentations, which guides the generator in synthesiz-
ing spatially constrained images. With those networks, the
proposed SCGAN generates realistic and diverse face and
fashion images guided by input semantic segmentations and
attribute labels, which enables many interesting applications
such as interpolating between left faces and their faces, and
generating intermediate faces from not smiling to smiling
facial expression. Experimentally, we demonstrate the effec-
tiveness and benefits of the spatial constraints by providing
both qualitative and quantitative results on a face dataset
CelebA [32] and a fashion dataset DeepFashion [31]. Here
we highlight our major contributions as follows.

• We decouple the face and fashion synthesis task into
three dimensions (i.e., spatial, attribute, and latent) and
propose a novel SCGAN to model it. Both spatial and
attribute dimensions can be explicitly controllable.

• A generator network is particularly designed to extract
spatial information from input segmentation, then con-
catenate a latent vector to provide variations and apply
specified attributes. A segmentor network is introduced
to guide the generator with spatial information and
increases the model stability for convergence.

• Extensive experiments are conducted on the CelebA and
DeepFashion datasets to demonstrate that the proposed
SCGAN is effective in controlling spatial and attribute
contents and can synthesize face and fashion images
with large variations.

II. RELATED WORK

In recent years, deep generative models inspired by GAN
enable computers to synthesize new samples based on the
knowledge learned from given datasets. There have been
many variations of GAN to improve the generating ability
and stabilize adversarial training such as [39], [2], [1], [11],
[28], [36], [4], [18], [20], [19]. In the meanwhile, many

researchers focused on developing target-oriented generative
models instead of random generation. Conditional GAN [35]
is the first attempt to input conditional labels into both
generator and discriminator to achieve conditional image
generation. Similarly, ACGAN [37] constructs an auxiliary
classifier within the discriminator to output classification
results and TripleGAN [8] introduces a classifier network
as an extra player to the original two players setting. But
all these studies focus on attribute-level conditions and
neglect spatial conditions, which leads to the lack of spatial
controllability in synthesized images.

People have been working on manipulating spatial con-
tents of images via 3D morphable models since 1990s [3].
Recently, synthesizing spatially constrained images via a
GAN-based network is first exploited using image-to-image
translation methods, where input images can be regarded
as spatial conditions in image translation. Pix2Pix [15] is
the first to use an image as the conditional input and trains
their networks with supervision from paired images. Then
many researchers find out that paired training is unnecessary
after introducing a cycle-consistency loss and propose several
unpaired image translation methods [50], [21], [43], [27],
[42], [16]. Based on those two-domain translation methods,
StarGAN [6] proposes a multi-domain image translation
network with an auxiliary classifier. Vid2Vid [41] further
extends the image translation to a video translation, which
enables many interesting applications such as synthesizing
dance videos from skeleton videos. Human body pose land-
marks are used as spatial constraints to guide generative
networks and synthesize whole-body images in [12], [9].

Most recently, MaskGAN [24] utilizes facial attribute
masks to enable interactive face image manipulation,
SPADE [38] proposes a spatially-adaptive normalization to
effectively generate high-resolution images based on given
semantic segmentation with different learned styles, and
LGGAN [40] further improves the ability of semantic-guided
scene generation to synthesize small objects and detailed
local textures. Style-guided image translation methods [7],
[51] merge a base image with a style image to synthesize
a new image that spatial configuration and attribute-level
contents are inherited and not explicitly controllable. All
the above methods have intrinsic assumptions of one-to-one
mappings that they synthesize deterministic images without
much variation. Therefore, those methods perform quite well
for scene synthesis but are not suitable for conditional face
or fashion generation which require large variations.

Different from all existing methods, SCGAN decouples
the image generation into three dimensions via a simple and
novel design of networks, and utilizes semantic segmentation
as spatial constraints in a distinctive way. SCGAN takes a
latent vector, attribute labels, and a semantic segmentation as
inputs, explicitly controls spatial configurations and attribute
contents, and generates target images with a large diversity.

III. METHODOLOGY

In this section, we first define our target problem and
define the symbols used in our methodology. Then we



Fig. 2. SCGAN consists of a generator, a discriminator with an auxiliary classifier and a segmentor which are trained together. The generator is particularly
designed that a semantic segmentation, a latent vector and an attribute label are input to the generator step by step to generate a fake image. The discriminator
takes either a fake or real image as input and outputs a discrimination result and a classification result. The segmentor takes either fake or real image as
input and outputs a segmentation result, and guides the generator to synthesize fake images which comply with the target segmentation.

introduce the framework structure of the proposed SCGAN.
After that, all loss terms in the objective functions to optimize
those networks are discussed in detail. Last, we provide a
detailed training algorithm.

A. Problem Setting

Let P(x, c, s) denotes the joint distribution of the target
joint dataset with attribute labels and geometric configura-
tion, where x is a real image of size (H ×W × 3), c is its
multi-attribute label of size (1× nc) with nc as the number
of attributes, and s is its semantic segmentation of size (H×
W×ns) with ns as the number of segmentation classes. Each
pixel in s is represented by an one-hot vector with dimension
ns, which codes the semantic index of that pixel. Our goal
can be described as finding the mapping G (z, c, s) → y,
where G(·, ·, ·) is the generating function, z is the latent
vector of size (1× nz), and y is the conditionally generated
image which complies with the target conditions c and s. Our
target can be expressed as training a deep generator network
to fit the target mapping function G (z, c, s)→ y, where the
joint distribution P(y, c, s) is expected to follow the same
distribution as P(x, c, s).

B. Spatially Constrained Generative Adversarial Networks

In this paper, we propose a generative model called
Spatially Constrained Generative Adversarial Networks (SC-
GAN) to help training a generator network to fit the target
mapping function G (z, c, s) → y. Our proposed SCGAN
consists of three networks shown in Figure 2, which are
a generator network G, a discriminator network D, and
a segmentor network S. Here we introduce each network
individually in detail, define their objective functions, and
provide a training algorithm to optimize these networks.
Generator Network. We utilize a generator network G to
match our desired mapping function G (z, c, s) → y. Our
generator takes three inputs which are a latent code z, an
attribute label c, and a target segmentation map s. As shown
in Figure 2, these inputs are fed into the generator step
by step in orders. First, the generator G takes s as input

and extracts spatial information contained in s by several
downsampling convolutional layers. After that, the convo-
lution result is concatenated with a dimensional expansion
of z in channel dimension. After a few upsampling residual
blocks (RESBLKUP), c is fed into the generator at last to
guide the generator to generate attribute-specific images that
contain basic image contents generated from s and z. This
particular design of G decides the spatial configuration of
the synthesized image according to the spatial constraints
extracted from s. Then G forms the basic structure (e.g.,
background, ambient lighting) of the generated image using
the information coded in z. After that, G generates the
attribute components specified by c.
Discriminator Network. To obtain realistic results which
can hardly be distinguished from the real images, we employ
a discriminator network D which forms a GAN framework
with G. An auxiliary classifier is embedded in D to do a
multi-class classification which provides attribute-level and
domain-specific information back to G. D is defined as D :
x→ {Dd(x), Dc(x)}, where Dd(x) gives the discrimination
results and Dc(x) outputs the probabilities of x belonging to
nc attributes. D and G are two adversarial players in training,
which eventually makes P(G (z, c, s) , c) close to P(x, c).
Segmentor Network. We propose a segmentor network S to
provide spatial constraints in conditional image generation.
Let S(·) be the mapping function. S takes either real or
generated image data as input and outputs the probabilities
of pixel-wise semantic segmentation results of size (H×W×
ns). S can be trained solely using x with its corresponding s.
When training the other networks SCGAN, the weights in S
can be fixed, and S can still provide the gradient information
to G. Training S separately speeds up the model convergence
and reduces the memory usage of the GPUs.

C. Objective Functions

Adversarial Loss. We adopt a conditional objective from
Wasserstein GAN with gradient penalty [11]

Ladv = Lreal
adv + Lfake

adv + Lgp, (1)



which can be rewritten as

Ladv =Ex [Dd (x)] + Ez,c,s [Dd (G (z, c, s))]

+ λgpEx̂

[
(∥▽x̂Dd (x̂)∥2 − 1)

2
]
,

(2)

where G (z, c, s) is the generated image conditioned on both
attribute label c and segmentation s, λgp controls the weight
of gradient penalty term, x̂ is the uniformly interpolated
samples between a real image x and its corresponding fake
image G(z, c, s). During the training process, D and G act
as two adversarial players that D tries to maximize this loss
while G tries to minimize it.
Segmentation Loss acts as a spatial constraint to regulate
the generator to comply with the spatial information defined
by the input semantic segmentation. The proposed real
segmentation loss to optimize the segmentor network S can
be described as

Lreal
seg = Ex,s[As(s, S(x)], (3)

where As(·, ·) computes cross-entropy pixel-wisely by

As(a, b) = −
H∑
i=1

W∑
j=1

ns∑
k=1

ai,j,k log bi,j,k, (4)

where a is the ground-truth segmentation and b is the
estimated segmentation of a of size (H ×W × ns). Taking
a real image x as input, estimated segmentation S (x) is
compared with ground-truth segmentation s to optimize the
segmentor S. When training together with the generator G,
the segmentation loss term to optimize G is defined as

Lfake
seg = Ez,c,s [As(s, S(G(z, c, s)))] , (5)

where the estimated segmentation S(G(z, c, s)) is compared
with the input segmentation s. By minimizing this loss term,
the generator is forced to generate fake images which are
consistent with the input semantic segmentations s.
Classification Loss. We embed an auxiliary multi-attribute
classifier Dc which shares the weights with Dd in discrimi-
nator D except the output layer. The auxiliary classifier Dc

takes an image as input and classify the image into indepen-
dent probabilities of nc attribute labels. The classification
loss for real samples is defined as

Lreal
cls = Ex,c [Ac(c,Dc(x))] , (6)

where (x, c) is a pair of real image with its attribute label,
Ac(·, ·) computes a multi-attribute binary cross-entropy loss
by Ac(a, b) = −

∑
k ak log(bk) with a, b being two vectors

of identical size (1× nc). Accordingly, we have the classifi-
cation loss for fake samples by

Lfake
cls = Ez,c,s [Ac(c,Dc(G(z, c, s)))] , (7)

which takes the fake image G(z, c, s) as input and guides
G to generate attribute-specific images according to the
classification information learned from real samples.
Overall Objectives to optimize S, D and G in SCGAN
can be represented as

LS = Lreal
seg , (8)

Algorithm 1: Training SCGAN, where λcls = 5,
λseg = 1, λgp = 10, nrepeat = 5 and m = 16.

1 Initialize three network parameters θG θD, θS ;
2 while θG has not converged do
3 for n = 1, ..., nrepeat do
4 Sample a batch of latent vectors

{zi}mi=1 ∼ N (0, 1);
5 Sample a batch of {xi, ci, si}mi=1 from

Pdata(x, c, s);
6 Sample a batch of numbers

{ϵi}mi=1 ∼ U(0, 1);
7 {sit}mi=1 ← shuffle({si}mi=1);
8 for i = 1, ...,m do
9 x̃i ← G(zi, ci, sit);

10 x̂i ← ϵixi + (1− ϵi)x̃i;
11 Li

adv ← Dd(x̃
i)−Dd(x

i)
12 +λgp(∥▽x̂Dd(x̂

i)∥2 − 1)2;
13 Lreal,i

cls ← Ac(c
i, Dc(x

i));
14 Lreal,i

seg ← As(s
i, S(xi));

15 end
16 Update D by descending its gradient:
17 ▽θD

1
m

∑m
i Li

adv + λclsLreal,i
cls ;

18 Update S by descending its gradient:
19 ▽θS

1
m

∑m
i Lreal,i

seg ;
20 end
21 for i = 1, ...,m do
22 x̃i ← G(zi, ci, sit);
23 Li

adv ← Dd(x̃
i);

24 Lfake,i
cls ← Ac(c

i, Dc(x̃
i));

25 Lfake,i
seg ← As(s

i
t, S(x̃

i));
26 end
27 Update G by descending its gradient:
28 ▽θG

1
m

∑m
i (Li

adv + λclsLfake,i
cls + λsegLfake,i

seg );

29 end

LD = −Ladv + λclsLreal
cls , (9)

LG = Lfake
adv + λclsLfake

cls + λsegLfake
seg , (10)

where LS , LD and LG are objective functions to optimize S,
D and G. λseg and λcls are hyper-parameters which control
the relative importance of Lseg and Lcls compared to Ladv .

D. Training Algorithm

Let θG, θD and θS be the parameters of networks G, D and
S, respectively. Our objective is to find a converged θG with
minimized LG. When training the proposed SCGAN, a batch
of latent vectors are sampled from a Gaussian distribution
N (0, 1) denoted as {zi}mi=1, where m is the batch size.
A batch of x with its ground-truth s and c are randomly
sampled from the joint distribution Pdata(x, c, s) of the target
dataset, denoted as {xi, ci, si}mi=1. When selecting target



Fig. 3. Comparison results on CelebA dataset. Our results are shown in the solid red rectangle. Failure cases of the compared methods are highlighted
by the dashed red rectangle. (Abbrev.: BL=Blond Hair, BR=Brown Hair, BK=Black hair, M=Male, F=Female, Y=Young, O=Old.)

semantic segmentation for {xi}mi=1, {si}mi=1 are randomly
shuffled to obtain a batch of target segmentations {sit}mi=1 to
be input to G. Details can be found in Algorithm 1.

IV. EXPERIMENT

In this section, we verify the effectiveness of SCGAN
on a face dataset and a fashion dataset with both semantic
segmentation and attribute label. We show both visual and
quantitative results compared with four representative meth-
ods, present the spatial interpolation ability of our model in
terms of face synthesis.

A. Datasets

Large-scale CelebFaces Attributes (CelebA) dataset [32]
contains 202,599 face images of celebrities with 40 binary
attribute labels and 5-point facial landmarks. We use the
aligned version of face images and select 5 attributes in-
cluding black hair, blond hair, brown hair, gender, and age
in our experiment. This dataset doesn’t provide any ground-
truth semantic segmentation for the face images. To obtain
the semantic segmentation, we apply Dlib [22] landmarks
detector to extract 68-point facial landmarks from the faces
images, which separate facial attributes into six different
regions. By filling those regions with corresponding semantic
index pixel-wisely, semantic segmentations are created.

Large-scale Fashion (DeepFashion) dataset [31], [52] is a
large-scale clothing database, which contains over 800,000
diverse fashion images ranging from well-posed shop images
to unconstrained photos from customers. In our experiment,
we use one of the subsets particularly designed for the
fashion synthesis task, which selects 78,979 clothing images
from the In-shop Clothes Benchmark associated with their
attribute labels, captions, and semantic segmentations. We
use the 18-class color attributes and the provided semantic
segmentation in our experiment.

B. Compared Methods

Pix2Pix [15] and CycleGAN [50] are two popular image-
to-image translation method, which can take semantic seg-

mentation as input and synthesize realistic images. Pix2Pix
requires paired images while CycleGAN is trained in an
unpaired way. We also compare our method with a most
recent state-of-the-art method named SPADE [38] which can
generate images given semantic segmentations following the
styles/modalities of input images. In our experiment, we use
the official implementation released by the authors, train their
model on our target datasets, and try our best to tune the
parameters to deliver good results.

C. Spatially Constrained Face Synthesis

We first provide comparison results on CelebA in Figure 3.
The input segmentations are shown in the leftmost column,
and the results of Pix2Pix and CycleGAN are shown in the
next two columns. The visual quality generated by Pix2Pix
is low, and CycleGAN suffers a mode collapse issue that
their model only gives a single output no matter the input
segmentation. One possible reason is that translating facial
segmentation to realistic faces is essentially a one-to-many
translation, however, those two image-to-image translation
methods both assume a one-to-one mapping between input
and target domains. Especially for CycleGAN, their cycle-
consistency loss which seeks to maintain the contents during
a cycle translating forward and backward tends to enforce the
one-to-one mapping. When a face image is translated into
its semantic segmentation, it is barely possible to translate
it back to the original face due to the information lost
in the many-to-one translation. The results of SPADE are
presented in Column 4 and 5 in Figure 3. SPADE can
generate diverse faces given fixed segmentation as inputs,
but the attributes of the generated faces are randomized
despite providing “style images” to the encoder. Since face
images are similar to each other in structures, it violates the
style-based assumption of SPADE. Our proposed SCGAN
could always produce reliable and high-quality results. It is
worth noting that inputting randomly sampled latent vectors
can result in diverse images with different backgrounds and
details in segmentation-to-image synthesis. Due to the high-



Fig. 4. NoSmile2Smile facial expression interpolations. Each row shows a
group of interpolated results between a not smiling face and a smiling face
with a specific attribute label and a fixed latent vector.

TABLE I
QUANTITATIVE EVALUATION ON CELEBA AND DEEPFASHION DATASET

USING FRÉCHET INCEPTION DISTANCE (FID), MEAN IOU (MIOU) AND

PIXEL ACCURACY (PACC). N/A INDICATES MODE COLLAPSE

CelebA DeepFashion
Methods FID mIoU pAcc FID mIoU pAcc
CycleGAN [50] N/A N/A N/A 30.1 63.26 82.21
Pix2Pix [15] 20.4 78.71 98.05 24.4 65.41 82.91
SPADE [38] 18.5 74.76 97.82 20.2 75.80 83.10
SCGAN 10.2 79.11 98.95 19.8 77.20 83.23

frequency signal from boundaries of attributes in semantic
segmentation, our SCGAN could produce a large number of
sharp details which makes the results more realistic com-
pared to all the other methods. In summary, SCGAN enjoys
superiority in terms of diverse variations, controllability, and
realistic high-quality results over the other methods.

D. Interpolation Abilities

Beyond face synthesis, our proposed SCGAN can control
the face orientation and facial expressions of the synthesized
faces by feeding corresponding semantic segmentations as
guidance. To synthesize faces of every intermediate state
between two facial orientations and expressions, correspond-
ing semantic segmentations of those intermediate states are
needed. It is difficult to obtain such intermediate segmenta-
tions that numeric interpolation between two segmentations
only results in a fade-in and fade-out effect. Instead, we
interpolate every intermediate state on x-y coordinates of
facial landmarks instead of segmentation domain. We then
construct semantic segmentations from those landmarks to
obtain spatial-varying semantic segmentation. As shown in
Figure 4 and 5, SCGAN generates intermediate faces from
not smiling face to smiling face (NoSmile2Smile)and from
left-side face to right-side face (Left2Right). Interpolations
on latent vectors are also shown in Figure 5.

E. Spatially Constrained Fashion Synthesis

Comparison results on the DeepFashion dataset presented
in Figure 6 also demonstrate the advantages of our pro-

Fig. 5. Two-dimension interpolation results in latent space and between
Left2Right faces. Each column presents the results of interpolated latent
vectors, and each row shows the interpolation results on facial orientations.

posed SCGAN over the other methods. Similar to Figure 3,
the input segmentation, results of Pix2Pix, CycleGAN and
SPADE are shown in the left five columns. The images in
the large solid red rectangle are our results from SCGAN
with both semantic segmentation and attribute labels and
latent vector as inputs. Different from the results on CelebA
dataset, image-to-image translation methods are capable of
producing acceptable results on the DeepFashion dataset, be-
cause the intrinsic one-to-many property in the DeepFashion
dataset is not as strong as in the CelebA dataset. In the
DeepFashion dataset, the ability of shape preserving becomes
more important than general visual discrimination. Their
results also lack attribute-level controllability and variations
on fashion detail as our results highlighted by the dashed
blue rectangle. With our semantic segmentation as the spatial
constraints, SCGAN can generate fashion images controlled
by the input color labels and semantic segmentation, while
the input latent vectors encode variant fashion style (e.g.,
cardigans, T-shirts), diverse pants and shoes, and different
color shades and saturation (e.g., dark blue, light blue).

F. Quantitative Evaluation

To quantitatively evaluate the effectiveness of spatially
constrained image generation, we use Fréchet Inception
Distance (FID) [13] to evaluate the fidelity of the gener-
ated images. FID measures the distance between real and
synthesized data in their Inception embeddings. We also
adopt metrics of mean IoU (intersection over union) and
pixel accuracy to examine the spatial consistency between the
input semantic segmentation and the generated images from
the generator, which are commonly used when evaluating
segmentation algorithms. We run the experiment for five
times and report the averaged results compared with the
image-to-image translation methods of CycleGAN, Pix2Pix
and SPADE. As shown in Table I, our SCGAN achieves the
best performance on both CelebA and DeepFashion datasets.
Our method is capable of generating realistic images with
diversity as well as make those images comply with the input
semantic segmentations accurately.



Fig. 6. Comparison with Pix2Pix, CycleGAN and SPADE on DeepFashion dataset. Their failure cases are highlighted in the dashed red rectangle, while
the dashed blue rectangle highlights the representative diverse results generated by our proposed SCGAN.

Fig. 7. An ablation study on generator configurations. Our proposed
generator structure solves the foreground-background mismatch problem
suffered by the alternative generator which inputs all the conditions at once.

G. Ablation Study on Generator Configuration

As described in Section III-B, the generator of our pro-
posed SCGAN takes three inputs, a semantic segmentation, a
latent vector, and an attribute label step by step in order that
the contents in the synthesized image should be decoupled
well to be controlled by those inputs. Otherwise, those
inputs may conflict with each other and fail to generate the
desired results. To demonstrate that, we conduct an ablation
study to compare with an alternative generator that takes
all the inputs and concatenates them together at the same
time. We refer to this variant of generator network as the
alternative G. As shown in Figure 7, severe foreground-
background mismatches happen in the results of alternative
G that the facial components regulated by the input seg-
mentation cannot be merged correctly with the skin color
or hairstyle determined by the latent vector. Our particularly
designed generator could successfully decouple the contents

Fig. 8. An ablation study on model convergence. Losses during training
are plotted together and the intermediate generated samples are shown.

of synthesized images into controllable inputs and generate
variations on other unregulated contents.

H. Ablation Study on Model Convergence

Our proposed SCGAN converges fast and stably due to
the introduction of the segmentor and the auxiliary classifier.
We conduct an ablation study on model convergence by
removing segmentor and auxiliary classifier. Figure 8 shows
the losses of generator and discriminator during the training
process on CelebA dataset. The blue plots are the losses
of the proposed SCGAN. Green plots are the losses after
removing the segmentor network. The orange plots show
the losses after removing both the segmentor network and
the embedded auxiliary classifier, while all the other things
such as model architecture and hyper-parameters are kept
unchanged. As observed from this figure, the training process
of our SCGAN is much more stable with less vibration on
losses. The convergence of SCGAN happens faster and its
final loss is smaller than the other two ablation experiments.



The bottom part in Figure 8 shows the intermediate generated
samples that improve gradually as the model converges.

V. CONCLUSIONS

In this paper, we proposed SCGAN to introduce spatial
constraints to face and fashion image synthesis. Extensive
experiments compared with other popular generative models
on CelebA face dataset and DeepFashion datasets demon-
strated that the proposed SCGAN was capable of controlling
spatial contents, specifying attributes, and generating diver-
sified images. We particularly designed the generator to take
semantic segmentations, latent vectors, and attribute labels
step by step to solve the foreground-background mismatch
problem. In summary, our method is a simple yet effective
variant of the GAN, which could be easily adapted to recent
high-resolution GAN-based image generation models.
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