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Abstract—1In this work, we propose a video-based transfer
learning approach for predicting problem outcomes of students
working with an intelligent tutoring system (ITS). By analyzing
a student’s face and gestures, our method predicts the out-
come of a student answering a problem in an ITS from a
video feed. Our work is motivated by the reasoning that the
ability to predict such outcomes enables tutoring systems to
adjust interventions, such as hints and encouragement, and
to ultimately yield improved student learning. We collected
a large labeled dataset of student interactions with an intel-
ligent online math tutor consisting of 68 sessions, where 54
individual students solved 2,749 problems. The dataset is pub-
lic and available at https://www.cs.bu.edu/faculty/
betke/research/learning/, Working with this dataset,
our transfer-learning challenge was to design a representation
in the source domain of pictures obtained ‘“in the wild” for
the task of facial expression analysis, and transferring this
learned representation to the task of human behavior prediction
in the domain of webcam videos of students in a classroom
environment. We developed a novel facial affect representation
and a user-personalized training scheme that unlocks the
potential of this representation. We designed several variants of
a recurrent neural network that models the temporal structure
of video sequences of students solving math problems. Our final
model, named ATL-BP for Affect Transfer Learning for Behavior
Prediction, achieves a relative increase in mean F-score of 50%
over the state-of-the-art method on this new dataset.

I. INTRODUCTION

Research on developing intelligent tutoring systems (ITS)
is a promising avenue for improving learning and educa-
tion [32], [4], [47]. Previous work has shown that real-
time signals from students can be used to improve their
learning [3], [16], [17]. Predicting whether students are
having trouble with problems can allow an ITS to provide in-
terventions, such as providing hints or encouragement, which
could help the students understand or solve the problem, thus
improving learning outcomes.

MathSpring [32] is a popular online browser-based ITS
that uses multimedia to encourage and support students as
they solve math problems. Using the MathSpring ITS, a
dataset named MathSpringSP [22] was collected, which in-
cludes 1,596 segmented videos of study sessions of students
interacting with the ITS. Each problem tackled by a student
has an associated outcome label automatically annotated by
the ITS. Some example labels are skipped, solved on first try,

978-1-6654-3176-7/21/$31.00 ©2021 IEEE

2 University of Massachusetts Amherst
5 Worcester Polytechnic Institute

3 Affectiva
6 University of Washington

Face Analysis
Network

Affect [
Network

| X)) ll// (Xr)

DISGUST I I — ... —

 ANGRY !

Source Domain D, | Target Domain D,

Fig. 1. Our proposed Affect Transfer Learning for Behavior Prediction
(ATL-BP) model for predicting the behavior of students working with an
intelligent tutoring system. The target-domain ATL-BP model consists of
three components, an affect network trained for the source domain problem
of affect recognition, a facial analysis network, and an LSTM.

solved with hint, among others. In this work we address the
problem of predicting the outcome label from a video feed
of the student while they are solving the problem. Being
able to have a model that can successfully predict outcomes
while a student is completing a problem can help the ITS
provide interventions such as hints or encouragement when
the student is having difficulties.

Facial and gesture analysis are valuable tools for pre-
dicting emotions, but the question of how to use them for
predicting student performance with an ITS remains chal-
lenging since cues can be very subtle or ambiguous. A smile,
for example, does not necessarily mean that the student
is happily solving an exercise. Instead, it could indicate
a student’s embarrassment for not knowing the answer to
a question. Moreover, in our experience, trying to obtain
valid ground truth labels of the student videos from human
annotators is a futile experimental task because humans have
a very low accuracy rate when predicting problem outcomes
from video. Just like automated facial analysis tools, human
annotators struggle with interpreting the ambiguity in and
limited amount of information given by student gestures.

Prior research in transfer learning for facial analysis tasks
mostly focuses on transfer learning for the same task in


https://www.cs.bu.edu/faculty/betke/research/learning/
https://www.cs.bu.edu/faculty/betke/research/learning/

order to bridge domain gaps such as personalization of a
prediction system to specific individuals [1], [7], [8], [43],
[50], improving results on a benchmark by fine-tuning neural
networks that are pre-trained on external datasets for a
similar prediction task [25], or improving results by pre-
training on a related facial analysis task [48]. In contrast, our
work tackles the more challenging transfer learning across
domains and tasks, which is a form of transductive transfer
learning [39], Specifically, we tackle the problem of learning
a representation in the source domain of in-the-wild pictures
for the task of facial expression analysis and transferring
this learned representation to the task of human behavior
prediction in the domain of webcam videos in a controlled
environment (Fig. [T). While prior work has explored trans-
fer learning from facial analysis to behavior analysis, for
example, using VGG-Face facial recognition embeddings
to predict driver distraction [15], our work is, to the best
of our knowledge, the first to propose leveraging an affect
representation, learned using a deep neural network, for a
behavior prediction task. Our learned affect representation
is general and can be used not only for predicting problem
outcomes on an ITS, but in any human behavior prediction
problem where affect and expression are important cues.

The largest obstacle in training an end-to-end deep learn-
ing model for behavior analysis problems is the fact that data
are relatively scarce, which increases the risk of overfitting.
As a first step to alleviating the data problem, we present
MathSpringSP+, an extended version of the MathSpringSP
dataset, which is roughly double the size of the original
dataset. Next, we propose a novel facial affect representation
for behavior prediction problems that is learned from a large
affect classification dataset. We show that, by incorporating
this affect embedding, we can obtain improvements com-
pared to more traditional deep face embeddings such as the
VGG-Face facial recognition embedding [40]. We developed
a two-layer Long Short Term Memory (LSTM) model [20]
that takes into account the temporal structure of the problem
and successfully leverages our affect embedding. We show
that, by conducting user-personalized training where a small
portion of a student’s initial captured data is used to fine-tune
the model, our method outperforms the previous state-of-the-
art method [22] by 50%. Finally, we present a video dataset
of problem-solving interactions of children and show that
finetuning the ATL-BP affect network using children face
images further improves the performance. We summarize our
contributions as follows:

o We present MathSpringSP+: a large labeled dataset of
student interactions with an intelligent online math tutor
consisting of 68 sessions, where 54 individual students
solved 2,749 problems. This dataset includes two views
of students solving each problem as well as problem
outcome labels that describe the performance of the
students on each individual problem. We will release
this dataset upon acceptance.

o We present a transfer learning facial affect represen-
tation that can be used for behavior prediction tasks.

This representation is learned from a large facial affect
dataset.

e We are the first to model the temporal structure of
video sequences of students solving math problems
using a recurrent neural network architecture, improving
performance on existing datasets.

e Our proposed Affect Transfer Learning for Behavior
Prediction (ATL-BP) model outperforms the previous
state-of-the-art method by 50%.

o We present a dataset of children problem-solving inter-
actions collected in the same manner as MathSpringSP+
and show that finetuning the ATL-BP affect network
using children face images further improves the perfor-
mance on this target domain.

II. RELATED WORK

a) Intelligent Tutoring Systems: Intelligent tutoring
systems have been evaluated and shown to produce learn-
ing gains [14], [33], [34], [36], [45]. One meta-analysis
shows test score improvements from the 50th to 75th per-
centile [29]. Some ITS have been shown to match the success
of one-on-one human tutoring and students using these tutors
outperform students from conventional classes in 92% of
the controlled evaluations and perform twice as high as
for students using typical (non-intelligent systems) [9], [18],
[28].

There is a large amount of work that analyzes user affect,
emotions and expressions from interactions with games or in-
telligent tutoring systems [2], [5], [10], [14], [13], [21], [23],
[30], [37], [38], [41], [42], [46]. In certain cases the predicted
affect information is used to improve learning. For example,
Strain and D’Mello [44] have studied the role of emotion in
ITS engagement, task persistence, and learning gain. Gaze
prediction has also been used in an effort to respond to
students’ boredom and to perform interventions [14]. Further,
relationships between visual facial Action Unit (AU) factors
and self-reported traits such as academic effort, study habits,
and interest in the subject have been studied [38].

In contrast to this body of work, our work focuses on
using predicted deep affect embeddings that are learned from
a large facial affect dataset to improve behavior prediction
in an ITS. Behavior prediction can be useful in improving
learning by tailoring the interventions of the ITS to the pre-
dicted actions of the student. To the best of our knowledge,
our work is the first to use an affect embedding for behavior
prediction in an ITS.

b) Interventions in an Online Tutor: Prior research
has examined the impact of several interventions in ITS to
improve student outcome and affect, specifically, affective
messages delivered by avatars and empathetic messages that
responded to students’ recent emotions [47]. Interventions in
the MathSpring ITS led to improved grades in state standard-
ized exams [11] as well as influence students’ perceptions
of themselves as learners [24]. Empathetic characters which
provide interventions generate superior results both to im-
prove student interactions with the system, address negative
student emotions, and in the overall learning experience [27].



Predicting outcomes of problems for students is a valuable
source of information for planning and executing ITS inter-
ventions for improving learning [12], [49]. For example the
ITS could provide hints when the system predicts that the
student will not be able to successfully complete the problem.
c) Predicting Exercise Qutcome: Joshi et al. [22]
presented a first attempt at tackling the problem of exercise
outcome prediction. They did not explore deep learning
representations but used traditional facial analysis features
such as head pose, gaze and facial action units (AUs). They
also did not attempt to model the temporal component of
the videos, which is a rich source of information, and instead
opted to summarize features from a video into one single fea-
ture vector. The method by Joshi et al. [22] can be considered
the previous state of the art in student outcome prediction,
and, thus, our experimental results include a performance
comparison between this method and our models.

III. MATHSPRINGSP+ DATASET

In order to build an ITS capable of understanding student
behavior and producing interventions, it is critical to build
tailored datasets that allow development of behavior under-
standing techniques. To this end, in this work we expand
the MathSpringSP dataset described by Joshi et al. [22],
following the same data collection protocol. We name the
extended dataset MathSpringSP+. MathSpringSP+ is roughly
double the size of the original MathSpringSP dataset.

MathSpringSP+ consists of Webcam and GoPro videos
that are recorded while college students solve math problems
using the online tutor MathSpring [32] on a laptop. The
webcam is positioned on the laptop and films the student at
a frontal angle. The designated spot for the GoPro camera is
above the notepad, to the front-right of the student. Figure [2]
illustrates our data capturing setup from three viewpoints.
Students work on solving math problems for 30—40 minutes
or approximately 50 problems. The number of problems
solved is variable between sessions depending on the rate
at which each student solves problems. We divide each
student’s video session into shorter video segments, where
each segment is associated with an individual math problem.
Each math problem video clip has an associated problem
outcome y, recorded in the log files of the ITS [22]. This
problem outcome is automatically labeled by the software
using a rule-based algorithm that chooses from the following
seven possible student outcomes:

o ATT (attempted): Student did not see any hints and
solved the problem after one incorrect attempt

o GIVEUP: Student tried to answer the problem or asked
for a hint but ultimately skipped the problem

¢ GUESS: Student did not see hints, but solved the
problem after more than one incorrect attempts

¢ NOTR (not read): Student performed some action, but
the first action was too fast for the student to have read
the problem

o SHINT (solved with hint): Student eventually submitted
the correct answer after seeing one or more hints

TABLE I
SIZE COMPARISON OF OUR EXTENDED MATHSPRINGSP+ DATASET
COMPARED TO MATHSPRINGSP

MathSpringSP  MathSpringSP+
Individual Students 30 54
Student Sessions 38 68
Problem Samples 1,596 2,749

o SKIP: Student skipped the problem without asking for
a hint or attempting to answer the problem

e SOF (solved on the first attempt): Student answered
correctly on the first attempt, without seeing any hints

Examples of the variation in student facial expression
throughout the process of answering problems in the math
tutor are shown in Figure [3] We note that expressions can
be very subtle. Expressions can also be ambiguous: a frown
can mean that the student is very focused and will solve the
problem correctly or that they are having difficulties with
the problem. Expression intensities and variance depend on
the individual, and it is challenging to generalize to different
identities. Finally, our method has to deal with hand gestures,
face occlusions and extreme pose changes, some of which
are shown in Figure [3] A total of 24 students participated
in the extended study, compared to 30 in the original study.
The dataset will be made publicly available. We note that
the dataset only includes individuals who have provided
written consent that their data may be used publicly for
research purposes. Several students participated in multiple
sessions. Each session lasted approximately one hour. In
total, 30 student sessions were recorded, which yielded 1,153
problem samples. Thus, the extended MathSpringSP+ dataset
contains videos of a total of 54 unique students, 68 student
sessions and 2,749 problem samples. This amount of data
almost doubles the original MathSpringSP dataset, which
contains 38 student sessions and 1,596 problem samples. A
detailed breakdown of the relative sizes of MathSpringSP
and MathSpringSP+ are shown in Table

IV. METHOD

The dataset consists of labeled video pairs (X, y), where
the video X is a time series of RGB frames X = {X; | ¢t =
1..T} of a student solving a problem, and the scalar label
y indicates the outcome class for that problem. The task at
hand is a 7-label classification problem, i.e., y € {1,...,C},
for C =7.

Our challenge was to work out how to leverage state-of-
the-art affect recognition techniques to compute an output
label y from the input video X. Affect recognition models
provide affect estimates from images of faces that typically
show strong emotions, e.g., the disgust expressed in the
women’s face on the left in Fig[l] We decided to use a
ResNet-50 network [19] and the AffectNet dataset [35],
which contains more than one million facial images collected
“in the wild” from the Internet, to solve the source domain
problem of predicting eight emotions, neutral, happiness,
sadness, surprise, fear, disgust, anger, contempt, plus the



Fig. 2. Data capture setup for the MathSpringSP+ dataset from three views (front, side and back). The student completes problems on a laptop. The laptop
webcam and Go-Pro camera on the right side of the student are used to capture the student’s upper body and face during the completion of problems.

Fig. 3.

Example face-cropped images from the MathSpringSP+ dataset showing the evolution of student expressions. In particular we notice changes

in head pose, hand gestures, face occlusion and facial gestures throughout the videos. Expressions in videos can be very subtle, as well as ambiguous,

making the prediction problem challenging.

two classes, uncertain, and non-face. We employ this trained
affect network to solve the target-domain problem of student
outcome prediction.

The proposed ATL-BP model consists of three main com-
ponents, see Figure [T] the affect network, a facial analysis
network, and an LSTM. We also study variants of our model
by either removing the affect network or replacing it with a
face recognition network.

First, from the last layer of the trained affect network,
ATL-BP extracts a fixed-size embedding of size 8,192,
computed for each frame X, and compresses it into a lower-
dimensional vector p(X;) by learning the weights for a fully-
connected neural network layer ¢, (Fig. [T, magenta).

Second, ATL-BP uses a facial analysis model to extract
facial Action Unit (AU) presence and intensity, gaze di-
rection, and head pose for each frame X;. We note these
traditional facial analysis features as 1(X;) (Fig. |1} green).
We chose the OpenFace 2.0 model [6] to compute student
head position, head pose, gaze, facial AU presence, and facial
AU intensity from individual frames in each video segment.

For our main ATL-BP model we devised a feature rep-
resentation that is based on concatenating the outputs of
our proposed affect representation and the facial analysis
components:

A(X1) = ca(p(Xt)) ® P(Xy),

where @ is the concatenation operation for vectors. The
compressed embedding c,(p(X})) is 100-dimensional. The
full feature vector ¢(X;) has dimension 149 for every frame
videoy.

For our model variants, we replace the affect network by
a face recognition model in order to extract face related fea-
tures. We selected the pre-trained VGG-Face network [40],
which computes an embedding ¢ of dimension 2,622. ATL-
BP compresses the feature representation £(X;), computed
by this network for each video frame X, using another fully-
connected layer c¢,, into ¢, (§(X4)).

Finally, in order to model the temporal nature of the
videos, we designed a unidirectional 2-layer LSTM classifier
hg with 200 hidden units that processes the feature vector
¢(X;) frame by frame and produces the final estimate of
student outcome y (Fig. [T} orange).

V. EXPERIMENTS

We present experiments on problem outcome prediction
on the MathSpringSP+ dataset. These experiments study our
contributions, which include incorporating temporal infor-
mation from video streams by using an LSTM and using
our affect transfer learning representation. The experiments
also show how user-personalized training unlocks the effec-
tiveness of our affect representation. We also study early



prediction as well as present ablation studies for the di-
mensionality reduction that is accomplished by the proposed
fully-connected layer. In this work we limit ourselves to the
webcam video stream of the student.

A. Model Training

a) Training the Affect Representation Network: For
source domain affect training, we selected a ResNet-50 net-
work. We pre-trained the affect network on a subset of 50,000
randomly sampled images from the AffectNet dataset and
validated the network on 5,000 randomly selected images.
We limited ourselves to a subset since the dataset contains
more than one million examples. Note that our training and
validation data subsets are not the same as used by [35]. On
our subset, our network achieves a mean accuracy of 47.3%,
which is close to the accuracy reported by [35] on their skew-
normalized validation set of 54%, and much higher than the
random baseline of 9.0%. The relatively low accuracy scores
can be contributed to a data that is unbalanced, noisy, and
overall challenging.

We extracted the target domain affect features from our
videos by performing inference of the affect network on
every frame. We chose a granularity of three frames per
second, down from 30 frames per second in our videos,
in order to save on processing time and storage space. We
found that this granularity was a good compromise between
performance and cost. The affect network uses each frame as
an input and the last-layer features are extracted as a vector
of dimension 8, 192.

We trained the affect network with the Adam optimizer
with a learning rate of 3 x 1074, 3; of 0.9, and /3 of 0.999.
The standard batch normalization layers of the ResNet-50
were used and fixed throughout training.

b) Training ATL-BP to Predict Student Exercise Out-
come: For each frame used, the feature vector computed is
A(Xy) = P(Xy) Bea(p(Xy)) By (§(Xy)). We observed that
the dimensionality reduction due to the compression layer
stabilizes training and improves performance. The feature
vector ¢ is used to train the LSTM with two stacked layers.
Specifically, at each instant ¢, features ¢(X;) are fed to the
LSTM. The LSTM is trained on all the video segments. It
outputs a class probability for each problem outcome. The
LSTM is trained using the cross-entropy loss function. The
Adam optimizer is used for training. We use a learning rate
of 3 x 1075 for 30 epochs, and a batch size of 1.

B. Experimental Setup for Testing

a) Model Variations for Testing: In addition to our
main proposed ATL-BP, shown in Figure [I] and which
we call “ATL-BP with affect embedding” for clarity, we
implemented and test two variants of ATL-BP. The first
variant is ATL-BP without transfer learning. In this model,
the LSTM directly interprets the output 1) of the facial
analysis network and does not use the embedding scheme
we propose in this work. The second variant is ATL-BP with
VGG-Face embedding. In this model, the LSTM interprets

the output ¢, (£(X;)) concatenated with the output ¢ of the
facial analysis network.

Furthermore, for comparison baselines, we reproduced the
method described by Joshi et al. [22] and show results for a
majority vote classifier. The majority vote classifier simply
selects the most prevalent class in our dataset, “Solved on
First Try,” for every video.

b) Random Dataset Split: Following the experimental
setup in [22], we performed five-fold cross validation on our
dataset by randomly shuffling video segments and construct-
ing five different train and test splits. The train splits contain
80% of the data while the test splits contain the rest.

Experiments conducted using this random splitting exper-
imental setup cannot reliably measure generalization to new
users since videos of problems from the same student can
be present in both the training and test set. This means
that the network does not have to learn how to generalize
to a completely new identity. We propose an improved
experimental setup next.

c) User Generalization Split: In order to test gener-
alization to new users we propose a leave-users-out exper-
imental setup where users are exclusively split into either
the training or test set. In other words, we enforce the rule
that no video clips of the same user can be in both the test
and training sets. In this manner we can measure how the
system performs when applied to an unseen user. This is a
substantially more challenging task since the network has to
generalize to new identities and features. We suggest that
all future research on this dataset use this type of setup.
We created five leave-users-out splits for five-fold cross-
validation and train different model variations for each split.

C. Results and Discussion

a) ATL-BP Results for Random Splits: Using the
experimental protocol of a random dataset split, our ATL-BP
for problem outcome prediction on MathSpringSP+ achieves
an accuracy of 60.2% (Table [[I). Compared to the previous
state-of-the-art method [22], this is an increase of 14 percent
points (pp) in accuracy. ATL-BP also achieves a 44% relative
increase in mean F-score improving from 0.238 to 0.330. The
mean F-score is computed by first computing the individual
F-score for all classes and averaging over all classes. By
comparing the results for ATL-BP without transfer learning
and those by Joshi et al. [22], we can see that by integrating
an LSTM architecture that allows for modeling the temporal
component in the videos we can achieve a marked increase
in performance (5.6 pp). We achieve a further increase in
performance by using deep embeddings (8.6 pp for using
the VGG-Face embedding &), and especially our proposed
affect embedding ) (as mentioned, 14 pp).

b) MathSpringSP Results: We conducted experiments
on the original MathSpringSP dataset in order to verify
that our proposed ATL-BP model with affect embeddings
achieves improved results in the same testing environment
presented by Joshi et al. [22]. Our results show a consistent
improvement in mean F-score and accuracy of our method

(Table [I).



TABLE I
RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE
MATHSPRINGSP+ DATASET USING FIVE-FOLD CROSS-VALIDATION AND
RANDOM DATA SPLITS

Method Mean F-Score Accuracy
Majority Vote Classifier 0.103 56.1%
Joshi et al. [22] 0.228 46.2%
ATL-BP w/o transfer learning 0.295 51.8%
ATL-BP w/ VGG-Face embedding 0.304 54.8%
ATL-BP w/ affect embedding 0.330 60.2%

TABLE III
RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE ORIGINAL
MATHSPRINGSP FOR ATL-BP FOLLOWING THE DATA SETUP FROM
JOSHI ET AL. [22]

Method Mean F-Score Accuracy
Joshi et al. [22] 0.270 54.0%
ATL-BP w/ affect embedding  0.362 61.0%

c) Early Prediction of Problem Qutcome: We ex-
perimented with obtaining prediction using only the five
first seconds of each video clip (Table [[V). Early outcome
prediction is important since the ITS should have time to
react and deliver the intervention should it be decided to do
so. It turns out that is straightforward to do early prediction
using an LSTM since it outputs a prediction at every time
step, as opposed to the method proposed by Joshi et al. [22],
where each video has to be summarized into a fixed-sized
vector before being fed into a multilayer perceptron. We
observe that ATL-BP achieves a large increase (6.7 pp) in
performance over [22]. ATL-BP without transfer learning
obtains the best F-score (0.295) in this experimental setup.

d) Deep Embedding Dimensionality Reduction: We
performed an ablation study on the fully-connected layer
that is used for reducing the dimensionality of the deep
embeddings that are used as inputs for our LSTM architec-
ture (Table [V). While the mean F-score does not change on
both the VGG-Face and proposed affect embedding ATL-BP
variants, dimensionality reduction does improve the accuracy
of the models by 3.5 pp and 1.5 pp, respectively.

e) ATL-BP Results for User Generalization: For the
user generalization split of the training and testing data, we
report the mean F-score and mean accuracy in Table [VI] for
the “Majority Vote Classifier” benchmark, Joshi et al. [22]
and our proposed model with different combinations of
embeddings. We observe that the temporal modeling im-

TABLE IV
RESULTS FOR EARLY PREDICTION OF PROBLEM OUTCOME USING ONLY
THE FIRST FIVE SECONDS OF VIDEO FOOTAGE ON THE MATHSPRINGSP+
DATASET (FIVE-FOLD CROSS-VALIDATION, RANDOM DATA SPLITS).

Method Mean F-Score Accuracy
Majority Vote Classifier 0.103 56.1%
Joshi et al. [22] 0.173 46.7%
ATL-BP w/o transfer learning 0.295 51.8%
ATL-BP w/ VGG-Face embedding  0.239 47.0%
ATL-BP w/ affect embedding 0.270 53.4%

TABLE V
EMBEDDING DIMENSIONALITY REDUCTION ABLATION STUDY. WE
SHOW RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE
MATHSPRINGSP+ DATASET USING FIVE-FOLD CROSS-VALIDATION AND
RANDOM DATA SPLITS

Method Mean F-Score Accuracy
ATL-BP w/ VGG-Face 0.304 51.3%
ATL-BP w/ VGG-Face & dim. reduction 0.304 54.8 %
ATL-BP w/ affect 0.330 58.7%
ATL-BP w/ affect & dim. reduction 0.330 60.2%

TABLE VI
RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE
MATHSPRINGSP+ DATASET USING FIVE-FOLD CROSS-VALIDATION AND
THE MORE CHALLENGING LEAVE-USERS-OUT SPLITS

Method Mean F-Score Accuracy
Majority Vote Classifier 0.102 55.9%
Joshi et al. [22] 0.182 41.9%
ATL-BP w/o transfer learning 0.270 50.3%
ATL-BP w/ VGG-Face embedding  0.246 51.8%
ATL-BP w/ affect embedding 0.251 54.0%

proves results from Joshi et al. [22] substantially (12.1 pp in
accuracy). We observe that ATL-BP without transfer learning
outperforms the ATL-BP version with our proposed affect
embedding with regards to the F1 score. We hypothesize that
leveraging affect embeddings is more difficult in this setup
since the model does not have access to baseline levels of
expression for each user.

f) Personalization of Prediction: An effective real-
time tutoring system would benefit from personalizing its
prediction using initial data captured from a specific user
stream. People have different emotional and expression base-
lines that can be learned using data collected in a trial
run of the system. Specifically, we want the model to act
on the variations of our affect embedding compared to
the mean affect embedding, since each person will have a
different baseline expression and thus a different baseline
affect embedding. The model does not have any way to
integrate this information without it being personalized for
each user.

We propose a personalization scheme in which our system
can be tailored to individual users and can fully utilize our
proposed affect embedding. In this scheme, the network is
fine-tuned on the initial problems corresponding to 20% of
the session for users in the test set for 30 epochs. Our
experiments show that user personalization unlocks the po-
tential of the affect features (Table [VII). ATL-BP with affect
embedding achieves the highest F-score of 0.308 and the
highest accuracy of 55.1% compared to the other methods.
Our full method achieves a relative increase of 50% in mean
F-score as well as an absolute increase in accuracy of more
than 11 pp compared to the previous state of the art [22].
Our full method also outperforms variants of ATL-BP, which
do not use our proposed affect representation.

g) Outcome Prediction for Children: As a final ex-
periment we tested our method on a new dataset of children



TABLE VII
RESULTS FOR PROBLEM OUTCOME PREDICTION (7-CLASSES) ON THE
MATHSPRINGSP+ DATASET AFTER USER PERSONALIZATION (FIVE-FOLD
CROSS-VALIDATION AND LEAVE-USER-OUT SPLITS)

Method Mean F-Score Accuracy

Majority Vote Classifier 0.090 45.3%
Joshi et al. [22] 0.206 43.8%
ATL-BP w/o transfer learning 0.278 48.4%
ATL-BP w/ VGG-Face embedding  0.262 48.7%
ATL-BP w/ affect embedding 0.308 55.1%

TABLE VIII
RESULTS FOR PROBLEM OUTCOME PREDICTION (7-CLASSES) ON THE
CHILDREN DATASET (FIVE-FOLD CROSS-VALIDATION, RANDOM DATA
SPLITS).

Method Mean F-Score Accuracy

Majority Vote Classifier 0.070 32.3%
Joshi et al. [22] 0.202 32.0%
ATL-BP w/o transfer learning 0.238 33.4%
ATL-BP w/ affect embedding 0.260 39.6%
ATL-BP w/ LIRIS children affect embedding 0.272 45.2%
ATL-BP w/ CAFE children affect embedding 0.273 44.4%
ATL-BP w/ LIRIS+CAFE affect embedding 0.278 45.2%

working on math problems. Following the same data collec-
tion protocol as MathSpringSP+, we collected 968 recorded
problem-solving interaction samples of fifty-one K12 stu-
dents who used MathSpring. We show some extracted frames
from the dataset in Figure [4] Results on this Children dataset
show that our model consistently outperforms the baseline
and previous state-of-the-art method (Table [VIII).

Since the AffectNet dataset mainly captures facial expres-
sions of adults, we further finetuned the affect representation
network using two datasets of children facial expressions,
LIRIS [26] and CAFE [31], in order to tailor the model
specifically for children. LIRIS contains 208 video clips of 6-
to-12-year-old children showing six basic spontaneous facial
expressions, while CAFE dataset contains 1,192 images of
2-to-8-year-old children posing for seven facial expressions.
We trained three variants of models using LIRIS only
(frames), CAFE only, and a combination of both datasets.
The best model among the three achieves the highest accu-
racy (45.2%) and mean F-score (0.278), improving on the
previous state-of-the-art [22] (13.2 pp absolute increase in
accuracy and 38% relative increase in mean F-score) on the
challenging task of predicting future outcome using only
student face movements and gestures. The prediction task
has 7 classes which contributes to the difficulty.

VI. CONCLUSION

We introduced a large labeled dataset of student interac-
tions with an intelligent online math tutor that consists of
68 sessions, where 54 individual students solved 2,749 math
problems. Using this dataset we design a transfer learning
model ATL-BP that improves problem outcome predictions
for students interacting with the ITS and answering math
problems. By modeling the temporal structure of the videos
with ATL-BP, we achieved a substantial increase in classifi-
cation F-score and accuracy compared to previous state of the

Fig. 4.
the evolution of student expressions.

Example face-cropped images from the Children dataset showing

art in this task. Additionally, using a novel affect represen-
tation along with user personalization, we achieved a further
increase in performance. More generally, these promising
results suggest that leveraging affect representations might
be valuable in behavior analysis applications more generally.
Our final method achieves a 50% relative increase in mean
F-score as well as an absolute 11 percentage point increase
in accuracy compared to previous work. Finally, we collect a
dataset of children student interactions and present results on
this dataset. We show that finetuning of the Affect network
with age-appropriate images and video further improves
performance in this scenario. These results pave the way for
future improvements in solutions for this task. Future tutor
systems may use our proposed outcome prediction model
in order to deliver real-time interventions to improve the
learning of students.
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