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Abstract— Pain monitoring is essential to the quality of care
for patients undergoing a medical procedure with sedation. An
automated mechanism for detecting pain could improve seda-
tion dose titration. Previous studies on facial pain detection have
shown the viability of computer vision methods in detecting pain
in unoccluded faces. However, the faces of patients undergoing
procedures are often partially occluded by medical devices and
face masks. A previous preliminary study on pain detection
on artificially occluded faces has shown a feasible approach to
detect pain from a narrow band around the eyes. This study has
collected video data from masked faces of 14 patients undergo-
ing procedures in an interventional radiology department and
has trained a deep learning model using this dataset. The model
was able to detect expressions of pain accurately and, after
causal temporal smoothing, achieved an average precision (AP)
of 0.72 and an area under the receiver operating characteristic
curve (AUC) of 0.82. These results outperform baseline models
and show viability of computer vision approaches for pain
detection of masked faces during procedural sedation. Cross-
dataset performance is also examined when a model is trained
on a publicly available dataset and tested on the sedation videos.
The ways in which pain expressions differ in the two datasets
are qualitatively examined.

I. INTRODUCTION

A. Motivation

Pain monitoring is essential to the quality of patient care [8]
as unnoticed and untreated pain can have severe physical
and psychological risks [13]. Certain populations – such as
neonates, people with dementia, and those under sedation –
cannot provide sufficient or unambiguous self-report of pain
due to cognitive limitations that reduce their ability to verbally
communicate [7], [10], [11], [14]. Clinically valid methods
of pain assessment have been developed to alleviate this
problem [6], [4]; however, due to a shortage of staff equipped
with pain-assessment skills, an automated method of pain
detection is desirable. Partial occlusion of patients’ faces,
due to the requirement for patients to wear masks in certain
care units, is an added complication to the automatic pain-
monitoring process. This paper aims to address the problem
of pain detection in patients undergoing a medical procedure
with sedation, who have their faces partially occluded by
medical devices, such as oxygen delivery devices (nasal
cannulae and masks), or face masks (as has been required
during the COVID-19 pandemic). Such a method can be used
in improving sedation dose titration in these patients and can
enhance the overall quality of care.

Fig. 1: Sample pain frame from the sedation dataset.

B. Clinically Valid Assessment of Pain

The Prkachin and Solomon Pain Index (PSPI) is a clinically
valid method of coding facial pain assessment [12]. The PSPI
score is built upon the Facial Action Coding System (FACS),
which itself ascribes action units to different facial muscle
movements [6]. The PSPI uses a subset of facial action
units to calculate a score in the 0-16 range, where 0 and 16
correspond with no and maximum levels of expressed pain,
respectively.

C. Related Work

A significant amount of work has been done on automated
pain expression detection, the majority of which use the
publicly available UNBC-McMaster Shoulder Pain Expression
Archive [9] and/or the BioVid Heat Pain Database [16].
Computer vision and machine learning techniques have also
been employed for pain-recognition in specific populations,
e.g. in neonates [2] and in people with dementia [13].

Of particular relevance to this study, Ashraf et al. conducted
a proof-of-concept analysis on pain-recognition in partially
occluded faces [1]. To simulate partial occlusion, they
extracted a narrow band around the eyes of the image frames
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in the UNBC-McMaster dataset. Three feature representation
methods – discrete cosine transform (DCT), local binary
pattern (LBP), and histogram of oriented gradients (HOG)
– were used on the eye region frames and a linear support
vector machine (SVM) binary classifier was trained on the
extracted features. Results showed the feasibility of detecting
pain on partially occluded faces, albeit with lower accuracy
than when analyzing unoccluded faces.

D. Contributions

Our work investigates the feasibility of using computer
vision models for the automatic detection of pain in masked
faces of patients undergoing procedural sedation. Whereas
Ashraf et al.’s preliminary analysis [1] previously examined
this in simulated data, our work is the first to use a video
dataset of patients from the target population, undergoing a
medical procedure with sedation in a hospital setting with
real face occlusions. We fine-tune a pretrained deep learning
model on this dataset and, in leave-one-person-out cross-
validation, show that this model outperforms Ashraf et al.’s
baselines trained on the same data. We investigate whether
adding variability to our training set using cropped faces
from the publicly available portion of the UNBC-McMaster
dataset improves its performance. We also report cross-
dataset performance of a model trained solely on the UNBC-
McMaster dataset cropped to simulate partial occlusion.
Finally, we qualitatively examine the ways pain expressions
differ in the two datasets.

II. DATA

A. Datasets Used

We used two datasets to conduct our experiments. The
primary dataset was drawn from a prospective observational
study conducted in the Interventional Radiology department
at a large academic hospital in North America. Patients
undergoing elective procedures without general anesthesia
from April to September 2021 were recruited. All participants
provided written informed consent and the study was approved
by the University Health Network Research Ethics Board
(20-5900). Participants’ faces were recorded using a GoPro
camera with a flexible attachment during their procedure. All
participants’ mouth and lower face regions were occluded by
a face mask or a medical device, during the entire procedure.
Videos were recorded with 1920×1080 resolution, and at
either 30 frames per seconds (fps), for 7 participants, or
at 60 fps, for the remaining 7 participants. Concurrently, a
Research Nurse rated the adequacy of sedation in real-time
using a sedation assessment scale [5], which incorporated
an assessment of pain. Binary ’pain’ or ’no pain’ ratings,
derived from the nurse’s sedation state assessments, were
used as ’ground truth’ for this analysis. Although attempts
were made during procedures to optimize the view of facial
expressions, there were periods of time where procedure
positioning requirements obstructed the camera. As such, all
video recordings were visually inspected to exclude segments
in which participant’s face was not in view. Figure 1 illustrates
a sample (pain) frame from this dataset. A total of 14

Fig. 2: Sample frames from the sedation dataset after the
preprcoessing steps: the two top frames belong to the no-pain
category and the bottom two frames to the pain category.

participants were recruited for this study. A break-down of
the number of image frames for each participant can be found
in the rightmost column of Table III.

The UNBC-McMaster Shoulder Pain Expression Archive
was also used to augment our primary dataset and increase the
size of our training set. The publicly available portion of this
dataset includes videos of 25 participants with shoulder pain
that undergo range-of-motion assessments on their affected
and unaffected shoulders for the duration of the video. The
videos are recorded at 30 fps and in Quarter VGA (240×320)
resolution. The dataset contains 48,391 image frames in total,
i.e. approximately one tenth of the primary dataset in size,
with 1936 ± 837 image frames per participant. This dataset has
frame-by-frame annotations of relevant FACS codes, which
are used to calculate and label each frame by its PSPI score.

B. Data Preprocessing

The same preprocessing steps were applied to image frames
from both the UNBC-McMaster and sedation datasets. The
videos, particularly those from the sedation dataset, include
motions of the head and the body and shifts in the background.
To reduce these variabilities, the image frames were cropped
around the unoccluded regions of the face. To create the crops
for each individual frame from the UNBC-McMaster dataset,
2D facial landmark estimates from the Face Alignment model
(FAN) [3] were used. This facial landmark detection model
did not generate reliable results in the sedation dataset with
masked faces. The MediaPipe face mesh yielded reliable
results and was used instead on the sedation dataset to create
the crops.

After obtaining the landmarks, the eyes were located using
their corresponding landmarks, and the intercanthal distance
was used to crop the image relative to the location of the eyes.
The result cropped images were of different sizes, influence
by the face-to-camera distance. The crops were resized to
the same resolution of 224×224 pixels. Examples of image
crops from the sedation dataset can be seen in Figure 2.



III. METHOD

A. Pain Detection Model

A ResNeXt-50-32x4d model pretrained on ImageNet was
used for binary pain detection. The last fully-connected layer
of ResNeXt-50-32x4d was replaced with two fully-connected
layers with a ReLU activation in-between. The new layers
yielded a binary output for the model.

Three groups of models were trained. The first group were
trained using the sedation dataset only; the second group
were trained with the UNBC-McMaster dataset only; and the
third group were trained using both datasets.

As a baseline, we re-implemented the model used by Ashraf
et al. [1]. In addition to reimplementing their model exactly
(using HOG features and linear SVM), we also replaced the
SVM with a Random Forest binary classifier, which yielded
slightly better results on the sedation dataset.

B. Evaluation

Leave-one-person-out cross-validation was used in all
cases; except when the training set did not include images
from the sedation dataset and consisted entirely of the
UNBC-McMaster images. Area under the receiver operating
characteristic curve (AUROC) and under the precision-recall
curve (average precision, or AP) were used to evaluate binary
pain detection performance on the sedation dataset.

C. Implementation Details

In each cross-validation fold, The new fully-connected
layers of the model were trained for 18 epochs while the
other layers of the model were frozen. After 18 epochs, the
last block of the model was also unfrozen for two additional
epochs. The model was thus trained for a total of 20 epochs,
using the Adam optimizer and with a batch size of 128. A
starting learning rate of 0.005 was used, which was decayed
during training by a factor of 0.1 every 10 epochs. The dataset
was augmented with random horizontal flips, random affine
transformation up to 30 degrees, random color jitters, and
random rotations in the -10 to 10 degrees range.

When training the models with the UNBC-McMaster
dataset (either with or without the sedation dataset), we
binarized UNBC-McMaster PSPI scores into pain / no-pain
labels using the thresholds suggested by Ashraf et al. [1].
Specifically, frames with PSPI score of 0 were considered
as no-pain, frames with a PSPI score of 4 or higher were
considered as pain, and frames with a PSPI score in the 1-3
range were not included in the training set. The test set is
always from the sedation dataset and is not influenced by
this thresholding.

IV. RESULTS AND DISCUSSION

Table I compares the per-frame results of the fine-tuned
ResNeXt models, as well as baseline models of Ashraf et
al. [1], in terms of the area under the ROC curve (AUC) and
average precision (AP).

Model AUC AP
ResNext Fine-tuned on Sedation 0.75 0.58

ResNeXt Fine-tuned on Sedation & UNBC-McMaster 0.73 0.51
ResNeXt Fine-tuned on UNBC-McMaster 0.65 0.45

HOG + SVM Trained on Sedation 0.57 0.49
HOG + Random Forest Trained on Sedation 0.58 0.51

TABLE I: Test performance on the sedation dataset (without
temporal smoothing).

Facial expressions of pain have significantly lower rate of
change than the video frame rate of 30 or 60 fps. Even
microexpression have an average length of an order of
magnitude larger than the frame-to-frame temporal distance of
33.3 or 16.6 ms [15]. It is, therefore, possible to smooth per-
frame prediction scores to reduce jitter and improve accuracy.
Table II presents AUC and AP results after the prediction
scores for each model were smoothed with a causal uniform
filter over the previous 30 frames for 30 fps videos, or over the
previous 60 frames for 60 fps videos. We note that using the
causal filter is necessary and a non-causal filter (e.g., uniform
or Gaussian smoothing) would not be applicable in real-life
dosage titration applications. We also note that the causal
filter can lead to slight (under 1 second) delays in detecting
expressions of pain. But such delays are inconsequential
when the average length of a procedure is around 20-minutes;
although they could negatively impact AUC and AP values
reported in this paper.

Model AUC AP
ResNext Fine-tuned on Sedation 0.82 0.72

ResNeXt Fine-tuned on Sedation & UNBC-McMaster 0.70 0.48
ResNeXt Fine-tuned on UNBC-McMaster 0.64 0.39

HOG + SVM Trained on Sedation 0.56 0.43
HOG + Random Forest Trained on Sedation 0.55 0.44

TABLE II: Test performance on the sedation dataset, when
per-frame predictions are smoothed with a causal uniform
filter.

Figure 3 shows the ROC curves for the pretrained ResNexT
models fine-tuned on the sedatiaon dataset, on the UNBC-
McMaster dataset, and the combined datasets, after the
predictions were smoothed with the causal smoothing filter.

Looking at the results in Tables I and II, the fine-tuned
deep learning models clearly outperform the baselines using



(a) (b) (c)

Fig. 3: ROC curce of models fine-tuned on a) sedatation, b) sedation and UNBC-McMaster, and c) UNBC-McMaster data.

Trained only on sedation Trained on combined datasets
Participant AUC AP AUC AP Number of frames (% Pain)

P003 1.00 1.00 1.00 1.00 30,562 (44.11)
P004 0.99 0.97 0.96 0.87 92,605 (6.72)
P009 0.50 0.02 0.99 0.90 24,159 (1.81)
P011 0.96 0.94 1.00 1.00 21,998 (38.21)
P017 0.28 0.04 0.92 0.65 22,087 (5.85)
P018 0.99 0.99 0.99 0.99 16,668 (40.17)
P022 0.85 0.09 0.73 0.03 11,669 (0.75)
P029 1.00 1.00 1.00 1.00 27,707 (11.12)
P030 0.99 0.96 1.00 0.99 20,973 (5.97)
P033 – – – – 9,822 (0.00)
P034 1.00 1.00 1.00 1.00 38,127 (48.58)
P035 0.99 1.00 0.77 0.82 70,154 (56.56)
P036 – – – – 39,129 (0.00)
P037 1.00 1.00 1.00 1.00 57,676 (77.74)
Total 0.82 0.72 0.70 0.48 483,336 (29.79)

TABLE III: Per-participant test results for the model fine-tuned on the sedation dataset and the model trained on the combined
sedation and UNBC-McMaster datasets, after the application a of causal uniform filter.

HOG features. Among these, the ResNeXt model fine-tuned
only on the sedation dataset has an area under the ROC
curve (AUC) of 0.82 and an average precision (AP) of 0.72
(Table II), and outperforms the ResNeXt model fine-tuned
on both datasets or fine-tuned only on the UNBC-McMaster
dataset by a wide margin.

The large performance gap between the deep learning
models and the baselines were expected; but the wide gap
in cross-dataset performance requires an explanation. In the
UNBC-McMaster dataset, the frames in which the participants
have their eyes closed are mostly pain frames. In fact, the
binary facial action unit (AU) #43 (‘eyes closed’) is part of
the PSPI formula, and forms 1/16 (or 6.25%) of the maximum
PSPI score. However, because of sedation, participants in
the sedation dataset have their eyes closed in the majority
of video frames, regardless of the frame label. The top
right image in Figure 2 illustrates a sample eyes-closed no-

pain frame in the sedation dataset, and the bottom right
image shows a sample pain frame of the same participant.
In this dataset, distinguishing pain frames relies heavily on
identifying other types of pain expression around the eyes
and in the forehead, e.g., wrinkles or AU #4 (‘brow lowerer’).
Therefore, the model trained only on the UNBC-McMaster
data can learn eye closure as an indication of pain, which
in turn leads to an over-prediction of the pain label on the
sedation dataset. Differences in the filming of the videos and
lighting conditions can also be contributing factors to this
cross-dataset performance gap.

Tables I and II report the performance metrics (AUC and
AP) when test predictions on all 14 participants (obtained
from 14 different cross-validation loops) were combined.
Table III reports the performance in each participant, for
the ResNeXt models fine-tuned on the sedation data alone,
and the one fine-tuned on the combined sedation + UNBC-



McMaster data. Two (2) of the participants (P033 and P036)
did not show any expressions of pain during the medical
procedure and, as such, do not have associated AUC and
AP values. It should be noted that test results on data from
both participants still contributed to the total AUC and AP
values reported in Tables I and II. Of the remaining (14-
2=)12 participants, perfect or near perfect pain detection was
achieved on nine (9) participants, using the model fine-tuned
only on the sedation data. Performance was poor on the
three (3) remaining participants, namely P009, P017, and
P022. Looking at the rightmost column of Table III, it can
be observed that, apart from the two participants with zero
pain frames, the percentage of pain frames is the lowest
among these three participants. Figure 4 illustrates ground
truth (pain/no-pain) labels and smoothed model outputs over
time for five sample participants, including one for whom
the model obtained poor pain detection results (P022).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we explored computer vision approaches
for detecting pain in partially occluded faces of sedated
people. Fine-tuning a deep learning model outperformed
the baseline when tested on a video dataset collected from
masked faces of patients undergoing a medical procedure
with sedation, and showed the viability of deep learning
methods in automatic pain detection for the target population.
We also showed that fine-tuning the model with a different
dataset did not obtain good results on the sedation videos
and qualitatively explained the reason why. Video data from
more participants is currently being collected to increase
variability of the dataset and improve the generalization of
pain detection models. Future work with a larger dataset will
examine performance in different subgroups to investigate
sensitivity to skin-tone and gender.
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Fig. 4: True pain/no-pain labels and smoothed model outputs over time for five sample participants. Each sub-figure consists
of three rows: top) ground truth labels (no-pain labels in blue and pain labels in red); middle) smoothed outputs of model
trained on the sedation data bottom) smoothed outputs of model trained on the sedation and UNBC-McMaster data.


	I INTRODUCTION
	I-A Motivation
	I-B Clinically Valid Assessment of Pain
	I-C Related Work
	I-D Contributions

	II DATA
	II-A Datasets Used
	II-B Data Preprocessing

	III METHOD
	III-A Pain Detection Model
	III-B Evaluation
	III-C Implementation Details

	IV RESULTS AND DISCUSSION
	V CONCLUSIONS AND FUTURE WORKS
	VI ACKNOWLEDGMENTS
	References

