
HAL Id: hal-03835780
https://hal.science/hal-03835780

Submitted on 1 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Florence 4D Facial Expression Dataset
Filippo Principi, Stefano Berrettini, Claudio Ferrari, Naima Otberdout,

Mohamed Daoudi, Alberto del Bimbo

To cite this version:
Filippo Principi, Stefano Berrettini, Claudio Ferrari, Naima Otberdout, Mohamed Daoudi, et al..
The Florence 4D Facial Expression Dataset. IEEE conference series on Automatic Face and Gesture
Recognition, Jan 2023, Waikoloa, Hawaii, United States. �hal-03835780�

https://hal.science/hal-03835780
https://hal.archives-ouvertes.fr


The Florence 4D Facial Expression Dataset

Filippo Principi1, Stefano Berretti1, Claudio Ferrari2, Naima Otberdout3,
Mohamed Daoudi4, Alberto Del Bimbo1

1 Media Integration and Communication Center, University of Florence, Italy
2 Department of Engineering and Architecture, University of Parma, Italy
3 Ai movement - University Mohammed IV Polytechnic, Rabat, Morocco

4 Univ. Lille, CNRS, Centrale Lille, Institut Mines-Télécom, UMR 9189 CRIStAL, F-59000 Lille, France
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Abstract— Human facial expressions change dynamically, so
their recognition / analysis should be conducted by accounting
for the temporal evolution of face deformations either in 2D
or 3D. While abundant 2D video data do exist, this is not the
case in 3D, where few 3D dynamic (4D) datasets were released
for public use. The negative consequence of this scarcity of
data is amplified by current deep learning based-methods
for facial expression analysis that require large quantities of
variegate samples to be effectively trained. With the aim of
smoothing such limitations, in this paper we propose a large
dataset, named Florence 4D, composed of dynamic sequences
of 3D face models, where a combination of synthetic and
real identities exhibit an unprecedented variety of 4D facial
expressions, with variations that include the classical neutral-
apex transition, but generalize to expression-to-expression. All
these characteristics are not exposed by any of the existing
4D datasets and they cannot even be obtained by combining
more than one dataset. We strongly believe that making such
a data corpora publicly available to the community will allow
designing and experimenting new applications that were not
possible to investigate till now. To show at some extent the
difficulty of our data in terms of different identities and varying
expressions, we also report a baseline experimentation on the
proposed dataset that can be used as baseline.

I. INTRODUCTION

Facial expressions play a primary role in interpersonal
relations and are one fundamental way to convey our emo-
tional state [7]. The automatic analysis of facial expressions
focused first on images and videos, with rare examples using
3D data [1], [11], [26], [32]. These initial studies focused
more on datasets with posed expressions [18], impersonated
by actors. The trend is now moving towards spontaneous
(not posed) datasets, with some examples of in-the-wild
acquisitions [9], [14]. For a summary description of 2D
datasets for macro and micro facial expression analysis, we
refer to the survey in [13].

Thanks to the rise of powerful deep learning based
solutions, the interest in applying expression recogni-
tion/generation on 3D and 4D data is growing rapidly.
However, with such paradigm, the variety of applications
that can be designed and their effectiveness are mainly
bounded by the volume and variety of available data to
train the models. Thus, it is evident the importance of
collecting sufficiently large and variegate datasets, which
need to be designed for each specific task. The greater
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cost and challenges in acquiring dynamic 3D (4D) data is
at the base of their limited availability. 3D data are also
intrinsically more difficult to process. For example, reducing
3D scans to a same number of vertices connected by a same
topology is by itself a task which is complicated to solve
in general, while a dense correspondence between scans is,
in the majority of cases, a prerequisite to make learning
methods to work properly. In addition to being difficult to
acquire, 3D data are also difficult to annotate automatically,
while manual intervention is impractical and error prone for
large volumes of data. A possible workaround is constituted
by the creation of synthetic data. For example, this direction
has been successfully taken in the case of human body, with
a relevant example given by the (not public) dataset used
for training the 3D position detector of the skeleton joints in
the Kinect for Xbox 360 [28]. Also, if properly designed, the
domain gap between real and synthetic 3D data can be made
significantly small [29], reducing the performance drop that
is usually observed in these cases.

In this paper, we propose the “Florence 4D Facial Expres-
sion Dataset” (Florence 4D for short), the first collection of
3D dynamic sequences of facial expressions that includes
many identities and long sequences with composed expres-
sions. The peculiar characteristics of our dataset are:

• a large number of identities, both real and synthetic, is
included, mostly balanced between male and female;

• all the 3D models share the same number of vertices
and connectivity among them, i.e., same topology:

• large number of expressions (70 expressions in total),
most of them being variations or combinations of 8
prototypical ones, so to cover a much larger spectrum;

• expression sequences with a large variability: sequences
with neutral to apex transitions, as well as with transi-
tions between two apex expressions are included;

• the temporal evolution of the sequences is generated
with randomized velocity for improved realism.

All the above characteristics cannot be found in currently
available datasets, and can likely open the way to the explo-
ration of completely new tasks. To show that the synthetic
data we have generated can effectively complement real data,
we compare it with other common benchmarks of real scans
in the task of landmark-based 3D face fitting.

The dataset is available at the following link



TABLE I
MOST POPULAR HR 3D/4D FACIAL EXPRESSION DATASETS. FLORENCE 4D FACIAL EXPRESSIONS DATASET IS UNIQUE IN PROVIDING BOTH REAL

AND SYNTHETIC 3D MODELS, WITH AN UNPRECEDENTED NUMBER OF SEQUENCES, ALSO INCLUDING EXPRESSION-TO-EXPRESSION TRANSITIONS

Datasets #IDs Pose Expressions # sequences
FRGC v2.0 [22] 466 slight small cooperative expressions–disgust, happiness, sadness,

surprise,–and large uncooperative expression, not categorized
static

Bosphorus [27] 105 13 yaw and pitch systematic
head rotations)

neutral plus 6 basis expressions, selected AUs static

BU-3DFE [31] 100 frontal neutral plus 6 basis expressions static
Florence 2D/3D [2] 61 2 frontal plus 2 side neutral static
BU-4DFE [30] 101 frontal neutral plus 6 basis expressions 606
CoMA [25] 12 frontal 12 extreme and asymmetric expressions 144
D3DFACS [5] 10 frontal Action Units 519
VOCASET [6] 12 frontal Speech 480
Florence 4D (Ours) 95 frontal 70 expressions as variations/combinations of 8 categories:

anger, fear, sadness, disgust, surprise, anticipation, trust, joy
205,200

www.micc.unifi.it/resources/datasets/
florence-4d-facial-expression/

II. RELATED WORK

In the following. we summarize the existing 3D dynamic
datasets for facial expression analysis. We also refer to the
3D static datasets because they can be used in combination
with the dynamic ones in some specific application. We
restrict our analysis to high-resolution (HR) 3D datasets,
while there are also some low resolution datasets either static
or dynamic that have been captured with low-cost, low-
resolution cameras like Kinect. Notable examples are the
Eurecom dataset [19], the IIIT-D RGB-D face database [12],
and FaceWarehouse [4]. Table I compares the main charac-
teristics of the HR datasets discussed below.

a) Static 3D datasets: The Face Recognition Grand
Challenge dataset (FRGC v2.0) [21], [22] includes 3D
face scans partitioned in three sets, namely, Spring2003
(943 scans of 277 individuals), Fall2003, and Spring2004
(4,007 scans of 466 subjects in total). Individuals have
been acquired with frontal view from the shoulder level,
with very small pose variations. About 60% of the faces
have neutral expression, and the others show expressions of
disgust, happiness, sadness, and surprise. The Bosphorus
dataset [27] comprises 4,666 high-resolution scans of 105
individuals. There are up to 54 scans per subject, which
include prototypical expressions and facial Action Unit (AU)
activation. The raw scans of Bosphorus have an average of
30K vertices on the face region. This dataset also contains
rotated and occluded scans. The Bimghamton University 3D
facial expression dataset [31] comprises 100 subjects (56
females and 44 males) in the six prototypical expressions
(angry, disgust, fear, happy, sad, surprise) plus neutral, each
expression being reproduced at four intensity levels, from
low to exaggerated. Therefore, there are 25 3D expression
scans for each subject, resulting in 2,500 3D facial expres-
sion scans in total. The subjects vary in gender, ethnicity
(White, Black, East-Asian, Middle-east Asian, Indian, and
Hispanic Latino) and age (from 18 to 70). The Florence
2D/3D hybrid face dataset [2] includes 3D face scans and
video acquisitions of 61 subjects. For each subject, there are
two neutral and two side scans plus RGB video recordings

Fig. 1. The overall data pre-processing pipeline used for generating
topologically consistent 4D expression morphs. First, the models/scans from
the three sources were mapped to the DAZ Studio’s Genesis 8 Female (G8-
F) topology using the Wrap 3 software (note this is not necessary for the
33 female models that are already in the G8-F topology); then, Daz 3D was
used to generate these models as morphing from G8-F, thus making the
subsequent animation steps easier (i.e., they can be applied to G8-F), while
keeping consistent topology across all the models.

both posed indoor and unconstrained outdoor. Being one of
the few datasets including both 2D videos and 3D models of
same subjects, it has found large use in evaluating methods
that reconstruct the 3D geometry of the face from 2D data.

b) Dynamic 3D (4D) datasets: Given the difficulty of
collecting dynamic 3D data, in the literature only a few
datasets do exist, which are described in the following.
The Bimghamton University 3D plus time (4D) facial ex-
pression dataset [30] includes 3D facial expression scans
captured at 25 frames per second. For each subject, there
are six model sequences showing the six prototypical facial
expressions (anger, disgust, happiness, fear, sadness, and
surprise), respectively. Each expression sequence contains
about 100 frames. The database includes 606 3D facial
expression sequences captured from 101 subjects, with a
total of approximately 60,600 frame models. The resulting
database consists of 58 female and 43 male subjects, with
a variety of ethnic/racial ancestries, including Asian, Black,
Hispanic/Latino, and White. The CoMA dataset [25] consists
of 12 subjects, each one performing 12 extreme and asym-
metric expressions. Each expression comes as a sequence of
fully-registered meshes with 5,023 vertices. Each sequence

www.micc.unifi.it/resources/datasets/florence-4d-facial-expression/
www.micc.unifi.it/resources/datasets/florence-4d-facial-expression/


is composed of 140 meshes on average, for a total of 20,466
scans. The D3DFACS dataset [5] is a collection of dynamic
3D facial expressions, annotated following the Facial Action
Coding System. It contains AU sequences from 10 people,
with 519 sequences in total. A version of the dataset with
scans registered to a known topology (the same of CoMA)
is also available [15]. Finally, we mention VOCASET [6], a
4D face dataset with about 29 minutes of 4D scans captured
at 60fps and synchronized audio from 12 speakers (4 males,
and 4 females).

Different from all the above, our dataset is a mixture of
real and synthetic identities, and the synthesized expressions
include the standard 6 prototypical ones as well as mixed
expressions, with 4D sequences including also expression-
to-expression transitions, the latter feature making it unique.

c) Synthetic datasets: The work of Wood et al. [29]
proposed to use a procedurally-generated parametric 3D face
model in combination with a comprehensive library of hand-
crafted assets to render training images with realism and
diversity. Machine learning systems for face-related tasks
such as landmark localization and face parsing were trained
with this data showing that synthetic data can both match
real data in accuracy as well as open up new approaches,
where manual labeling would be impossible. This work
demonstrated it is possible to perform face-related computer
vision in the wild using synthetic data alone. In particular, in
support of our proposed Florence 4D, authors in [29] showed
that it is possible to synthesize data with minimal domain
gap, so that models trained on synthetic data generalize to
real in-the-wild datasets.

III. PROPOSED DATASET

We identified a key missing aspect in the current liter-
ature of 4D face analysis, that is the ability of modeling
complex, non-standard expressions and transitions between
them. Indeed, current models and datasets are limited to
the case, where a facial expression is performed assuming
a neutral-apex-neutral transition. This does not hold in the
real world, where people continuously switch between one
facial expression to another. These observations motivated
us to generate the proposed Florence 4D dataset, which is
described in the following sections.

A. Source identities

Florence 4D includes real and synthetic identities from
different sources: (a) CoMA identities; (b) high-resolution
3D face scans of real identities; (c) synthetic identities.

a) CoMA identities: The CoMA dataset [25] is largely
used for the analysis of dynamic facial expressions. An
important characteristic of this dataset that contributed to
its large use is the fixed topology, according to which all
the scans have 5,023 vertices that are connected in a fixed
way to form meshes with 9,976 triangular facets. The dataset
includes 12 real identities (5 females and 7 males).

b) Synthetic identities: On the Web, a large number of
3D models of synthetic facial characters, either females or
males, can be purchased or downloaded for free. Using these

online resources, we were able to add 63 synthetic identities
(33 females and 30 males) to the data, selecting those
that allow editing and redistribution for non-commercial
purposes. Subjects are split in three ethnic groups, Afro
(16%), Asian (13%), and Caucasian (71%). Because such
identities are synthetic, the resulting meshes are defect free,
and perfectly symmetric, which is different from real faces.
To make models more realistic, morphing solutions were
applied to include face asymmetries.

c) 3D real scans: We acquired 3D scans of 20 subjects
(5 females and 15 males) with a 3DmD HR scanner. Subjects
are mainly students and university personnel, 30 years old
on average. Meshes have approximately 30k vertices. Written
consents were collected for these subjects for using their 3D
face scans.

B. Data pre-processing

Combining together the identities from the three sources
indicated above, we obtained an overall number of 95
identities, 43 females and 52 males. Identities corresponding
to synthetic 3D models and 3D scans of real subjects
have different topology when compered with CoMA, and a
variable number of facets and vertices. Instead, one objective
of our dataset was that of providing identities with the same
topology as the CoMA dataset (i.e., 5,023 vertices and 9,976
triangular facets). To this end, we used a workflow that
involved the joint use of the DAZ Studio [8] and R3DS
Wrap 3 [17] software to homogenize the correspondence
of the identity meshes. All identities were converted into
morphs of the DAZ Studio’s Genesis 8 Female (G8-F) base
mesh using the Wrap 3 software that allows one mesh to be
wrapped over another by selecting corresponding points of
the two meshes. The wrapped meshes were then associated
with the G8-F mesh as morphs. At the end of the process, we
got a G8-F mesh with 95 morphs of different identities. After
animating the facial expressions and before exporting the
sequence of meshes, we restored the animated G8-F to the
original topology of the CoMA dataset. The overall process
is illustrated in Figure 1.

C. Facial expressions

With the basic Genesis 8 mesh, we also got a set of
facial expressions, in the form of morphs that we used
for our dataset. The number of presets was expanded by
downloading free and paid packages from the DAZ Studio
online shop and from other sites. The base set included 40
different expressions. A paid package of 30 more expressions
was added, obtaining a total of 70 different expressions.
These expressions were classified according to the Plutchik’s
wheel of emotions [23], which is illustrated in Figure 2.
Following this organization of expressions, we generated a
set of secondary expressions from the eight primary ones
(for each primary expression, the number of expression per
class is indicated): anger, AR (6), fear, FR (6), sadness, SS
(13), disgust, DT (9), surprise, SE (11), anticipation, AN
(4), trust, TT (6), joy, JY (15). Details are given in Table II.



Fig. 2. Plutchik’s wheel of emotions [23], illustrating expression relations.

TABLE II

Primary expression Expressions
Anger, AR (6) Angry1, Angry2, Fierce, Glare, Rage, Snarl
Fear, FR (6) Afraid, Ashamed, Fear, Scream, Terrified, Wor-

ried
Sadness, SS (13) Agony, Bereft, Ill, Mourning, Pain, Pouting,

Pouty, Sad1, Sad2, Serious, Tired1, Tired2, Upset
Disgust, DT (9) Arrogant, Bored, Contempt, Disgust, Displeased,

Ignore, Irritated1, Irritated2, Unimpressed
Surprise, SE (11) Awe, Confused, Ditzy, Drunk1, Frown, Hurt, In-

credulous, Moody, Shock, Surprised, Suspicious
Anticipation, AN (4) Cheeky, Concentrate, Confident, Cool
Trust, TT (6) Desire, Drunk2, Flirting, Hot, Kissy, Wink
Joy, JY (15) Amused, Dreamy, Excitement, Happy, Inno-

cent, Laughing, Pleased, Sarcastic, Silly, Smile1,
Smile2, Smile3, Smile4, Triumph, Zen

In the dataset, we named the expressions with pairs of
names representing the abbreviation of the primary emotion
and the facial expression represented, e.g., JY-smile or SE-
incredulous. The Genesis 8 mesh also has 70 morphs of facial
expressions available, in addition to 95 identity morphs.

D. Creation of expression sequences

Using the above expression classification, we generated
the expression sequences of each identity by iterating through
the activation of the expression morphs for each identity
morph. The dataset includes two types of sequences for each
identity: single expression and multiple expressions.

a) Single expression: For each identity, the animation
of each morph expression is generated as follows:

• Frame 0 - neutral expression (morph with weight 0);
• Random frame between 10 and 501 - expression climax

(morph with weight 1);
• Frame 60 - neutral expression (morph with weight 0).

The meshes in a sequence are named with the name of the
expression and the number of the corresponding frame as a

1With the randomization of the climax frame, we generated a greater
variability in the speed of the transition from the neutral to the climax
expression and back to the neutral expression for each identity.

Fig. 3. Sample frames from a generated sequence: (top) the expression
passes from neutral to apex and to neutral again; (bottom) the expression
passes from neutral to apex for expr. 1, then to apex for expr. 2, and finally
to neutral again.

suffix (e.g., Smile 01. An example is shown in the top row
of Figure 3.

b) Multiple expressions: For each identity, we created
mesh sequences of transitions from a neutral expression to
a first expression (expr. 1), then from this expression to a
second one (expr. 2), then back from the latter to the neutral
expression. Also in this case, the climax frames of the two
expressions were randomized to obtain greater variability
(i.e., the apex frame for each expression can occur at different
times of the sequence). Summarizing, these sequences were
created following this criterion:

• Frame 0 - neutral expression (morph expr. 1 weight 0);
• Random frame between 15 and 40 - morph expr. 1 with

weight 1, and morph expr. 2 with weight 0;
• Random frame between 50 and frame 75 - morph expr. 1

with weight 0, and morph expr. 2 with weight 1;
• Frame 90 - neutral expression (morph expr. 2 with

weight 0).
Meshes in a sequence are named with the initials of the
primary emotions to which the two expressions involved in
the animation belong to, followed by the name of the first
and second expression plus a numeric suffix for the frame
(e.g., AN-AR Con f ident Glare 01. An example is shown in
the bottom row of Figure 3.

E. Released data

Table III reports a quick summary of the main charac-
teristics of the Florence 4D released data. In particular, we
reported the number of identities (male and female), the
number of vertices per mesh (same topology for all models),
the number of different expressions per identity, the number
of sequences that show a neutral-apex expression-neutral
transition (6,650 in total); the number of sequences with
neutral-expr. 1-expr. 2-neutral transition. Note that, in this
latter case, all the possible expression combinations have
been generated for a total of 198,550 sequences.

We also note the neutral-expr-neutral sequences include
60 frames each, with the apex intensity for the expression



Fig. 4. Examples frames from generated sequences: (top) apex frames
of nine expression sequences for subject DAZ MCH20; (middle) angry
expression for a male (DAZ M CH020) and a female (DAZ F CH073)
subject; (bottom) For subject DAZ F CH046 the transitions happy-pain,
and confident-frown are shown.

occurring around frame 30; 90 frames are instead generated
for the sequences with an expression-to-expression transition,
with the expr. 1 apex and the expr. 2 apex occurring around
frame 30 and 60, respectively.

TABLE III
FLORENCE 4D EXPRESSION DATASET: SUMMARY OF RELEASED DATA

#IDs (m/f) #vert #exprs. # n-exp-n/# f # n-exp1-exp2-n/# f
95 (52/43) 5,023 70 70*95 / 60 2090*95 / 90

Some examples of the generated sequences are illustrated
in Figure 4. In the top row, the apex frames of nine
expression sequences (i.e., smile, wink, disgust, sad, angry,
arrogant, fear, happy irritated) of a male synthetic subject are
illustrated. The second and third row compare frames of an
angry expression for a male and a female subject. The two
bottom rows, instead, show the transitions happy-pain, and
confident-frown for a given subject.

IV. EXPERIMENTATION

In the following, we report a baseline evaluation for the
proposed dataset. We are interested in assessing to what ex-
tent our dataset, composed of re-parameterized real scans and
totally synthetic sequences, compares to a reference dataset
of real scans. We do this by evaluating the task of landmark-
based 3D model fitting. As reference datasets to compare
with, we chose CoMA and D3DFACS as they share the same
mesh topology as Florence 4D, and are composed of 4D
expression sequences. They are also common benchmarks
employed in other recent studies [3], [25]. For a consistent
comparison and fulfill our goal, given the way larger amount
and variability of sequences included in Florence 4D, we
selected 1,222 sequences from it, corresponding to the 7

standard expressions, to make it comparable in size and
content to CoMA and D3DFACS. Following similar previous
works [3], [20], we performed experiments by splitting the
data into train and test. To make sure they do not overlap, in
one case, we divided the data based on the identities (Identity
Split), in the other, based on expressions (Expression Split).
In both the cases, we performed a 4-fold cross validation.

A. 3D Expression fitting

Since the main focus of Florence 4D is on expressions, we
decided to exclude the problem of identity reconstruction,
to avoid ambiguities in the results. The goal is to fit a
neutral (not average) 3D face of a subject Sn ∈ RN×3 to a
target expressive face Se guided by a set of 3D landmarks
Ze ∈ R68×3. For evaluation, we set up a baseline by first
comparing against standard 3DMM-based fitting methods.
Similar to previous works [11], [16], we fit Sn to the set of
target landmarks Ze using the 3DMM components. Since the
deformation is guided by the landmarks, we first retrieved the
landmark coordinates in the neutral face by indexing into the
mesh, i.e., Zn = Sn(Iz), where Iz ∈N68 are the indices of the
vertices that correspond to the landmarks. We then found the
optimal deformation coefficients that minimize the Euclidean
error between the target landmarks Ze and the neutral ones
Zn, and use the coefficients to deform Sn. We experimented
the standard PCA-based 3DMM and the DL-3DMM [11].
We also evaluated against recent deep models, including
the Neural3DMM [3] and the very recent S2D-Dec [20].
In order to use Neural3DMM as a fitting method, we used
the modified architecture as defined in [20], where the model
was trained to generate an expressive mesh given its neutral
counterpart and the target landmarks Ze as input. The mean
per-vertex Euclidean error between the reconstructed meshes
and their ground truth was used as measure, as in the majority
of works [3], [10], [24], [25].

Table IV reports the results. It can be noted that for the
expression split, results are similar for all the compared
datasets. We argue this represents a piece of evidence that
the synthetic expressions are as difficult to reconstruct as the
real ones, making them valid to be used in practice. Results
for the identity split are instead much lower for the proposed
Florence 4D. Likely, the variability of synthetic identities is
lower than that of real ones, being obtained as a result of a
generative software process.

V. DISCUSSION AND CONCLUSIONS

In this paper, a new dataset named Florence 4D, was
presented. Its design and generation was guided by the
goal of advancing the research in 4D facial analysis, with
a particular focus on dynamic expressions. Compared to
current datasets, its unique characteristic is that of including
sequences of complex, non-standard expressions. Differ-
ently from the existing ones, Florence 4D also includes
dynamic transitions across expressions, extending the stan-
dard neutral-peak-neutral setting. All the sequences were
generated with randomized velocity for improved realism.
The dataset is a combination of real and synthetic identities,



TABLE IV
RECONSTRUCTION ERROR (MM) ON EXPRESSION-INDEPENDENT (LEFT) AND IDENTITY-INDEPENDENT (RIGHT) SPLITS

Expression Split Identity Split
Method CoMA D3DFACS Florence 4D CoMA D3DFACS Florence 4D
PCA 0.76±0.73 0.42±0.44 0.70±0.81 0.80±0.73 0.56±0.56 0.16±0.17
DL3DMM [11] 0,86±0,80 0.73±1.15 0.83±1.03 0.89±0.79 1.15±1.50 0.17±0.18
Neural3DMM [3] 0.75±0.85 0.59±0.86 1.45±1.43 3.74±2.34 2.09±1.37 1.41±1.09
S2D-Dec 0.52±0.59 0.28±0.31 0.57±1.24 0.55±0.62 0.27±0.30 0.10±0.08

while the expressions are fully synthetic. An experimental
validation highlights the little domain gap with respect to
real expressive scans, making it a valuable resource for real
applications.
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