2211.07371v1 [cs.CV] 14 Nov 2022

arxXiv

Unsupervised Face Recognition using Unlabeled Synthetic Data

Fadi Boutros'?, Marcel Klemt!, Meiling Fang'?, Arjan Kuijper™? and Naser Damer!?
!Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
2Department of Computer Science, TU Darmstadt, Darmstadt, Germany

Email: fadi.boutros@igd.fraunhofer.de

Abstract— Over the past years, the main research innovations
in face recognition focused on training deep neural networks
on large-scale identity-labeled datasets using variations of
multi-class classification losses. However, many of these datasets
are retreated by their creators due to increased privacy and
ethical concerns. Very recently, privacy-friendly synthetic
data has been proposed as an alternative to privacy-sensitive
authentic data to comply with privacy regulations and to
ensure the continuity of face recognition research. In this
paper, we propose an unsupervised face recognition model
based on unlabeled synthetic data (USynthFace). Our proposed
USynthFace learns to maximize the similarity between two
augmented images of the same synthetic instance. We enable
this by a large set of geometric and color transformations
in addition to GAN-based augmentation that contributes to
the USynthFace model training. We also conduct numerous
empirical studies on different components of our USynthFace.
With the proposed set of augmentation operations, we proved
the effectiveness of our USynthFace in achieving relatively high
recognition accuracies using unlabeled synthetic data. The
training code and pretrained model are publicly available under
https://github.com/fdbtrs/Unsupervised-Face-
Recognition-using-Unlabeled-Synthetic-Data.

I. INTRODUCTION

The evolution in deep learning network architectures,
training losses, and availability of large-scale identity-labeled
training datasets are behind the major advances in recog-
nition accuracy by the recent state-of-the-art (SOTA) face
recognition (FR) models. The main FR works focus on
proposing novel FR training losses, especially margin-
penalty based softmax loss e.g. ArcFace [14], CurricularFace
[23] or ElasticFace [4], to train deep neural network [19]
on large-scale identity-labeled dataset [37], [17], [8]. This
research direction is driven by the availability of large-
scale identity-labeled datasets and the high recognition per-
formance achieved by margin-penalty softmax losses. Re-
cently, there were an increase concerns about collecting,
maintaining, redistributing and using biometric data due to
legal and ethical privacy issues in some countries [26], [31].
Especially that many of FR datasets such as VGGFace?2 [8]
have been collected from the web without the proper consent
of subjects. Privacy regulations such as the General Data
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Protection Regulation (GDPR) [31] classify biometric data as
personal data. They grant the right to individuals to withdraw
their consent to use or store their personal data. Practically,
maintaining such regulations is challenging, especially in the
case that such data is collected from the web and is widely
distributed.

To overcome this challenge, the use of privacy-friendly
synthetic data as an alternative to authentic data in biometrics
development has recently attracted attention [6], [5], [13],
[12]. In the field of FR, two main previous works proposed
the use of synthetically generated data by Generative Adver-
sarial Network (GAN) [16] to develop FR models. SynFace
[29] investigated the different behavior of FR models trained
on authentic and synthetic images and proposed identity
and domain mixup to reduce the performance gap of FR
models trained on synthetic data in comparison to FR models
trained on authentic data. SFace [7] proposed the use of
synthetic data to develop FR models, including presenting
a public synthetic database, FR training protocols, detailed
analyses of the identity transfer from generator training to
the generated data, the identifiability of the authentic data
in the trained models. SynFace [29] and SFace [7] mainly
focused on using synthetic data to train supervised FR to
learn multi-class classification problems.

This work presents contributions toward developing unsu-
pervised FR using privacy-friendly synthetic data (USynth-
Face). Unlike previous works that require synthetic labeled
data [7] or mixing up authentic with synthetic data [29], our
proposed framework does not require labeled data or involve
authentic data in the FR model training. Thus, it takes full
advantage of privacy-friendly synthetic data and does not
require a special GAN model to generate labeled data. This
work is the first to propose unsupervised FR using synthetic
data. Our unsupervised FR training paradigm is based on
the concept of the Momentum Contrast [18] and contrastive
learning [33] for unsupervised representation learning. The
main idea of our approach is to extract a pair of feature
representations from two augmented views of the same
instance. Then, learning to enhance the similarity between
this pair to be higher than the similarity to any other instance.
As such learning paradigm mainly depends on augmenting
the training sample, we propose a large set of augmentation
operations based on geometric and color transformations, as
well as controlled GAN augmentation to simulate different
realistic appearance variations, i.e. pose, illumination, and
expression. We also provide sensitivity studies on all the
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Fig. 1: An overview of our unsupervised FR training paradigm, USynthFace. Synthetic samples are generated and augmented
by a generative model to output a query (¢) and a positive key k*. Then, these samples are augmented with color and
geometric transformation through RandAugment. The augmented g and k™ are processed by the encoder and the momentum
encoder, respectively. Then, the queue is updated where the current mini-batch is enqueued and the oldest mini-batch from
the queue is dequeued. Finally, the contrastive loss is calculated based on ¢, k™ and the negative keys (k™). Gradients are
only back-propagated through the encoder. To maintain key consistency in the queue and to avoid rapidly updating the key
encoder, updating the key encoder (momentum encoder) is driven by momentum update with the query encoder.

components of our unsupervised FR framework. USynthFace
achieved relatively high verification performances on several
benchmarks. Our USynthFace also achieved very competi-
tive results to supervised FR trained on synthetic data and
outperformed them on several benchmarks. For example, our
USynthFace achieved SOTA accuracy (92.23%) on Labeled
Face on the Wild (LFW) for FR trained on synthetic data.

II. METHODOLOGY

This section presents our unsupervised FR training frame-
work and its components based on synthetic data (USyn-
thFace). Figure 1 illustrates the pipeline of our proposed
framework. Synthetic face images are conditionally gener-
ated using conditional GAN with different random identities,
pose, illumination and expression to output a query (q)
and a positive key (k*), which are two instances sampled
using same random identity latent vector with different
pose, illumination and expression. Then, the query and the
positive key are further augmented with geometric and color
transformations. The query images are then processed by
the encoder and the positive keys are processed by the
momentum encoder. The resulting feature representations of
the momentum encoder are then pushed into the queue and
the ones from the oldest batch are dequeued. Finally, the
feature representations of the query, the positive key and
the negative keys (retrieved from the queue) are utilized to
calculate the contrastive loss.

A. Unsupervised face recognition

a) Unsupervised representation learning: We utilize
in this work the concept of the Momentum Contrast
(MoCo)[18] for unsupervised representation learning. MoCo

uses contrastive learning to maximize the similarity be-
tween feature representations of positive pairs and minimize
the similarity between feature representations of negative
pairs. Positive pairs are two versions of the same instance
augmented using geometric or color transformations, while
pairing with any other images (of different instances) is
considered as negative pair, which might be perceived as self-
supervised learning. MoCo introduced a dynamic queue to
form a larger amount of negative pairs than forming negative
pairs only from the current batch [36], [21]. Moreover, unlike
memory bank where the feature encodings are produced from
different training stages [34], Moco introduced momentum
encoder to maintain consistent feature representations.
Consider a query image ¢ encoded into f,, a positive key
of the same instance of g, augmented as k' and encoded into
fx+ along with a set of negative keys {k; }2 (encoded into
{ fk; 1K ) that are retrieved from the queue. A contrastive

loss that guides the model to enhance the similarity between
fq and fp+ to be larger than the similarity between f,

and {f,- }/£, can be measured using MarginNCE [35] as
follows: "
exp ((fg * fp+ —=m)/7)
exp ((fa + fye —m)/m) + S0y exp ((fa x £,-)/7)
W
where T is a temperature hyper-parameter that controls the
entropy of the distribution [20] and m is a margin penalty
used to encourage the model to learn discriminative feature
representations. A detailed sensitivity study on the optimal
margin selection is provided in Section IV-I. Once the loss
function is calculated, the loss gradients are only back-
propagated through the encoder (query encoder 6.,.). To
avoid rapidly updating the key encoder which might break
the queue consistency [18], the weights of the momentum en-

L = —log



coder (key encoder 6,,,om_enc) are slowly updated by evolv-
ing the query encoder [18] with a momentum coefficient, as
follows: Oom_enc < MC*Bmom_enc+ (1 —me) %0y, where
me € [0,1] is a momentum coefficient.

Algorithm 1 USynthFace training pipeline

Z;q < sample I vectors from N(0, 1)
RA + RandAugment(N, M)
while e < num_epochs do
shuffle Z;4
for all z;4 in Z;4 do
for ¢ in [0,1] do
Rpose; Rexpr; Zillu ™~ N((): 1)
Zazp)p “— Zpose || Zexpr || Zillu
end for
q + G(zia || 2i3p)
K = Glzia || zapp)
q < RA(q)
kT + RA(KT)
fq < enc(q)
omom,enc < mc * omom,enc + (]- - mc) * eenc
fr+ < mom_enc(k™)
queue < update(fi,+, queue)
fh- < queue
' exp((fqrfys —m)/7)
exp((fafyot —m)/ 1)+ Iy ex((fanf,)/7)
backward(enc,l) '
end for
end while

| + —log

Fig. 2: Samples of augmented images. The first row shows
synthetically generated images with a same identity latent
vector and the augmented version of these images with
RandAugment are presented in the second row.

b) Synthetic data generation: The training dataset of
our unsupervised model is synthetically generated using
Generative Adversarial Network (GAN) [16]. Specifically,
we used DiscoFaceGAN (DFG) [15] to conditionally gen-
erate I images with different identity, pose, illumination,
and expression. DFG presented a 3D morphable face model
(3DMM) [3] to the StyleGAN model [24], enabling disentan-
glement of identity, pose, expression and illumination in the
latent space to conditionally generate realistic images with
varying attributes. The conditional image generation serves
as data augmentation for our unsupervised learning model as
presented in the next section.

¢) Data augmentation: Unsupervised representation
learning approaches such as MoCo [18], AMDIM [2], and
SimCLR [9] are heavily dependant on data augmentation
to construct positive pairs of the same instance. Previous
approaches [9], [2], [18] utilized geometric and color trans-
formation for augmenting the training data. In this work,

we propose to enrich the conventional data augmentation
operations, i.e. geometric and color transformations with
GAN-based augmentations generated by a conditional gen-
erative model. The conventional data augmentation method
is based on RandAugment [11]. The search space of Ran-
dAugment has two hyperparameters N and M, where N is
the number of transformations applied sequentially to each
input image and M is the magnitude of each transforma-
tion. Transformation operations include: Horizontal-flipping,
Rotate, Translate-x, Translate-y, Shear-x, Shear-y, Sharpness,
AutoContrast, Contrast, Solarize, Posterize, Equalize, Color,
Brightness, ResizedCrop and Grayscale. Sensitive studies on
the effect of each operation on FR verification performance
and the selection of RandAugment optimal hyper-parameters
are provided in Sections IV-D and IV-E, respectively. To
simulate more variations that occur in real images, we also
utilize DFG [15] to augment training images with different
pose, facial expression, and illumination. To generate such
images, we first randomly sample 128-D vector from a
normal Gaussian distribution N (0, 1), which represents the
identity information [15]. The expression, illumination and
pose attributes are controlled by three latent vectors (32-
D, 16-D and 3-D, respectively) and are disentangled from
the identity latent vector. Two augmented views of the
same image (and thus identity) can be generated by fixing
the identity latent and randomly modifying the attribute
latent vectors. Formally, two augmented images, query ¢
and positive key kT, can be generated by sampling two
appearance vectors as follows:

Zr(z%)p = Zpose H Rexpr || Zill s {Z;DOSea Zexpr Zill} ~

N(0,1) ()

and

Zz(zi))p == Zpose ||Zezpr Hzilla {ZpOSG7 Zezpra Zill} ~ N(O; 1) (3)

Each of z&%)p and zé},)p are then concatenated with identity

latent vector z;q ~ N(0,1) (randomly sampled) to generate
augmented ¢ and kT, as follows:

0
q=G(zia | 25),) €
and
+ _ . (1
kY = Glzia || 285,)- (5)
Augmentation EER FMR10 | FMR100 | FMR1000
GAN-based 0.0110 0.0019 0.0118 0.0558
RandAugment 0.0967 0.0955 0.1520 0.1915
GAN-based + RandAugment | 0.1650 0.2038 0.3547 0.4681

TABLE I: The effect of augmentation on identity in the
images indicated by the verification performances as EER,
FMR10, FMR100 and FMR1000 on three constructed
datasets using GAN-based, RandAugment, and GAN-based
with RandAugment augmentations. GAN-based with Ran-
dAugment augmentation results in bigger effects on identity,
providing more challenging samples for the FR training.

III. EXPERIMENTAL SETUPS

This section presents the experimental settings followed
in this paper.
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Fig. 3: The genuine (blue) and imposter (orange) score distributions of three different data augmentation settings. The
genuine pairs are constructed using GAN-based augmentation (Figure 3a), RandAugment (Figure 3b), and GAN-based with
RandAugment (Figure 3c). The biggest effect is noticed when combining both augmentations.

A. Dataset
a) Training dataset: We employ a pretrained DFG

model to synthetically generate facial images as discussed
in Section II-A.0.b. The model is trained on Flickr-Faces-
HQ dataset (FFHQ) [24] that contains 70k images of the size
1024 x 1024 pixels collected from Flickr and encompass vari-
ation in ethnicity, age, image background, and accessories
[24]. We opt to generate 100K images from the DFG model,
each from different identity latent representations. During
the training phase, we augmented these images with conven-
tional augmentation transformations as well as with GAN-
based augmentation i.e. pose, illumination and expression (as
detailed in Section II-A.0O.c). All training data are aligned
and cropped to 112 x 112 using similarity transformation
[14], [4], [23] based on detected facial landmarks by Multi-
task Cascaded Convolutional Networks (MTCNN) [38]. All
images are then normalized to have pixel values between -1
and 1.

b) Evaluation datasets: We used in this paper the
following datasets as evaluation benchmarks for our ablation
studies: Labeled Faces in the Wild (LFW) [22], AgeDB-
30 [27], Celebrities in Frontal to Profile in the Wild (CFP-
FP) [30], Cross-Age LFW (CA-LFW) [40], and Cross-
Pose LFW (CP-LFW) [39]. The verification accuracy is
reported for each of the considered benchmarks following
their defined protocols. In all ablation studies in this paper,
the overall verification performance is based on the sum of
the performance ranking Borda count on LFW, AgeDB-30,
CFP-FP, CA-LFW and CP-LFW.

Model R-R (%) R-S (%)
>FMR100_-Th | >FMR1000.Th | >FMR100_.Th | >FMR1000_-Th
ArcFace 2.6857 0.5664 3.1015 0.5827
CurricularFace 1.9137 0.4024 2.0284 0.3741
ElasticFace 2.0538 0.2951 2.3518 0.3130

TABLE II: Percentage of comparison scores that are larger
than different operation thresholds at FMR100 and FMR 1000
for R-R and R-S impostor comparison. The percentage
number indicates how many comparisons are falsely matched
as genuine. The low percentage for the R-S setting and its
similarity to R-R indicates that the identities of the authentic
data is not linked to these of the synthetic data.

B. Model training setup

The network architecture of the encoder model is ResNet-
50 [19], which is one of the widely used architectures in

recent SOTA FR [14], [1], [23], [4]. Following [18], the
momentum encoder is updated with a momentum coefficient
of 0.999 [18] and the temperature value 7 of contrastive loss
is set to 0.07 [18]. The feature representation dimensions is
initially set to 512-D in the results presented in Sections IV-
D, IV-E, IV-F. Later, in Section IV-G we present an ablation
study on the optimal feature representation dimensions of
128, 256, 512, and 1024-D. The queue size is set to 32768
based on sensitivity study presented in Section IV-F. An
optimizer Stochastic Gradient Descent (SGD) is used with
initial learning rate of 0.1. The momentum is set to 0.9 and
the weight decay to 5e-4. The learning rate is divided by
10 after 8, 16, 24, and 32 epochs. The models presented in
Sections IV-D, IV-E, IV-F, IV-G are trained for 40 epochs in
total with a batch size of 512 on 100K synthetic images. All
models are implemented using PyTorch [28] and trained on
two CPU 16 core Intel Xeon Gold 5218 and four NVIDIA
Quadro RTX6000 GPUs.

IV. RESULTS

This section presents the achieved results by our proposed
UsynthFace and its components, including: 1) Studying the
effect of different data augmentation operations on identity
preservation. 2) Analysing identity-shared information be-
tween synthetic data and original generative model authentic
training data. 3) Ablation studies of different components
of our framework (Figure 1), where we provide extensive
experiment evaluations of the components of our framework
(marked with red rectangles in Figure 1). 4) Comparison with
SOTA synthetic-based FR.

A. To which degree does data augmentation effect identity
information?

We evaluated the effect of augmenting face images on the
identity in the face image. The two augmented versions of
the same image (instance) were considered as a genuine pair
and pairing with any other image of different instances is
considered as an imposter pair. We used SOTA FR model
ElasticFace (ElasticFace-Arc) [4] to extract representation
features of our synthetic data. The achieved verification
performances are reported as Equal Error Rate (EER),
FMR10, FMR100, and FMR1000, which are the lowest
false non-match rate (FNMR) for a false match rate (FMR)
<10.0%, <1.0% and <0.1% respectively, along with plot-
ting the genuine-imposter score distributions. We made the
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Fig. 4: The score distributions of the two settings, the authentic data R-R and the cross-dataset R-S, achieved by ArcFace
[14], CurricularFace [23], and ElasticFace [4]. The highly overlapping score distributions indicate an extremely weak identity
relation between the authentic training data and the generated synthetic data.

following observation: 1) GAN-based augmentations (pose,
illumination and expression) preserve to large degree the
identity information of the augmented sample (0.0110 EER)
as shown in Table I and Figure 3a. 2) Color and geometric
transformations through RandAugment lead to degradation
in verification performance (0.0967 EER) in comparison to
GAN-based augmentation. 3) As expected, combining GAN-
based with RandAugment achieve the lowest verification
performance (0.1650 EER) in comparison to the GAN-based
(0.0110 EER) and RandAugment (0.0967 EER). However,
combining GAN-based with RandAugment (thus creating
challenging genuine pairs) significantly improved our unsu-
pervised model on the considered benchmarks as will be
shown in Section IV-E.

Augmentation | LFW | AgeDB-30 | CFP-FP | CA-LFW | CP-LFW
HF 73.12 50.95 60.99 60.05 56.13
HF+GAN-based | 81.53 53.65 67.21 65.03 64.22

TABLE III: Verification accuracies (%) of two data augmen-
tation settings on five different FR benchmarks. HF refers
to horizontal-flipping. Adding GAN-based augmentations
enhances the accuracy of the resulting FR model, which will
be referred to as “baseline”. Higher accuracy in bold.

B. Does the synthetic data share identity information with
the GAN authentic training data?

Driven by privacy concerns, we answered this question
by conducting an N:N evaluation where references were
compared to probes from the GAN authentic training dataset
(noted as R-R) and N:M evaluation where authentic ref-
erences from the GAN training dataset were compared
to synthetic probes generated by GAN generator model
(noted as R-S). In this experiment, feature representations
were obtained from ArcFace [14], CurricularFace [23] and
ElasticFace [4], respectively '. As authentic and synthetic
datasets do not have identity label, we calculated the oper-
ation thresholds at FMR100 (FMR100_Th) and FMR1000
(FMR1000_Th) for each of the evaluated models on LFW
dataset. The comparison scores below the operational thresh-
old were considered as non-match, i.e. of a different identity
and the ones that were higher than the operational threshold

IThe network architecture of ElasticFace-Arc [4], ArcFace [14] and
CurricularFace [23] is ResNet100 trained on MSIMV2 [17] by the cor-
responding authors (model publicly available).

were considered as match, i.e. of the same identity. Fig-
ure 4 shows score distributions of the cross-dataset (R-S)
and authentic data (R-R) with two operational thresholds
FMR100_Th and FMR1000_Th. It can be clearly noticed that
R-R and R-S score distributions are highly overlapped and
only a few samples are considered matched, i.e. achieved
comparison scores higher than the operational threshold. This
observation is complementary to the previous findings in [32]
and [7], as these works also reported that the identity relation
between the GAN training dataset and synthetic data is weak.
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Fig. 5: Augmentation operation selection for USynthFace
indicated by the Borda Count (Table IV) as verification
performance. 12 out of 15 candidate operations outperformed
baseline operations, composing the search space for Ran-
dAugment.

C. Impact of GAN-based augmentation

We evaluated the impact of GAN-based augmentation
on our USynthFace by training and evaluating USynthFace
model with widely used augmentation operation in FR [4],
[14], [23], [25], horizontal-flipping. This model is considered
as a baseline in this study. Then, we trained a second instance
of the baseline model with GAN-based augmentation, i.e.
pose, illumination and expression (in addition to horizontal-
flipping). The achieved verification performances on the
considered evaluation benchmarks are presented in Table
III. One can clearly notice that including GAN-based aug-
mentation in the model training significantly improved the
verification accuracies in comparison to the baseline model.

D. Impact of conventional data augmentation

In this study, we evaluated the achieved verification per-
formance by introducing different geometric/color transfor-
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TABLE IV: Impact of different conventional augmentation
operations given as verification accuracies (%) of the trained
models. The borda count shows that many augmentations
improve beyond the baseline model.
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Fig. 6: Hyperparameter of RandAugment selection for USyn-
thFace in terms of Borda Count (Table V) as a verification
performance.

mations to model training. The baseline model is noted as
”Baseline” and trained with horizontal-flipping and GAN-
based augmentations. Table IV and Figure 5 present the
achieved results by different models, each was trained with
a single candidate augmentation operation (in addition to
horizontal-flipping and GAN-based operations). The candi-
date operation is included in the final augmentation space if it
has led to improvement in overall verification performances
(in terms of Borda count) in comparison to the baseline
model. Out of 15 candidate operations, 12 operations outper-
formed the baseline operation. These operations are included
in the search space of RandAugment.

E. Conventional data augmentation through RandAugment

The augmentation operations from the previous study
(Section IV-D) are used to build the search space for
RandAugment. We evaluate in this section by randomly
augmenting the training samples with multiple operations,
ie. 1, 2, 3 or 4 and with different magnitudes, i.e. 8§,
12, 16, 20 or 24. In total, we trained and evaluated 20
models (4 different numbers of operations and five possible
magnitudes). The best verification performance is achieved
by randomly applying 4 operations (sequentially) with the
magnitude of 16 as shown in Table V and Figure 6.

TABLE V: Sensitivity study on RandAugmen hyperparame-
ters. Verification accuracies (%) of different settings on five
FR benchmarks. Randomly applying 4 operations with the
magnitude of 16 obtained the best overall performance. The
highest Borda Count (accuracy) is in bold.

Qs‘fe“e LFW | AgeDB30 | CFP-FP | CALFW | CPLFW | 5°rda
ize Count
512 | 8622 | 6343 T4.44 67.73 68.53 8
1024 | 8655 | 62.58 73.97 67.87 67.85 7
2048 | 8625 | 6397 73.67 68.63 68.57 4
3006 | 8697 | 6325 74.84 68.82 68.72 24
8192 | 8650 | 63.60 75.30 6830 68.67 73
16384 | 8647 | 62.72 73.67 68.85 69.07 7
32768 | 8693 | 64.15 7451 69.08 68.80 30
65536 | 87.02 | 6357 7447 67.87 68.18 18

TABLE VI: Verification accuracies (%) of using different
queue sizes on five FR benchmarks. The highest accuracy
indicated by the highest Borda Count is in bold.

Di Feature = |y pw | AgeDB-30 | CFP-FP | CA-LFW | CP-LFW | D°rda
y Count

128 8635 6355 7303 68.52 68.12 9

256 8652 | 63.02 7423 68.48 6833 10

512 86.93 64.15 7451 69.08 68.80 20

1024 86.65 63.52 7371 68.75 68.15 Tl

TABLE VII: Verification accuracies (%) achieved by models
with different feature representation dimensionality on five
FR benchmarks. The best overall verification accuracy is
achieved by feature representation of 512-D.

LR- Maximal

LFW | AgeDB-30 | CFP-FP | CA-LFW | CP-LFW
Scheduler Epochs
step-based 40 86.93 64.15 7451 69.08 68.80
plateau-based 200 91.52 69.30 78.46 75.35 71.93

TABLE VIII: Verification accuracies (%) of different LR
schedulers on five FR benchmarks. Models trained with
plateau-based LR scheduler and more epochs yield better
performances than step-based scheduler.

Margin | LFW | AgeDB-30 | CFP-FP | CA-LFW | CP-LFW g‘(’):‘lat
0.00 | 9152 69.30 78.46 7535 7193 2
0.05 | 91.30 7037 7873 75.52 7158 3
0.0 | 92.12 71.08 78.19 76.15 7195 22
0.15 | 91.83 70.78 78.11 76.18 7150 7
020 | 91.65 7075 77.80 75.93 7137 1T

TABLE IX: Verification accuracies (%) of different margin
values for the MarginNCE loss on five FR benchmarks. A
margin value of 0.10 leads to the best overall performance
and thus is used in the final experimental setting.



Method Unsupervised | Identities sa;‘:ls:ﬁt;’er Total | LFW | AgeDB-30 | CFP-FP | CA-LFW | CP-LFW
SynFace [29] X 0K 50 SO00K | 88.98 - - - -
SynFace (w/IM) [29] X 10K 50 500K | 91.97 - - - -
SFace-10 [7] X 10,575 10 105K | 87.13 63.30 68.84 T3.47 66.82
SFace-20 [7] X 10,575 20 211K | 90.50 69.17 7333 76.35 71.17
SFace-40 [7] X 10,575 40 423K | 91.43 69.87 73.10 76.92 73.42
SFace-60 [7] X 10,575 60 634K | 91.87 71.68 73.86 77.93 73.20
USynthFace (ours) 4 100K 1 100K | 91.52 69.30 78.46 75.35 71.93
USynthFace (ours) v 200K 1 200K | 91.93 71.23 78.03 76.73 7227
USynthFace (ours) v 400K 1 400K | 92.23 71.62 78.56 77.05 72.03

TABLE X: Verification accuracies (%) on five different FR benchmarks achieved by the supervised and SOTA SynFace
[29] and SFace [7] models, and our USynthFace model trained on the synthetic training databases of different sizes. The
bold number refers to the highest performance on each benchmark. Nothing that the authors of SynFace [29] only provided
evaluation results on LFW. Our unsupervised USynthFace model obtained very competitive and even better results than

supervised synthetic-based FR models.

F. Analyses of the queue size

In the previous section, we evaluated several augmentation
methods for training our USynthFace model. In this section,
we study varying the queue size of momentum contrast. Our
achieved results in Table VI pointed out that maintaining
a queue of 32768 negative keys leads to the highest overall
verification performance on the considered evaluation bench-
marks. Noting that increasing the queue size to 65536 did
not improve the overall verification performances.

G. Study of feature representation dimensionality

Based on the optimal queue size and augmentation meth-
ods, we evaluate in this section different learned feature
representation dimensionalities i.e. 128, 256, 512 and 1024.
All models in this section are trained with GAN-based aug-
mentation and RandAugment with 4 sequential operations
and a magnitude of 16 as well as a queue size of 32668. The
achieved results of utilizing different feature representation
dimensionality are presented in Table VII where the best
overall verification performance is achieved using feature
representation of 512-D.

H. Training optimization

The presented results are achieved so far by training
our USynthFace models using a step-based learning rate
schedule. Previous works [10] on unsupervised represen-
tation learning pointed out that increasing the number of
training epochs is beneficial for improving unsupervised
model accuracy. To provide complete evaluation results, we
study increasing the number of epochs to a maximum of
200 [10] and using a plateau-based learning scheduler. The
initial learning rate is set to 0.1 and it divided by 10 when
the average validation accuracy does not improve for 10
consecutive epochs. The training is stopped when the average
validation accuracy does not improve for 20 consecutive
epochs with maximum of 200 epochs. Using the listed
training settings, the model training stopped after 91 training
epochs. The achieved results, in this case, are presented in
Table VIII, pointing out that increasing the training epochs
significantly improved the verification performance on all
considered benchmarks.

L. Impact of different margins in MarginNCE

We study in this section different margin values (0, 0.05,
0.1, 0.15 and 0.2) for MarginNCE loss (Eq. 1). The presented
results in this section were obtained by training four different
models with the optimal observed training settings from the
previous experiments. It can be noticed from the achieved
results in Table IX that the overall verification performance
is improved by increasing margin values from 0 to 0.1.
However, when we increase the margin value to 0.15 or 0.20,
the overall verification performances are slightly degraded.

J. Study of training database size

Given that there is no restriction on the number of syn-
thetic samples that can be generated using the generative
model, we increased the training dataset size from 100K to
200K and to 400K images. Then, we trained two instances of
our unsupervised model with the new constructed datasets.
The achieved results are presented in Table X together with
other SOTA synthetic-based FR models. One can notice that
increasing the training dataset sizes to 200K and 400K im-
ages slightly improved the overall verification performance
in comparison to the model trained with 100K images.

K. Comparison with the SOTA synthetic-based FR

We compared the achieved verification performance by our
USynthFace with the recent SOTA FR that proposed the use
of synthetic data in FR training (Table X). Noting that this is
the first work that proposed to train FR with privacy-friendly
synthetic data in an unsupervised fashion. SynFace [29]
and SFace [7] are trained with supervised learning to learn
multi-class classification using margin-penalty softmax loss.
SynFace only reported the verification performance on LFW
dataset. On LFW and CFP-FP datasets, our unsupervised
model outperformed SFace and SynFace. On AgeDB-30,
CA-LFW and CP-LFW, our unsupervised model achieved
very competitive results to SFace, even though USynthFace
training is unsupervised.

V. CONCLUSION

We presented in this work a novel unsupervised face
recognition solution trained on unlabeled synthetic data. The



unsupervised training is based on creating positive pairs to
unlabeled synthetic face images of random identities through
well-studied augmentations. We proposed not only to use
conventional data augmentations in our USynthFace model
training, but also introduced GAN-based augmentation to the
training pipeline, enhancing the variability in the synthetic
face image appearances. This has been complemented with
a set of empirical studies on the validity of the different
components of our USynthFace and their design choices.
With a simple yet effective training paradigm, our USyn-
thFace advanced the SOTA performance on a number of
the evaluation benchmarks, in comparison to the recent face
recognition models trained on synthetic data, while being the
only one trained in an unsupervised manner.

[1]

[2]

[3]
[4]

[5]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

X. An, X. Zhu, Y. Gao, Y. Xiao, Y. Zhao, Z. Feng, L. Wu, B. Qin,
M. Zhang, D. Zhang, and Y. Fu. Partial FC: training 10 million
identities on a single machine. In ICCVW, pages 1445-1449. IEEE,
2021.

P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representa-
tions by maximizing mutual information across views. In NeurlPS,
pages 15509-15519, 2019.

V. Blanz and T. Vetter. A morphable model for the synthesis of 3d
faces. In SIGGRAPH, pages 187-194. ACM, 1999.

F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper. Elasticface:
Elastic margin loss for deep face recognition. In CVPR Workshops,
pages 1577-1586. IEEE, 2022.

F. Boutros, N. Damer, and A. Kuijper. Quantface: Towards lightweight
face recognition by synthetic data low-bit quantization. In 26th ICPR
2022,August 21-25, 2022. IEEE, 2022.

F. Boutros, N. Damer, K. B. Raja, R. Ramachandra, F. Kirchbuchner,
and A. Kuijper. Iris and periocular biometrics for head mounted
displays: Segmentation, recognition, and synthetic data generation.
Image Vis. Comput., 104:104007, 2020.

F. Boutros, M. Huber, P. Siebke, T. Rieber, and N. Damer. Sface:
Privacy-friendly and accurate face recognition using synthetic data.
CoRR, abs/2206.10520, 2022.

Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2:
A dataset for recognising faces across pose and age. In FG, pages
67-74. IEEE Computer Society, 2018.

T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple
framework for contrastive learning of visual representations. In JCML,
volume 119 of Proceedings of Machine Learning Research, pages
1597-1607. PMLR, 2020.

X. Chen, H. Fan, R. B. Girshick, and K. He. Improved baselines with
momentum contrastive learning. CoRR, abs/2003.04297, 2020.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical
automated data augmentation with a reduced search space. In CVPR
Workshops, pages 3008-3017. Computer Vision Foundation / IEEE,
2020.

N. Damer, F. Boutros, F. Kirchbuchner, and A. Kuijper. D-id-net:
Two-stage domain and identity learning for identity-preserving image
generation from semantic segmentation. In ICCV Workshops, pages
3677-3682. IEEE, 2019.

N. Damer, C. A. F. Lopez, M. Fang, N. Spiller, M. V. Pham, and
F. Boutros. Privacy-friendly synthetic data for the development of
face morphing attack detectors. In CVPR Workshops, pages 1605—
1616. IEEE, 2022.

J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition. In CVPR, pages 4690-4699.
Computer Vision Foundation / IEEE, 2019.

Y. Deng, J. Yang, D. Chen, F. Wen, and X. Tong. Disentangled
and controllable face image generation via 3d imitative-contrastive
learning. In CVPR, pages 5153-5162. Computer Vision Foundation /
IEEE, 2020.

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets.
In NIPS, pages 2672-2680, 2014.

Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition. In ECCV (3), volume
9907 of Lecture Notes in Computer Science, pages 87—102. Springer,
2016.

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]
[34]

[35]

[36]

[37]
(38]

[39]

[40]

K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick. Momentum contrast
for unsupervised visual representation learning. In CVPR, pages 9726—
9735. Computer Vision Foundation / IEEE, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, pages 770-778. IEEE Computer Society, 2016.

G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a
neural network. CoRR, abs/1503.02531, 2015.

R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, and Y. Bengio. Learning deep representations by
mutual information estimation and maximization. In /CLR. OpenRe-
view.net, 2019.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. La-
beled faces in the wild: A database for studying face recognition in
unconstrained environments. Technical Report 07-49, University of
Massachusetts, Amherst, 10 2007.

Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and
F. Huang. Curricularface: Adaptive curriculum learning loss for
deep face recognition. In CVPR, pages 5900-5909. Computer Vision
Foundation / IEEE, 2020.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture
for generative adversarial networks. In CVPR, pages 4401-4410.
Computer Vision Foundation / IEEE, 2019.

W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface:
Deep hypersphere embedding for face recognition. In CVPR, pages
6738-6746. IEEE Computer Society, 2017.

B. Meden, P. Rot, P. Terhorst, N. Damer, A. Kuijper, W. J. Scheirer,
A. Ross, P. Peer, and V. Struc. Privacy-enhancing face biometrics: A
comprehensive survey. [EEE Trans. Inf. Forensics Secur., 16:4147—
4183, 2021.

S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and
S. Zafeiriou. Agedb: The first manually collected, in-the-wild age
database. In CVPR Workshops, pages 1997-2005. IEEE Computer
Society, 2017.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, pages
8024-8035, 2019.

H. Qiu, B. Yu, D. Gong, Z. Li, W. Liu, and D. Tao. Synface: Face
recognition with synthetic data. In ICCV, pages 10860-10870. IEEE,
2021.

S. Sengupta, J. Chen, C. D. Castillo, V. M. Patel, R. Chellappa, and
D. W. Jacobs. Frontal to profile face verification in the wild. In WACV,
pages 1-9. IEEE Computer Society, 2016.

The European Parliament and the Council of the European Union.
Regulation (eu) 2016/679 of the european parliament and of the
council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing directive 95/46/ec (General Data Protection
Regulation), 2016.

P. J. Tinsley, A. Czajka, and P. J. Flynn. This face does not exist... but
it might be yours! identity leakage in generative models. In WACV,
pages 1319-1327. IEEE, 2021.

A. van den Oord, Y. Li, and O. Vinyals. Representation learning with
contrastive predictive coding. CoRR, abs/1807.03748, 2018.

Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning
via non-parametric instance discrimination. In CVPR, pages 3733—
3742. Computer Vision Foundation / IEEE Computer Society, 2018.

J. Xie, X. Zhan, Z. Liu, Y. Ong, and C. C. Loy. Delving into
inter-image invariance for unsupervised visual representations. CoRR,
abs/2008.11702, 2020.

M. Ye, X. Zhang, P. C. Yuen, and S. Chang. Unsupervised embedding
learning via invariant and spreading instance feature. In CVPR, pages
6210-6219. Computer Vision Foundation / IEEE, 2019.

D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from
scratch. CoRR, abs/1411.7923, 2014.

K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and
alignment using multi-task cascaded convolutional networks. CoRR,
abs/1604.02878, 2016.

T. Zheng and W. Deng. Cross-pose Ifw: A database for studying
cross-pose face recognition in unconstrained environments. Technical
Report 18-01, Beijing University of Posts and Telecommunications,
02 2018.

T. Zheng, W. Deng, and J. Hu. Cross-age LFW: A database for
studying cross-age face recognition in unconstrained environments.
CoRR, abs/1708.08197, 2017.



