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Abstract— This work focuses on the apparent emotional reac-
tion recognition (AERR) from the video-only input, conducted
in a self-supervised fashion. The network is first pre-trained on
different self-supervised pretext tasks and later fine-tuned on
the downstream target task. Self-supervised learning facilitates
the use of pre-trained architectures and larger datasets that
might be deemed unfit for the target task and yet might be
useful to learn informative representations and hence provide
useful initializations for further fine-tuning on smaller more
suitable data. Our presented contribution is two-fold: (1)
an analysis of different state-of-the-art (SOTA) pretext tasks
for the video-only apparent emotional reaction recognition
architecture, and (2) an analysis of various combinations of the
regression and classification losses that are likely to improve
the performance further. Together these two contributions
result in the current state-of-the-art performance for the video-
only spontaneous apparent emotional reaction recognition with
continuous annotations.

I. INTRODUCTION

Apparent emotional reaction recognition (AERR) is a
broadly applicable branch of computer vision. In this paper
we are going to focus on specifically the video-only domain
for AERR for several reasons. First, the audio stream is
not always available, and not every apparent emotional
reaction is accompanied by a sound. Second, in audio-visual
domain active speaker detection is a whole new problem in
case of multiple speakers in the video. Finally, generalising
to noisy environments can represent certain challenges for
audio. Hence it would be useful to explore the efficient
AERR restricted solely to the video modality for the sake
of prediction robustness and broader applicability.

Further, this work explores predicting the continuous emo-
tion characteristics - arousal and valence (in this paper we
call these continuous emotions) instead of more traditional
AERR that is concerned with classifying the categorical
emotions (sadness, fear, surprise, etc). The reason being that
the categorical emotion theory is limited in its ability to
express subtle and disparate emotions [1].

Current state-of-the-art for video-only AERR are [2] and
[3]. First presents a model based on probabilistic modeling
of the temporal context, presenting compelling results on
SEWA dataset [4]. A somewhat comparable performance is
achieved by [5], using spatio-temporal higher-order convo-
lutional neural net. Secondly, for RECOLA dataset [6] the
current SOTA is TS-SATCN [3], a two-stage spatio-temporal
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attention temporal convolution network. The only additional
video-only AERR method to be found is Visual ResNet-50
presented in [7], also evaluated on RECOLA.

Shortage of annotated data for specific tasks and domains
often represents a challenge. This can be addressed from
several angles, e.g. transfer or semi-supervised learning
and self-supervised learning (SSL). We focus on the SSL
approach, that can use labelled and unlabelled data within
the same model. It relies on the pretext training to leverage
the additional data, and then serve as an initialization to the
downstream training, solving target tasks.

The works that contributed to the SSL paradigm for facial
data in adjacent domains are [8] and [9]. One presented
a SSL framework for a number of tasks, including the
AERR from images, providing results on AffectNet, large-
scale facial expression image database [10], and is the SOTA
for self-supervised AERR on images [8]. The other, [9],
describes contrastive-learning across the video-sequences,
for specifically categorical emotions on acted dataset Oulu-
CASIA [11], and is SOTA for acted AERR from video.
Additionally, [12] offered a unified framework for multiple
tasks, but it does not surpass [7] and [3] on RECOLA [6].

To the best of our knowledge video-only self-supervised
framework for natural apparent emotional reaction recogni-
tion has not yet been explored, which is what we present
in this paper. We compare 3 different SSL methods for the
pretext training and investigate the impact of a variety of
loss functions during downstream training. We evaluate our
proposed method on two different natural emotional reactions
datasets (SEWA and RECOLA, [4], [6]) and achieve an
improvement by up to 10% on previously published models.

Our main contributions can be summarized as follows:
(1) a review of several pretext tasks for apparent emotional
reaction recognition from video for their downstream per-
formance across several spontaneous emotion datasets; (2)
analysis of the impact of the combined regression and classi-
fication losses, data augmentations, and downstream learning
parameters; (3) adding up to the first to our knowledge Self-
Supervised Visual Apparent Emotional Reaction Recognition
method for spontaneous emotions with continuous annota-
tions, SS-VAERR. Please check Tab. [ for the results.

II. RELATED WORK

Apparent Emotional Reaction Recognition is a vast
research field spread across different methods and domains.
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Domain-wise there is audio-based, image-based, video-
based, and audio-visual AERR, additionally separated into
acted and spontaneous/natural AER. We mostly focus on
spontaneous and visual AER here. The results across the
field are reported on different datasets, complicating the
comparison, that is why SOTA is reported per dataset. There
are also multiple datasets for AERR of different modalities,
the ones discussed in this paper (Sec. @[) and others, such
as AffNet [15], Oulu-CASIA [11], and AffectNet [10].

Audio-visual or multi-modal AERR tends to yield better
results than video-only. Specifically audio is known to pro-
vide better signal for arousal [16]-[18]. Multi-modal AERR
works include [19], a BLSTM-based method, using joint
discrete and continuous emotion representation for AERR
that holds the current SOTA for multi-modal AERR on
RECOLA [6] development set. However, a ResNet50-based
method presented by [7] achieves SOTA results for RECOLA
on the test set, also presenting video- and audio-only results.

The most prominent examples of the image-based AERR
include EmoFan [20] - an approach for direct estimation
of facial landmarks, discrete and continuous emotions with
a single neural net from facial images, and [8] - an SSL
framework, purposed for a variety of downstream face-
related applications, including the SOTA results for AERR
on images presented on AffectNet [10].

Video-only AERR is a less explored field, the current
SOTA being Affective Processes [2] and [3]. First is a
neural processes model with a global stochastic contextual
representation, task-aware temporal context modelling, and
temporal context selection. Second is a two-stage spatio-
temporal attention temporal convolution network.

Self-supervised learning (SSL) focuses on minimising
the use of human-generated annotations at training time. It is
often used to leverage the large amounts of unlabelled data
to aid learning on significantly smaller annotated datasets.
The SSL is rooted in the assumption that solving a seemingly
unrelated self-supervised pretext task can help to learn useful
visual representations. These would serve as a good initial-
ization point for a task of interest, downstream task, given
that the model is well generalized and the tasks are similar
enough in kind [21]-[24]. If these assumptions are violated a
negative transfer might occur [25] - the performance would
be worse than that of a model trained entirely from scratch.

There is plenty of research showing the benefits of SSL
for general image datasets [26], [27]. SSL techniques vary
by both the downstream and pretext tasks. Traditional pretext
tasks include transformation classification [28], image in-
painting [29], image colorization (from grayscale) [30], [31],
and solving jigsaw puzzles [32]. A more recent field of SSL
is contrastive learning, that relies on minimizing the distance



between the learned representations of the positive pairs
- differently augmented versions of the same image, and
maximising it for the negative pairs - different augmentations
of different images, [33], [34]. On the plus side contrastive
learning does not require labels, on the downside it is
sensitive to the choice of the negative pairs as well as to
the choice of the augmentations used.

An ultimate improvement on the contrastive techniques
involved getting rid of the negative pairs, accomplished by
BYOL[13] and DINO [14]. Instead those rely on different
teacher-student-like architectures trained on a variety of
image crops and augmentations, that can be interpreted as
positive pairs. Not relying on negative examples accounts
for a potentially better generalization because of their lower
vulnerability to the systematic biases in training data.

For the face imagery some SSL techniques were devel-
oped for tasks such as action unit detection [35] and lip-
reading [36], [37]. For AERR, SSL research can be sparse
depending on the modality and target (i.e. categorical emo-
tion vs valence and arousal). The prominent works include
[8] - universal facial representation learning for images, [38]
- contrastive learning method for recognition of categorical
emotions from multi-view images of emoted faces.

The only current example of the self-supervised AERR
from video is based on spatio-temporal contrastive learning
and delivers SOTA results for synthetic categorical emotion
recognition [9]. Unfortunately, it is not directly comparable
to ours because 1) it is designed to perform on a lab recorded
and most importantly acted dataset Oulu-CASIA [11]; 2) it
aims to predict discrete emotions rather than arousal and
valence. Meaning not only that it uses non-realistic posed
emotion depictions, but also that every discrete acted emotion
is present for every individual in the dataset. Whereas we aim
for the spontaneous apparent emotional reactions with their
natural distribution.

Although some work has been done in multi-modal self-
supervised in-the-wild AERR [19], to our knowledge video-
only self-supervised continuous spontaneous facial AERR
has not been explored yet.

III. METHODOLOGY
A. Shared Architecture and Pretext Tasks

As mentioned before, the similarity of the pretext and
downstream tasks can significantly contribute to the use-
fulness of the visual representations learned during pretext
training to the downstream task, hence in this study we
review and evaluate the self-supervised pretext methods
designed to learn visual representations.

We examine three suitable pretext methods: LiRA [36],
BYOL[13], and DINO [14]. Please refer to Fig. E] for
the flowcharts complementing the explanations below. For
comparability sake we have incorporated the ResNet18, [39],
as part of the pretext architectures to facilitate the transfer for
the downstream task. LiRA architecture, Fig. Eka), remains
unchanged. For BYOL it is a change from ResNet50 to
ResNet18, Fig. Ekb). For DINO it is a change from trans-

former, [40], to ResNetl8, Fig. Ekc); in principle DINO
supports any architecture for both of its networks.

Learning visual speech Representations from Audio
(LiRA) [36] is a self-supervised method for predicting visual
representations of acoustic features from unlabelled speech
videos. Its architecture features a ResNetl8 followed by a
conformer. Once it is trained, we only use the ResNetl8
weights for the downstream initialization. LiRA uses the
random flip (Prob = 50%) and the random crop of 80 x 80
(out of 96 x 96) augmentations during training.

Bootstrap Your Own Latent (BYOL) [13] is an approach
to self-supervised visual representation learning that does not
rely on negative pairs typical for previous SSL methods. Its
architecture consists of online and target networks, interact-
ing and learning from one another. The online network is
trained to predict the invariant visual representation of the
same image under different augmentations, while the target
network learns via a slow-moving average from the online
network. At inference time only the 3D convolutional layer
and the ResNetl8 of the online network are preserved, the
visual representations are extracted from the final layer of
ResNet for the downstream task. BYOL uses the following
training time data augmentations: random cropping, random
flip, color jittering (brightness, contrast, saturation and hue
of an image, shifted by a uniformly random offset), Gaussian
blurring, and solarization. For details see Appendix B in [13].

Self-DIstillation with NO labels (DINO) [14] is yet
another two-network SSL architecture, an attention-based
self-distillation method using no labels, and reportedly an
improvement on BYOL. The principle is also rather similar
to BYOL.: the two networks are student and teacher networks,
they have the exact same architecture and teacher is updated
as an exponential moving average of the student. There are
certain additional tricks, such as centering and sharpening for
the teacher network. Sharpening is a technique introducing
the temperature parameter into the softmax of both networks.
Temperature is lower for the teacher than for the student, it
reduces noise but encourages a potential mode collapse (a
phenomenon where network systematically produces same
outputs for different inputs), whereas centering (a type of
normalization specific to DINO technique with respect to
teacher’s previous logits) is meant to compensate for that
and prevent the mode collapse. In principle DINO allows
for both student and teacher to draw from a broad range of
potential network architectures. We have adapted it to rely on
the ResNet18 instead of the typical transformer networks for
comparability with the other reviewed pretext models. DINO
uses the same augmentations as BYOL. However, one of the
key differences of DINO is that the teacher network only
sees the global crops (covering most of the image) while the
student gets to see both global and local crops and should
derive similar or ideally the same representations from both.

Please note that the data augmentations during the pretext
training are as in the corresponding, whereas the ones at the
downstream training time are discussed in Sec.



B. Downstream VAERR Architecture

As can be seen on Figure Ekd), the downstream task archi-
tecture uses 3D convolutional layer, followed by ResNetlS§,
and finally by GRU, which then returns regression or classifi-
cation result or both depending on what loss is chosen. For all
of the pretext tasks the weights of the 3D convolutional layer
and ResNetl8 are passed from the pretext to downstream
architecture, as the initialisation of the latter. The intuition
behind the choice of the architecture is follows: ResNetl8
is a reliable choice for initial image processing resulting
in meaningful latent features, powered by pre-text tasks,
whereas GRU is meant to capture the temporal component
within the videos.

Fine-tuned version of each pretext method only initializes
the downstream task with the shared weights from the
pretext. It is later free to update these weights in accordance
to the downstream training under the chosen loss function.
Frozen version of the pretext freezes some of the layers,
so they cannot be updated during the downstream training
of the model. We have compared freezing the entire set of
shared weights and found that freezing just the first 3D-
convolutional layer of the network generally shows better
results that freezing 3D-convolutional layer and ResNetl8.
Therefore, "Frozen” in this paper means “frozen first layer”.

C. AERR Discrete and Continuous Labels

Humans tend to generalize and discretize the facial emo-
tions into 7-8 categrical classes such as happiness, sadness,
surprise, anger, rage, disgust, boredom (and neutral). From
the computational point of view, there are multiple perks
to using the continuous emotion labels - valence (positiv-
ity/negativity of the emotion) and arousal (the magnitude of
it) [20]. Therefore, a number of sentiment analysis datasets
are annotated with continuous emotion labels only. In this
paper we focus specifically on correctly predicting apparent
arousal and valence.

Furthermore, there are several publications in the field
suggesting that using combined classification and regression
losses, called composite losses in this paper, on both contin-
uous and discretized versions of the same labels improves
the prediction quality drastically [2], [19]. Hence, we study
composite loss functions as well as various pretext tasks.

D. Composite Loses

The success of the models is assessed via the Concor-
dance Correlation Coefficient (CCC) metric calculated on the
combined videos of the test set. Rather than optimizing the
performance solely for CCC, we examine the combinations
of the following losses.

Regression loss for continuous predictions, is calculated
as 1 — CCC, where CCC is the Concordance Correlation
Coefficient of the validation set. The idea behind this metric
is to assess the correlation between the predictions and the
targets, while also penalising the signals with the different
means more. It can be interpreted as a version of Pearson

Coefficient weighted towards predictions with higher errors.

oy +ov + (ny + py)?

where Y are ground truth labels and Y are the predicted
values, and p and o are their mean and variance.

Mean Squared Error (MSE) (for continuous labels)
shows how close the predicted values are to the target values.
We were inspired to use it by the EmoFAN paper [20], which
suggests that optimising with respect to the MSE tends to
improve the performance with respect to the CCC as well.

MSE(Y,Y) =E((Y —Y)?) (2)

Cross-Entropy Loss (CE) is a classification loss for the
discretized labels, penalising the divergence of the predicted
probability from the actual label. Discretization was con-
ducted as following: valence and arousal per frame labels
have been split into 20 bins/classes each with uniformly
distributed bin boundaries (as in [2]). These classes then
have been presented as one-hot vector labels of length 20
(per frame). So the cross-entropy presented as

CCC(Y,Y)=2

CE(Y,Y) = - ; Yilog (Vi) 3)

for L classes, here 20 by number of the discrete bins, and
Y; is computed as a Softmax probability of each class per
label per frame.

Cost-sensitive cross-entropy loss (nCCE) function [41]
with the cost norm loss for discretized labels, similar to [19]:

~ 1 F R L ~
TZCCE(Y, Y) = F le Cnorm(yfv Yf) l; Yf(l) : lOng(l> “)

for f = 1,...,F being the number of frames and a
cost norm function C', 1, inspired by [19], that takes into
consideration the spatial relation which helps the stability of
the training / fine-tuning:

L
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2
where K is the centroid of the label [ in k-means
classification (kK = 20 in our case). We analyse the effect
of these losses and some of their combinations in Sec. [V-Cl
The total loss function can be described as

L = weee CCC + wipse MSE 4+ wee CE + w, cce N"CCE  (6)

IV. EXPERIMENTAL SETUP
A. Datasets and Preprocessing

Pretext Dataset In order to maintain the comparability
across different pre-training methods in this paper all of the
pretext tasks are trained on Lip Reading Sentences 3 dataset
(LRS3) [42], containing thousands of spoken sentences from
TED and TEDx videos.

Downstream Datasets The downstream task results are
presented for the following facial video datasets: SEWA
[4], and RECOLA [6], the most popular academic datasets
for AERR. SEWA database consists of the videos of volun-
teers watching adverts chosen to elicit apparent emotional
reactions, and later discussing what they have seen. SEWA
has annotations of valence and arousal per frame. SEWA
dataset has been collected across the residents of 6 countries:



TABLE I
OUR PROPOSED MODEL VS STATE-OF-THE-ART. RECOLA: RESULTS ARE PRESENTED ON DEVELOPMENT SET AS THE TEST SET IS NOT PUBLIC. FOR

[2] (AP+DET.+ATT.) STANDS FOR AFFECTIVE PROCESSES WITH COMBINED LATENT AND DETERMINISTIC LAYERS WITH SELF-ATTENTION.

Methods SEWA RECOLA
Arous. Val. Arous. Val.

HO-CPConv [5] 0.520 0.750

Affective Processes (AP+Det.+Att.) [2] 0.662 0.672

Affective Processes Best [2] 0.640 0.750

End-to-End Visual ResNet-50 [7] 0.371 0.637

TS-SATCN [3] 0.659 0.690

Baseline: 3Dconv+ResNet18+GRU From Scratch 0.588 0.609 0.344 0.538

Our SS-VAERR backbone 0.678 0.737 0.630 0.607

Our SS-VAERR (+ augmentations + composite loss) 0.713 0.771 0.675 0.626

the UK, Germany, Hungary, Serbia, Greece, and China.
RECOLA is a database of multi-domain data recordings of
native French-speaking participants completing a collabora-
tive task in pairs during a video conference call, collected
in France. Although RECOLA in the wild possesses a rich
choice of modalities, we only use the pre-processed video
data and continuous arousal and valence labels recorded per
frame, averaged across the annotators.

Pre-processing All of the above datasets are converted
into gray-scale videos and cropped around the face to 96 < 96
based on the landmark detection. More specifically we use
RetinaFace face detector [43] and the Face Alignment Net-
work (FAN) [44] to detect 68 facial landmarks and crop the
face based on these. Annotations include arousal and valence,
labelled per frame, averaged across multiple annotators.

B. Training details

Breakdown into training, validation, and test set is con-
ducted in the same manner as in [2] for SEWA (train./val./test
sets containing 435/53/53 instances), and as in [19] for
RECOLA (train./val. containing 197/152 instances, with
results reported on the validation set, as the test set for
RECOLA is not publicly available). Both of the datasets
are normalized with their respective means and standard
deviations throughout.

Videos are kept at original lengths and sampled as fixed
length segments at training time. Empirically, SEWA exper-
iments yield better results with segments of 200 frames,
whereas RECOLA experiments deliver better results when
sampled as 500-frame-long video segments.

During training we have used AdamW optimizer with the
weight decay of 0.0001 and initial learning rate ranging from
0.0003 to 0.00007, depending on the downstream dataset and
other parameters, and batch-size ranging from 3 to 20. All
models in this paper have been trained for 10 epochs. The
augmentations are discussed in sections and [[V}

V. RESULTS
A. Comparison with state-of-the-art

A slight complication natural to the field is that the results
are being presented on a variety of datasets that do not
coincide between the papers. Hence, we are restricting our
benchmarks by the modality and type of the prediction
- video-only natural AERR for valence and arousal. This

leaves us with only a few recent benchmarks. First, [2] and
[5], demonstrated their results on SEWA dataset, one of
our downstream task datasets. For RECOLA there is TS-
SATCN [3], a two-stage spatio-temporal attention temporal
convolution network, and a visual ResNet50 [7]. That is it for
the spontaneous video-only AERR for arousal and valence.
Since these benchmarks were not evaluated on the same
dataset, we compare our results in Table [[] to their reported
results on the respective datasets: SEWA for [2], [5], and
RECOLA for [3], [7]. Our final model is pre-trained in a
self-supervised manner, using augmentations and composite
losses (a detailed analysis for each of them can be found
in sections to [V-D). We see that our model compares
favourably to the reported results for most of these, confi-
dently outrunning [2], [5]. It also outperforms [3] and the
visual network from [7] for arousal, and only behind these
a little (but still at a comparable level) for valence.
Baseline For completeness we present the results for our
model stripped of the self-supervised component, trained
from scratch, called 3Dconv+ResNet18+GRU in Table

B. Empirical comparison of pretext tasks

First, we compare the performance of different pretext
methods - LiRA, BYOL, and DINO used to pre-train 3D
convolutional layer + ResNetl18 on LRS3 and then fine-tune
and assess the performance of the downstream architecture
(3D convolutional layer + ResNet18 + GRU) in terms of the
CCC across video-only facial datasets. Please see Table
for the results. Please note that the pretext techniques only
have the basic CCC-based regression loss at this point.

It appears that LiRA pretext initialization fine-tuned on
the downstream task seem to perform generally better than
the other pretext methods. It achieves either the best or the
second-best results across all the datasets for both arousal
and valence. It even beats some of the benchmarks, despite
not yet benefiting from the composite losses used by these
methods. The DINO-ResNet18 also delivers results compa-
rable to the benchmarks on most datasets.

There are several potential reasons why LiRA performs
better than DINO and BYOL. First of all LiRA uses a
temporal model, while others are trained per frame, which
might affect the quality of learnt representations for video.
It also uses the audio input for guided learning of the
visual representations, the other two do not, which might



TABLE I
COMPARISON OF THE PRETEXT TECHNIQUES ACROSS VARIOUS DATASETS FOR VIDEO-ONLY AERR.

SEWA RECOLA

Arous. Val. Arous. Val.

+ LIRA frozen 0.652 0.722 0.602 0.532

+ LIRA fine-tuned 0.678 0.737 0.630 0.607

PRETEXT + Video-BYOL frozen 0.593 0.726 0.224 0.344
TECHNIQUES + Video-BYOL fine-tuned 0.604 0.757 0.307 0.446
+ DINO-ResNet frozen 0.607 0.638 0.269 0.545

+ DINO-ResNet fine-tuned 0.648 0.667 0.420 0.520

TABLE III
COMPARISON OF THE VARIOUS LOSSES FOR THE DOWNSTREAM TASKS WITH LIRA PRE-TRAINING. ONLY NON-ZERO LOSS-WEIGHTS ARE

PRESENTED. ‘AROUS.” AND ‘VAL.” SUPERSCRIPTS SPECIFY THE LOSS APPLIED SPECIFICALLY TO EITHER AROUSAL OR VALENCE PREDICTIONS.

SEWA RECOLA
Fine-Tuned Frozen Fine-Tuned Frozen

Arous. Val. | Arous. Val. | Arous. Val. | Arous. Val.

REGRESSION weee = 1 0.678 0.737 | 0.652 0.722| 0.630 0.607 | 0.560 0.603
LOSSES Wmse = 1 0.664 0.726 | 0.648 0.710 | 0.399 0.596 | 0.394 0.596
Weee = 0.5, Wee = 0.5 0.671 0.735| 0.650 0.747 | 0.454 0.625 | 0.513 0.606

Weee = 0.5, Wee = 0.25, Winse = 0.25 0.716 0.731 | 0.699 0.747 | 0.473 0.611 | 0469 0.610

COMPOSITE ~ wY 2 = 1, wirous: = 0.66, wirovs: = 0.34 0.631 0.663 | 0.659 0.709 | 0.675 0.626 | 0.640 0.668
LOSSES wy b = 1, whArous: = 0.66, wiro%s wiato®s = 0.17 | 0.638 0.716 | 0.658 0.691 | 0.664 0.644 | 0.655 0.605
Weee = 0.5,w,,cce = 0.5 0.633  0.667 | 0.701 0.741 | 0.669 0.655 | 0.614 0.661

Weee = 0.5,w,, cce = 0.25, Wi se = 0.25 0.669 0.716 | 0.633 0.733 | 0.606 0.669 | 0.626 0.623

help learning more emotion-relevant representations. Finally,
DINO and BYOL usually rely on larger networks trained the
datasets of scale that simply not available in AERR field.

The results of this section certainly support the hypothesis
that the self-supervised pre-training can be highly beneficial
in the video-only spontaneous AERR scenarios.

C. Empirical Comparison of Training Losses

In this section we explore the impact of the various
auxiliary loss functions on the performance of the pretext
method LiRA during the downstream fine-tuning. We focus
on LiRA pretext from now on since it has been identified as
the best pretext for our purposes in the previous section.

Please refer to the Table [[IIl for the results on the set of
experiments concerning the downstream loss functions. The
first line corresponds to the loss used during the pretext task
analysis in Table The benchmarks are the same as in
the Table [[I] as well, except now the comparison to them is
more fair as the presented results include the loss design.
The benchmarks are relevant for both fine-tuned and frozen
weights versions, however we enter them in the fine-tuned
section since they themselves lack this distinction in their
design, so closer to fine-tuned in fashion.

Evidently, adding the CE classification loss (Eq. on
SEWA improves the performance for apparent arousal,
whereas valence seem to either benefit minimally or show
worse results. Further adding MSE (Eq. [2) achieves state-of-
the-art results on SEWA. For RECOLA neither CE classifica-
tion loss nor MSE loss on their own seem to have a positive
impact, however together they create a minor performance
boost for valence. Further adjusting to only penalising the
apparent arousal loss with CE and MSE leads to a consider-
able boost in arousal as well. These final results outperform

the current video-only SOTA for estimating arousal, while
lacking a little for estimating valence [3].

The reason why estimating the apparent arousal might
require some more careful loss design in this case is not
entirely clear. However, it can be in part explained by
the fact that apparent arousal tends to be more present
and easier detected in audio, rather than in video, while
valence tends to exhibit the opposite trend [16]-[18]. Given
that we are restricted to the video-only modality it is only
natural that achieving good results on arousal requires more
parametrization than apparent valence.

Using nCCE (Eq. [) instead of CE often yields close
second or occasional best results, it can be viewed as a solid
alternative to CE.

The hypothesis postulated earlier, as well as in [19] and
[2], holds. Confirming that the better performing models tend
to use combinations of various regression and classification
losses, i.e. Equation [6] with various weight parameters,
resulting in improvements over the classic CCC-based loss
function (Eq. [I).

D. The Impact of the Data Augmentation

Augmentations for the pretext tasks are preserved as in
their corresponding publications [13], [14], [36]. The exper-
imental results presented up until this point are performed
without any augmentations during the downstream training.
In this section we present the ablation for different types of
augmentations applied during the downstream training (e.g.
Fig.[2). We conduct these experiments on the best performing
models for their respective datasets:

o SEWA: LiRA pretext with composite loss of weee =
0.5, Wee = 0.25, Wy se = 0.25 fine-tuned;
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Fig. 2.

Examples of augmentations used in Sec

« RECOLA: LiRA pretext with composite loss of

wy =1, wArevs: = 0.66, wA™"s = 0.34 fine-tuned.
TABLE IV

DOWNSTREAM DATA AUGMENTATION ABLATION RESULTS
LiRA SEWA RECOLA
with Composite Loss Arous. Val. | Arous. Val.
No Augmentations 0.746 0.747 | 0.675 0.626
Horizontal Flip (Prob = 0.5) | 0.713 0.771 | 0.636 0.561
Random Crop 0.629 0.738 | 0.611 0.490
Crop-Out 25% 0.688 0.734| 0.612 0.563
Missing Frames 20% 0.681 0.750 | 0.545 0.587
Solarization 20% 0.680 0.741| 0.149 0.028
Salt & Pepper Noise 0.678 0.727 | 0.346 0.553
Rand.Crop + Horiz. Flip 0.637 0.653| 0.601 0.395
Rand.Crop + Missing Frames | 0.617 0.702 | 0.506 0.373
Horiz. Flip + Missing Frames | 0.655 0.761 | 0.649 0.004
Horiz. Flip + Solarization 0.679 0.721 | 0.024 0.037
Horiz. Flip + Crop-Out 0.694 0.685| 0.701 0.451
Horiz. Flip + S&P 0.716 0.761 | 0.688 0.445

For the detailed results please refer to Table This list of
the augmentations is a compilation of the LiRA and BYOL-
recommended sets of augmentations used at the pretext
training time, with some minor exceptions such as the colour-
related augmentations, since we use the grayscale versions
of the downstream datasets. We also explore promising
combinations of the individual augmentations.

Horizontal Flip is a mirror reflection of an image, applied
with 50% probability to training images. Random Crop is
cropping an image to the smaller size at random (size being
110 x 110 for SEWA and 80 x 80 for RECOLA) for all
training images. Crop-Out occludes several patches in the
image (in our case 5 patches of square shape) with black
boxes. Missing Frames means 20% of frames at random
replaced by black frames at training time. Solarization is
a phenomenon in photo-imaging where the image is wholly
or partially reversed in tone. In this case solarization refers
to an unnatural lighting effect, like in figure 2] Is not as
popular in data augmentation techniques, however [13] found
it beneficial for their model. We solarize above the average
lightness, the effect is applied to 20% of the training images.
Salt & Pepper Noise - classic noise with 50% salt vs pepper
split, applied to all training images.

The best results on SEWA datasets are provided by the
horizontal flip and its combination with the salt & pepper
noise. The rest of the augmentations do not seem to bring
any significant improvement and, in fact, often worsen the
performance. For RECOLA augmentations seem to almost
always have a negative effect on the performance. Neverthe-
less, there is a specific instance for the horizontal flip and

crop out combination where the performance for arousal gets
close to even some of the multi-modal results [7].

VI. DISCUSSION AND CONCLUSION

To conclude, in this paper we have presented the first to
our knowledge a self-supervised technique for the video-only
natural apparent emotional reactions recognition, yielding the
current state-of-the-art (or closely comparable) results for
video-only natural AERR. Complete with comparative em-
pirical study of the potential pretext methods, auxiliary loss
functions, and downstream-time data augmentation ablation.
We also found that the optimal parameter search is somewhat
unsurprisingly data-dependent, whereas the self-supervised
setting is on average beneficial.

Additionally, we argue that the facial apparent emotional
reactions recognition is highly data-specific. Factors that
should be considered can include: the source and distribu-
tions of the pretext and downstream data (acted vs spon-
taneous, lab-recorded vs in-the-wild, outdoors vs indoors,
speaking vs passive listening faces), as well as the specific
data preprocessing procedures, format and configuration of
the annotations (per frame vs per video, categorical vs
continuous emotion annotation), etc.

Previous research suggests that different modalities tend to
provide better cues for different apparent emotion metrics:
video tends to be a better indicator for the video-aided
recognition, and arousal tends to be better detected from
audio modality [16]-[18]. This makes the video-only AERR
particularly challenging in terms of identifying the correct
levels of arousal, and explains valence-arousal discrepancy
for several results in this paper.

We present the results confirming that using the self-
supervised setting alone helps beating (or at least reaching
comparable results with) the current state-of-the-art without
even touching upon the loss function design. Next we present
the evidence that the careful composite loss design can
further improve the performance. And finally we provide
an ablation on potentially beneficial data augmentation tech-
niques which can lead to further improvements.

Future work could be extended to a comparative analysis
of the impact of the different pretext datasets, along with
the pretext training parameters and data augmentations. Ad-
ditional study could be conducted on the specifics of the
downstream architectures, as well as investigating the effect
of sharing the learned feature representations including tem-
poral component (for architectures with such a component)
in order to fully exploit the potential of the video domain.
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