
Latent Generative Replay for Resource-Efficient
Continual Learning of Facial Expressions

Samuil Stoychev, Nikhil Churamani and Hatice Gunes
Department of Computer Science and Technology, University of Cambridge, United Kingdom
ss2719@cantab.ac.uk, {nikhil.churamani,hatice.gunes}@cl.cam.ac.uk

Abstract— Real-world Facial Expression Recognition (FER)
systems require models to constantly learn and adapt with novel
data. Traditional Machine Learning (ML) approaches struggle
to adapt to such dynamics as models need to be re-trained
from scratch with a combination of both old and new data.
Replay-based Continual Learning (CL) provides a solution to
this problem, either by storing previously seen data samples
in memory, sampling and interleaving them with novel data
(rehearsal) or by using a generative model to simulate pseudo-
samples to replay past knowledge (pseudo-rehearsal). Yet, the
high memory footprint of rehearsal and the high computational
cost of pseudo-rehearsal limit the real-world application of
such methods, especially on resource-constrained devices. To
address this, we propose Latent Generative Replay (LGR) for
pseudo-rehearsal of low-dimensional latent features to mitigate
forgetting in a resource-efficient manner. We adapt popular CL
strategies to use LGR instead of generating pseudo-samples,
resulting in performance upgrades when evaluated on the
CK+, RAF-DB and AffectNet FER benchmarks where LGR
significantly reduces the memory and resource consumption of
replay-based CL without compromising model performance.

Accepted Manuscript
To appear at the 17th IEEE International Conference on Automatic Face and Gesture Recognition (FG), 2023.

I. INTRODUCTION

Recent years have seen an increased application of ML
algorithms on resource-constrained devices such as mobile
phones, robots and Internet of Things (IoT) devices [1],
[2]. This is particularly true for camera-based applications
for analysing human faces [3], [4], [5]. However, deploying
these models on such devices remains a challenge due to
the high resource consumption of deep learning frameworks,
which are often designed to run on server-class GPUs [6].
Moreover, deep learning’s high computational cost has a
detrimental impact on the environment with initiatives such
as “Green AI” [7] calling for a reduction in the energy con-
sumption and carbon footprint associated with deep learning.

Real-world application of ML-based Facial Expression
Recognition (FER) requires models to continuously adapt
to novel information, integrating this new information on-
the-fly, by retraining (partially or from scratch) with this
additional data. This may mean learning new expression cat-
egories that are not part of the model’s training (Problem 1).
For example, a model may be trained to classify the ‘uni-
versal expressions’ [8] but now needs to learn secondary or
compound expressions [9], outside the training distribution.
However, as past data may not always be available, adapting
to novel information can result in the model overwriting

N. Churamani is funded by the EPSRC grant EP/R513180/1
(ref. 2107412). H. Gunes is supported by the EPSRC project ARoEQ under
grant ref. EP/R030782/1.

past knowledge, leading to catastrophic forgetting [10]. Ad-
ditionally, gradient-based learning requires data samples to
be independently and identically drawn (i.i.d). However, this
assumption is violated in real-world conditions [11], [12],
[13] where data is available only incrementally.

Lifelong or Continual Learning (CL) [14], [15] addresses
this problem by enabling models to adapt with sequentially
made available streams of data, incrementally learning novel
information while preserving past knowledge. This may be
achieved by regularising model updates to discourage rapid
and catastrophic changes in model parameters [16], [17] or
using Bayesian principles to infer task-conditioned parameter
distributions directly from the data [18] and rehearsing task-
specific weights using hypernetworks [19] or by periodically
replaying past knowledge using rehearsal [20] or pseudo-
rehearsal [21], interleaving it with novel data to simulate i.i.d
settings. Both regularisation and replay-based CL has proven
to be effective for incremental and sequential learning of in-
formation [15], however, they incur additional computational
and memory costs (Problem 2), making their application on
resource-constrained devices problematic [22]. Yet, with CL
algorithms being increasingly deployed on such devices [23],
[24], several studies point out the importance of considering
the resource consumption of CL strategies [22], [25].

In this work, we propose Latent Generative Replay (LGR)
to reduce the memory and resource consumption of replay-
based CL. LGR uses a relatively simpler generative model
to learn low-dimensional feature representations enabling
replay ‘from the middle’ of the network, instead of learning
to simulate high-dimensional data, incrementally learning
FER categories (Solution 1). Since intermediate features
are significantly smaller compared to input samples, LGR
reduces the overall memory and resource consumption of the
model (Solution 2). To demonstrate the resource-efficiency
of LGR, we adapt Deep Generative Replay (DGR) [26]-
based approaches by replacing their generative models used
for pseudo-replay of input data with a simpler genera-
tive model for LGR (Contribution 1). We evaluate LGR
across 3 popular FER benchmarks, namely, the CK+ [27],
RAF-DB [28] and AffectNet [29] datasets. Our experiments
show that LGR significantly improves upon the resource-
efficiency of DGR-based methods (Contribution 2). Further-
more, it provides improvements over rehearsal strategies such
as Naı̈ve Rehearsal (NR) [30] and Latent Replay (LR) [31]
on several metrics (Contribution 3), encouraging the use
LGR-based pseudo-rehearsal for resource-efficient CL.



II. REPLAY-BASED CONTINUAL LEARNING

Under CL settings, models encounter novel data one task
at a time [32]. Thus, at any given time, models have access to
data only from the current task (or class). As gradient-based
learning methods adapt model parameters to ‘fit’ the training
data, the model ‘fine-tunes’ itself towards only the current
task and the past knowledge is overwritten [33]. A straight-
forward way to mitigate such forgetting is periodically replay
and rehearse past information, interleaving it with novel
data. This allows the models to balance novel vs. past
learning as the model is trained on mixed batches of past and
present data samples, alleviating forgetting of information.
Replay-based CL strategies include physically storing data
samples from previous tasks in memory buffers and regularly
sampling from them (known as rehearsal [20]) mixing it with
new data. Alternatively, a generative or probabilistic model is
maintained that learns the inherent data statistics, enabling
models to draw pseudo-samples to be replayed (known as
pseudo-rehearsal) [21] along with novel data.

A. Rehearsal

Rehearsal-based CL methods [20], [15] maintain memory
buffers to store data samples from previously seen tasks,
enabling the model to rehearse past knowledge along with
novel information. However, as physical copies of data need
to be stored, this increases the memory footprint of models
particularly when learning with high-dimensional images or
if the number of tasks to be learnt increases significantly.

A simple strategy for rehearsal can be to fix the size
of the memory buffer to be ‘large enough’ and divide it
equally amongst data from all the tasks, popularly known
as Naı̈ve Rehearsal (NR) [30]. However, as the number of
tasks increases, the fraction of memory allocated to each task
shrinks, resulting in fewer samples per task for rehearsal.
Other more sophisticated strategies focus on prioritising re-
play [34], storing and replaying exemplars from each task to
best approximate task means [35], [36] or applying reservoir
sampling to fix a budget for each seen task [37].

Pellegrini et al. [31] propose an improved and more
resource-efficient strategy by enabling Latent Replay (LR) of
information. This works on the assumption that bottom layers
of (deep) neural models essentially act as high-level feature
extractors that change very little once the model is trained.
Meanwhile, task-specific knowledge is encoded in the top
layers of the network where the weights are less stable. They
split the model into two parts; feature extractor layers (the
root) and task-descriptive layers (the top) with a latent replay
layer separating them. Instead of storing high-dimensional
samples from previously seen tasks, they store latent layer
features in the memory buffer for different tasks. Although
this reduces the memory footprint of traditional rehearsal-
based CL, budgeting the memory buffer appropriately to
store and rehearse samples for each task remains a challenge.

B. Generative Replay

Even though rehearsal-based methods are relatively simple
to implement and offer an effective solution towards mit-

igating catastrophic forgetting [38], they require allocating
large chunks of memory for rehearsal. Storing data samples
can also be problematic and impractical owing to security or
compliance reasons, for instance, when storing facial images
of several individuals. Thus, to avoid maintaining memory
buffers altogether, whether storing actual data samples or
latent representations, pseudo-rehearsal or generative replay
may be used to learn the inherent data statistics and draw
pseudo-samples [21] as and when needed, to be replayed to
the model. Since no actual data needs to be stored in memory
buffers, this reduces the memory cost of replay-based CL.

Recent advances in generative models [39], [40], partic-
ularly in their ability to generate high-quality data samples,
have greatly enhanced the potential of generative replay-
based methods [26], [41], [42], [43].

C. Generative Replay of Features

Despite generative models allowing for effective pseudo-
rehearsal of information while significantly bringing down
the memory cost of replay-based CL, they become hard to
train as the number of tasks increases. Apart from learning
the tasks, the generator needs to learn to reconstruct high-
quality and discriminative samples for previously seen tasks.
This adds significant computational expense to the model
and stabilising learning for both the solver and the generator
may become intractable for a large number of tasks. To
address this, recent methods focus on investigating replaying
low-dimensional feature representations, instead of high-
dimensional input patterns [44], [45].

Xiang et al. [46] propose a GAN-based solution which
consists of three networks: a pre-trained sub-net for ex-
tracting spatial feature maps, a generator that reconstructs
these feature maps and a discriminator for classification
and discrimination of real vs. synthetic features. Despite
resolving the problem of reconstructing high-dimensional
data by learning to generate spatial feature maps that ‘use
the statistics of feature embeddings’, fine-tuning network
layers for both the generator and the discriminator is complex
and resource-intensive. Liu et al. [47], on the other hand,
propose a hybrid model combining generative replay and
feature distillation. For each task, a feature extractor and
a classifier learn to solve the task while a generator learns
the distribution of extracted features. For the next task, a
distillation loss is used to distil discriminative features from
the previously seen tasks to the new feature extractor while
the previously trained generator provides pseudo-samples
to rehearse past knowledge at the feature level. Van de
Ven et al. [48] propose a brain-inspired solution merging
a generator into the main learning model by equipping it
with generative feedback connections. Their Replay through
Feedback (RtF) approach is implemented as a symmetric
auto-encoder model equipped with a softmax layer resulting
in only a single model to be trained. They also propose a
modification as ‘internal replay’ that focuses on replaying
learnt ‘hidden’ representations generated by the “network’s
own, context-modulated feedback connections”, instead of
pseudo-samples of data, to alleviate forgetting.



Current task

Old scholar

input target

G T

generator (G)

New scholar

R

root (R)

top (T)

Current task

Old scholar

input target

G T

generator (G)

New scholarx

R

root (R)

top (T)
R'x T(R'x)

Generator Training Solver Training

R'x

yR(x)R(x)

x

Fig. 1. Latent Generative Replay (LGR). G, R and T denote the generator,
root and top of the scholar, respectively. R(·) and T (·) indicate the output
of the root and top and R′

x denotes the reconstructed latent representations.
Adapted from [26].

III. LATENT GENERATIVE REPLAY

Replaying network-extracted latent representations can be
functionally equivalent to using high-dimensional input pat-
terns under the assumption that the bottom (feature extractor)
layers of the model are pre-trained and change very lit-
tle [31]. This reduces the memory-consumption of the replay-
based models by storing ‘lighter’ latent representations in
the memory buffer instead of high-dimensional data samples.
Van de Ven et al. [48], on the other hand, not only merge
a generative model within the main learning model but also
use ‘internal replay’ of ‘hidden’ representations generated
by the network’s own feedback connections, eliminating the
need for maintaining a memory buffer completely.

Inspired by the conclusions from these works, we propose
the Latent Generative Replay (LGR) approach as a resource-
efficient pseudo-rehearsal strategy that combines the bene-
fits of generative replay with using low-dimensional latent
representations, reducing both memory and computational
expenses. We base LGR under the same assumption [31]
that once feature extraction layers of the model are trained
sufficiently and relatively frozen, the extracted feature repre-
sentations can be used effectively to rehearse past knowledge.
This is different from other works towards generative replay
of features as these methods focus on training both the
feature extractor layers (or the discriminator to generate
normalised embeddings) and the generator simultaneously.
Furthermore, these methods are not focused towards optimis-
ing the resource-efficiency of CL necessarily, and, instead,
focus on model performance as the only criteria, limiting
their real-world application on resource-constrained devices.

For our implementation, we adapt the scholar-based archi-
tecture of the Deep Generative Replay (DGR) [26] approach
to use LGR instead. DGR maintains a scholar consisting
of a solver (the classifier model) and a generator (to draw
pseudo-samples of past data). The scholar is progressively
updated after each task, using the knowledge from previous
tasks and integrating novel learning. We split the scholar
into three components: (a) the generator (G) to reconstruct
and replay latent representations, (b) the pre-trained and
frozen root (R) for the solver to extract task-independent
latent representations, and (c) the top (T ) for the solver that

learns task-discriminative information (see Figure 1). This is
different from the DGR approach where the scholar consists
of a single, combined solver that learns task-discriminative
information while its generator is used to reconstruct high-
dimensional pseudo-samples representing the input data.

The training process for LGR (see Algorithm 1) is split
into two steps. Firstly, for training the generator (G), input
data from the current task x is processed and latent rep-
resentations R(x) are extracted using the pre-trained root.
R(x) is then interleaved with generated latent patterns R′

x

for all previously seen tasks and used to update the generator.
Training G after each task on both R(x) and R′

x (only R(x)
is used for Task 1) ensures that the updated generator encodes
both new and old tasks and can be used to simulate pseudo-
samples for both in the future. Pseudo-samples R′

x generated
for the previous tasks are also passed through the top of the
solver to obtain labels T (R′

x) for them. Once the generator is
updated, the top of the solver is updated to learn the new task.
For this, the current task data ⟨R(x), y⟩ is combined with
the labelled latent pseudo-samples ⟨R′

x, T (R
′
x)⟩ generated

for previously seen tasks. We modify the original DGR
algorithm [26] to use root-extracted latent representations
(line 5) and train the new scholar (the top T and generator
G) using latent representations instead (lines 13− 16). Gold

and Told correspond to the generator and top for the old
model and Gnew and Tnew represent the updated models.
The coefficient r defines the fraction of real data to be mixed
with the pseudo-samples for training.

LGR is designed to reduce the memory and computational
cost of replay-based CL on two accounts: firstly, instead
of allocating memory resources to store data samples, we
use a ‘lightweight’ generative model to reconstruct low-
dimensional latent features for pseudo-rehearsal. Secondly,
as the lower layers (the root) of the model are frozen, and
only the top is updated to learn task-relevant information,
the computational expense of learning is reduced.

Algorithm 1 Latent Generative Replay
1: Gold, Told ← ∅
2: R← pre-trained root or feature extractor
3: for each task i do
4: ⟨xi, yi⟩ ← inputs and targets from current task distribution Di
5: Rx ← R(xi) // Root-extracted latent features.
6: Initialise Gnew and Tnew
7: if Gold ̸= ∅ then
8: R′

x ← generate synthetic data with Gold
9: y′ ← Told(R

′
x)

10: else
11: R′

x, y
′ ← {} // No replay data for Task 1.

12: end if
13: Generator Training:
14: Train Gnew on x′ ∈ (Rx ∪R′

x)
15: L(ϕ, ψ) = −Ez∼qϕ(z|x′)[log(pψ(x

′|z))] +

KL(qϕ(z|x′) ∥ p(z))
16: Solver (Top) Training:
17: Train Tnew on ⟨Rx, yi⟩ ∪ ⟨R′

x, y
′⟩

18: L(θi) = rE(Rx,yi)∼Di
[L(T (Rx; θi), yi)] +

(1− r)ER′
x∼Gold

[L(T (R′
x; θi), y

′)]
19: Gold ← Gnew
20: Told ← Tnew
21: end for



Input
layer

New data

Root
Latent
replay
layer

Top Output
layer

z

VAE

Generative model

(c) Deep Generative Replay (DGR) / DGR + Distillation

(d) Latent Generative Replay (LGR) / LGR + Distillation

...

Replay buffer

New data

Input
layer Root

Latent
replay
layer

Top Output
layer

Input
layer

...

Replay buffer

New data

Root
Latent
replay
layer

Top Output
layer

(a) Naive Replay (NR)

(b) Latent Replay (LR)

Input
layer

New data

Root
Latent
replay
layer

Top Output
layer

z G

Generative model

Fig. 2. Compared Approaches: (a) Naı̈ve Rehearsal (NR) [30], (b) Latent Replay (LR) [31], (c) Deep Generative Replay (DGR) [26] and DGR+d [49],
and (d) Latent Generative Replay (LGR) applied to DGR and DGR+d for replaying low-dimensional latent representations.

IV. EVALUATION

We evaluate LGR, both for model performance and
resource-efficiency, across several metrics comparing it with
other popular replay-based CL methods.

A. Learning Scenario

We conduct our experiments under Task Incremental
Learning (Task-IL) settings [32] to evaluate the resource-
efficiency of replay-based CL where models are expected
to learn one task at a time with each task consisting of
two classes. We split the datasets by randomly shuffling the
classes and grouping them into tasks.

B. Datasets

We set-up two criteria for selecting the different bench-
marks; complexity and the scale of the dataset and select 3
different FER benchmark datasets: CK+ [27], RAF-DB [28],
and AffectNet [29], enabling a comprehensive analysis on
a variety of data settings. CK+ evaluates the model under
relatively simpler (lab-controlled) data settings on a smaller
scale as we select the last 3 frames from each video to
represent the corresponding expression category and the first
frame to represent neutral [50]. RAF-DB, on the other hand,
evaluates the model under complex in-the-wild data settings
however with a relatively lower number (≈ 15K) of sam-
ples while AffectNet represents large scale learning under
complex in-the-wild data settings. We use the downsampled
split for AffectNet [29] for our comparisons consisting of
≈ 90K training samples and 4K test samples. Both CK+
and AffectNet consist of 8 classes, namely, anger, happiness,
sadness, surprise, disgust, fear, contempt and neutral while
Real-world Affective Faces Database (RAF-DB) consists
of only 7 classes as contempt samples are not available.
The default train-test (or train-validation) split is used for
RAF-DB and AffectNet while for CK+ we perform a cross-
subject split, assigning 86 subjects to the train set and 37
to the test dataset, resulting in a 70 : 30 data-split while
maintaining the data distributions.

C. Compared Approaches

We compare the proposed LGR approach with the
DGR [26] approach which uses generative replay of high-
dimensional input images. A simple extension to DGR is
proposed by [49] to improve its ability to mitigate forgetting
where, instead of using ‘hard targets’ (using the argmax
label), the model is trained with ‘soft targets’, directly
using the softmax output for a more fine-grained learning
process for the scholar, improving its predictive performance.
We also adapt this DGR with Distillation (DGR+d) [49]
approach to use LGR (LGR+d) for a fair comparison. For
both DGR and DGR+d, the solver is split into two parts; the
root and the top. While the root is pre-trained and frozen,
the top of the model is trained to learn novel tasks. We also
include the Naı̈ve Rehearsal (NR) [30] and Latent Replay
(LR) [31] approaches in our evaluations as they rely on ex-
plicitly storing previously seen training data and periodically
replaying them to mitigate forgetting. Figure 2 presents a
schematic understanding of the compared approaches.

D. Experiment Settings

1) Evaluation Metrics: We compare the different CL
methods on their resource-efficient performance across sev-
eral evaluation metrics, adapting the implementations pre-
sented in [51]. Real-world applications of FER on resource-
constrained devices such as robots, require them to be able to
perform computations under limited storage and processing
capabilities. As a result, achieving higher model accuracy
while incurring high memory and compute cost may not
be desirable. We evaluate the different approaches across
several dimensions, measuring model performance, in terms
of classification accuracy as well as memory and resource-
efficiency of CL methods. All model results are run for 3
repetitions and average results are reported for each dataset.
Average Accuracy (%): Average accuracy is calculated as the
mean test-set accuracy across all tasks at the end of learning.
Accavg =

∑n
i=1

acc(Ti)
n , where acc(Ti) is the test accuracy

on ith task and n is the number of tasks.



TABLE I
SELECTED HYPER-PARAMETERS FOR THE THREE DATASETS.

Method Model Hyper-parameters

NR [30] Bsize = 1500
LR [31] Bsize = 1000
DGR [26] GFC = 1600 GOUT = 30, 000
DGR+d [49] GFC = 1600 GOUT = 30, 000
LGR (Ours) GFC = 200 GOUT = 4096
LGR+d (Ours) GFC = 200 GOUT = 4096

Training Time (s): Training time is computed as the absolute
time elapsed (in seconds) during training.
RAM Consumption (MB): We place multiple checkpoints
throughout the code to evaluate the amount of RAM (MB)
allocated to the running process. RAM consumption is com-
puted as the peak RAM usage (max usage during training).
GPU Consumption (MB): We use Nvidia’s nvidia-smi
tool, similar to [52], [53], to query GPU memory usage,
every second, and calculate the Peak GPU Memory Con-
sumption (in MB) by the model during training.
CPU Usage (s): CPU usage is measured as the CPU time (in
seconds) allocated to the training process. This is calculated
as the difference between the CPU time at the end vs. at the
beginning of the training process.
GPU Usage (%): GPU usage is also calculated using
Nvidia’s nvidia-smi tool recording the GPU usage every
second. GPU usage is reported as the % of the GPU allocated
for training process. GPU usage values are also logged at
different intervals during the training process but average
GPU usage is reported (different from peak consumption in
MB), calculated over the training process.

2) Implementation Details: For the different CL ap-
proaches compared, we use a VGG-16-based backbone [54],
pre-trained on ImageNet, as the root to extract 4096-d
latent featrues from (100 × 100 × 3) RGB input images.
The VGG-16-based network is chosen after an ablation
experiment (see section V-D) conducted with three other
network backbones: MobileNet-V2 [55], ResNet-18 [56] and
AlexNet [57] where the VGG-16 model is able to balance
model performance across all performance metrics used for
all the three datasets. For fairness of comparisons between
the different approaches, roots are pre-trained for all the
approaches ensuring that none of them incur an additional
computational and memory cost of having to train the root
from scratch. For implementing the generator, we use the
Variational Autoencoder (VAE) [40] architecture.

All models are trained using the Adam optimiser (β1 =
0.9, β2 = 0.999). The learning-rate is set to 1.0e−4 over
2000 iterations and the batch-size is set to 128 for all the
datasets except for CK+ where it is set to 32 as some
classes had fewer than 128 samples. Model hyper-parameters
(see Table I) are set based on separate grid-searches for
each model and selecting the best-performing values. Bsize

denotes the corresponding memory buffer-size for NR and
LR, GFC for DGR and LGR-based methods denotes the size
of the fully-connected (dense) layers of the generator while
GOUT denotes the size of the reconstructed output of the cor-

TABLE II
TASK-IL RESULTS ON CK+. BEST RESULTS FOR EACH ROW ARE

HIGHLIGHTED IN BOLD WHILE SECOND BEST ARE IN [BRACES].

NR
[30]

LR
[31]

DGR
[26]

LGR
(Ours)

DGR+d
[49]

LGR+d
(Ours)

Accuracy (%) ▲ 97.29 [96.96] 78.04 92.03 ▲ 80.30 92.93 ▲
Training time (s) ▼ 834.40 741.17 1164.33 [827.80] ▼ 1,189.10 839.00 ▼

RAM Usage (MB) ▼ 2774.88 2805.65 2758.76 2807.11 ▲ [2759.77] 2806.54 ▲
CPU Usage (s) ▼ 927.78 834.23 1259.08 [924.10] ▼ 1287.63 937.37 ▼

GPU Usage (%) ▼ 29.42 19.72 44.70 [19.07] ▼ 43.73 19.02 ▼
GPU Memory (MB) ▼ 4816.67 [2556.00] 6820.00 2354.00 ▼ 6820.00 2354.00 ▼

responding generators. All models are implemented using the
PyTorch Python Library adapting the code repository made
available by [32]. To standardise the results, all experiments
are conducted on a system with an Nvidia Quadro RTX 8000
GPU, an 8-core Intel Xeon Gold CPU @2.30GHz and 64
GB of RAM. The experiments are run individually to avoid
potential interference in system metrics from other processes.

V. RESULTS

For our evaluations, we split the compared approaches into
3 different sections; rehearsal based NR and LR, DGR using
hard targets and its LGR adaptation and finally, DGR and
LGR using soft targets (that is, DGR+d and LGR+d).

A. CK+ Results

Table II presents the results on the Extended Cohn-Kanade
(CK+) dataset, where the highest accuracy is reported by the
NR approach while LR achieves second best results. Despite
following the Task-IL protocol, these results improve upon
the state-of-the-art for CK+ which is at 96.8% [58]. Since
CK+ is a relatively smaller dataset (≈ 1300 samples), almost
the entire dataset can be held in the memory buffers for NR
(Bsize = 1500) and LR (Bsize = 1000). As a result, these
methods are able to mitigate forgetting successfully. LGR-
based methods outperform their DGR-based counterparts
across all metrics other than RAM usage. The lower accuracy
of the DGR and DGR+d may be because of the lower number
of samples for CK+ making it harder to reconstruct high-
dimensional discriminative facial images for each expression
class. LGR handles this increased data complexity better as
it does not require reconstructing high-dimensional pseudo-
samples, making it more robust. LR reports the lowest
Training Time and CPU usage as it does not need to train a
generative model and also stores only latent representations
in the memory buffer. LGR-based methods, however, seem
to close the gap to LR, achieving the best GPU Usage and
memory consumption and second-best results on training
time and CPU usage. Directly compared to DGR-based
methods, LGR offers improvements in model accuracy with
reductions in all other metrics other than RAM usage.

B. RAF-DB Results

Table III presents the results for RAF-DB, where the high-
est accuracy is reported by the proposed LGR+d approach
with LGR achieving the second-best results. These results
are comparable to the state-of-the-art results of 88.98% [59]
despite following the incremental learning protocol. Since



TABLE III
TASK-IL RESULTS ON RAF-DB. BEST RESULTS FOR EACH ROW ARE

HIGHLIGHTED IN BOLD WHILE SECOND BEST ARE IN [BRACES].

NR
[30]

LR
[31]

DGR
[26]

LGR
(Ours)

DGR+d
[49]

LGR+d
(Ours)

Accuracy (%) ▲ 79.52 79.69 81.79 [83.33] ▲ 82.53 86.91 ▲
Training time (s)▼ 1444.60 1102.67 2010.47 [1159.43] ▼ 2020.03 1182.37 ▼

RAM Usage (MB) ▼ 2836.50 2831.52 [2808.43] 2846.20 ▲ 2789.65 2845.07 ▲
CPU Usage (s) ▼ 1465.10 1112.74 2008.67 [1167.70] ▼ 2018.84 1197.15 ▼

GPU Usage (%) ▼ 48.31 37.00 64.07 35.92 ▼ 63.97 [36.01] ▼
GPU Memory (MB) ▼ 7390.67 4310.00 8204.00 [4314.00] ▼ 8204.00 [4314.00] ▼

RAF-DB is a much larger dataset (≈ 30K samples) com-
pared to CK+ (≈ 1.3K samples), NR and LR approaches
face the challenge of allocating an appropriate fraction of the
memory buffer for representative samples for each expression
category. LGR-based methods also outperform their DGR-
based counterparts across all metrics other than RAM usage
where they are fractionally more expensive. Different from
CK+, here we see that the DGR-based approaches are able to
achieve high accuracy scores as with the increased number of
training samples available, the models are able to efficiently
generate pseudo-samples for the different expression classes
to mitigate forgetting. LGR improves on this further by
eliminating the need to generate high-dimensional data sam-
ples and instead applies generative replay of learnt feature
representations to mitigate forgetting in the model. Similar to
CK+ results, LR reports the lowest Training Time and CPU
usage as well as the lowest GPU consumption, fractionally
better than LGR-based methods. LGR-based methods, while
achieving the best model accuracy, also close the gap to LR,
achieving the best GPU Usage and similar GPU memory
consumption. They also achieve second-best results on train-
ing time and CPU usage, compared to LR. Directly compared
to DGR-based methods, despite fractionally higher RAM
consumption LGR offers improvements in model accuracy
with reductions on all other metrics.

C. AffectNet Results

Table IV presents AffectNet results, where the highest
accuracy is reported DGR+d approach with the proposed
LGR+d adaptation achieving the second-best results. These
results significantly improve upon the baseline results (50%)
on the downsampled data split for AffectNet [29], Similar to
RAF-DB the higher number of data samples per task allows
the DGR-based methods to effectively construct representa-
tive pseudo-samples for each expression category, mitigating
forgetting. LR and NR are also achieve comparable results,
effectively balancing novel vs. past learning. LR, similar to
CK+ and RAF-DB evaluations, reports the lowest training
time and CPU usage while LGR+d is able to close the gap,
achieving second-best results on these metrics but improves
upon LR by achieving the lowest GPU usage and peak
GPU memory consumption. Directly compared to DGR-
based methods, LGR+d achieves second-best model accuracy
while significantly reducing the training time, CPU usage,
GPU usage and GPU memory consumption.

TABLE IV
TASK-IL RESULTS ON AFFECTNET. BEST RESULTS FOR EACH ROW ARE

HIGHLIGHTED IN BOLD WHILE SECOND BEST ARE IN [BRACES].

NR
[30]

LR
[31]

DGR
[26]

LGR
(Ours)

DGR+d
[49]

LGR+d
(Ours)

Accuracy (%) ▲ 67.46 67.50 67.46 66.63 ▼ 69.41 [69.34] ▼
Training time (s)▼ 5507.53 5108.70 6154.00 5435.43 ▼ 6124.80 [5410.70] ▼

RAM Usage (MB) ▼ 2918.02 2898.21 2874.37 2917.04 ▲ [2894.28] 2908.52 ▲
CPU Usage (s) ▼ 5651.47 5251.80 6272.37 5583.11 ▼ 6274.24 [5557.61] ▼

GPU Usage (%) ▼ 12.43 8.87 21.18 8.38 ▼ 20.37 [8.59] ▼
GPU Memory (MB) ▼ 7581.33 [4310.00] 8204.00 4154.00 ▼ 8204.00 4154.00 ▼

D. Ablation: Selecting the Pre-trained Backbone as Root

LGR works under the assumption that with a sufficiently
pre-trained root, the extracted feature representations can be
used effectively to rehearse past knowledge, eliminating the
need to operate with high-dimensional input patterns. Thus,
the selection of the root network becomes critical to the
performance of the model. In the results presented above,
we use a VGG-16-based [54] root for all the models. This
is done after comparing the results across the three datasets
with four different backbones trained on ImageNet, namely,
AlexNet [57], MobileNet-V2 [55], ResNet-18 [56] along
with VGG-16. We use the feature extraction layers, that is,
up to the flattened output of the final conv layer, as the model
root where this flattened output represents the latent replay
layer used to train the LGR generator model for pseudo-
rehearsal. For the solver, we append a top network with a
dense (with 128 units) layer and an output layer.

Table V presents the results comparing the four backbone
networks on AffectNet, the largest amongst the compared
datasets. As can be seen, across all backbones, LGR-based
approaches offer improvements over their DGR-based coun-
terparts with the most significant difference witnessed for
VGG-16. Furthermore, this is also significant as, with VGG-
16 being the ‘heaviest’ of the backbones with ≈ 138M pa-
rameters, LGR is able to significantly reduce the memory and
computational expense of all the compared models. VGG-
16 also helps achieve the highest model accuracy across
all approaches between the four backbones, with AlexNet
achieving the next best results while also being a relatively
‘heavy’ backbone with ≈ 61M parameters. ResNet-18 is
relatively ‘lighter’ with ≈ 11M parameters but achieves a
reasonable compromise between model accuracy and mem-
ory and resource-efficiency of the different approaches. The
performance gains, however, are not at par with AlexNet or
VGG-16. MobileNet-V2 is the ‘lightest’ with only ≈ 3.5M
parameters which also affects the model accuracy, providing
the worst results amongst the four backbones.

VI. DISCUSSION AND CONCLUSIONS

A. Resource-efficiency of LGR

With ML-based FER becoming pervasive in its appli-
cation in our daily lives, it is important to consider the
computational, and in turn, environmental and monetary
cost of running these algorithms, particularly on resource-
crunched devices. Our central objective, in this work, is
to present a resource-efficient pseudo-rehearsal method that



TABLE V
TASK-IL RESULTS ON AFFECTNET ACROSS PRE-TRAINED ALEXNET [57], MOBILENET-V2 [55], RESNET-18 [56] AND VGG-16 [54] NETWORKS AS

MODEL ROOT. BEST RESULTS FOR EACH METRIC FOR INDIVIDUAL ROOTS ARE HIGHLIGHTED IN BOLD WHILE SECOND BEST ARE IN [BRACES].

AlexNet-based Root Model ResNet-18-based Root Model

NR
[30]

LR
[31]

DGR
[26]

LGR
(Ours)

DGR+d
[49]

LGR+d
(Ours)

NR
[30]

LR
[31]

DGR
[26]

LGR
(Ours)

DGR+d
[49]

LGR+d
(Ours)

Accuracy (%) ▲ 67.38 65.25 65.22 63.32 ▼ 69.07 67.24 ▼ Accuracy (%) ▲ [61.36] 61.84 52.69 53.71 ▲ 56.26 60.83 ▲
Training time (s)▼ [4832.23] 4860.53 5309.63 4809.50 ▼ 5105.90 4947.90 ▼ Training time (s)▼ 5068.93 4884.23 5272.73 4995.77 ▼ 5271.57 [4955.30] ▼

RAM Usage (MB) ▼ 3006.94 2891.12 [2866.98] 2868.26 ▲ 2865.94 2882.76 ▲ RAM Usage (MB) ▼ 3254.08 2926.91 2866.26 2923.30 ▲ [2868.86] 2920.68 ▲
CPU Usage (s) ▼ [4975.21] 5005.71 5455.58 4951.63 ▼ 5249.81 5093.02 ▼ CPU Usage (s) ▼ 5218.62 5029.07 5417.99 5136.38 ▼ 5415.59 [5095.95] ▼

GPU Usage (%) ▼ 1.54 1.07 7.31 [1.29] ▼ 7.34 1.31 ▼ GPU Usage (%) ▼ 3.00 2.22 9.76 [2.35] ▼ 10.27 2.22 ▼
GPU Memory (MB) ▼ 5217.33 [1818.00] 5836.00 1542.00 ▼ 5836.00 1542.00 ▼ GPU Memory (MB) ▼ 4990.67 [1578.67] 5248.00 1554.00 ▼ 5248.00 1554.00 ▼

MobileNet-V2-based Root Model VGG-16-based Root Model

NR
[30]

LR
[31]

DGR
[26]

LGR
(Ours)

DGR+d
[49]

LGR+d
(Ours)

NR
[30]

LR
[31]

DGR
[26]

LGR
(Ours)

DGR+d
[49]

LGR+d
(Ours)

Accuracy (%) ▲ 59.76 59.23 53.06 53.37 ▲ 53.38 [59.41] ▲ Accuracy (%) ▲ 67.46 67.50 67.46 66.63 ▼ 69.41 [69.34] ▼
Training time (s)▼ [5013.67] 5062.03 5480.90 4974.10 ▼ 5403.23 5016.10 ▼ Training time (s)▼ 5507.53 5108.70 6154.00 5435.43 ▼ 6124.80 [5410.70] ▼

RAM Usage (MB) ▼ 2987.18 3117.64 [2869.16] 2870.93 ▲ 2869.65 2866.70 ▲ RAM Usage (MB) ▼ 2918.02 2898.21 2874.37 2917.04 ▲ [2894.28] 2908.52 ▲
CPU Usage (s) ▼ [5158.61] 5209.47 5631.19 5117.24 ▼ 5553.72 5160.64 ▼ CPU Usage (s) ▼ 5651.47 5251.80 6272.37 5583.11 ▼ 6274.24 [5557.61] ▼

GPU Usage (%) ▼ 4.04 2.54 10.42 2.72 ▼ 10.95 [2.60] ▼ GPU Usage (%) ▼ 12.43 8.87 21.18 8.38 ▼ 20.37 [8.59] ▼
GPU Memory (MB) ▼ 4919.33 [1676.67] 5414.00 1604.00 ▼ 5414.00 1604.00 ▼ GPU Memory (MB) ▼ 7581.33 [4310.00] 8204.00 4154.00 ▼ 8204.00 4154.00 ▼

can reduce memory and computational costs of CL with-
out compromising on model performance. Our experiments
show that the proposed LGR approach significantly improves
upon DGR in terms of memory and resource consumption.
LGR (and LGR+d) consistently perform better than DGR,
reducing the training time and CPU usage while also of-
fering a significant reduction in GPU usage and memory
consumption. At the same time, they offer competitive, if
not better, performance with respect to replay-based NR and
LR. Although LR consistently performs the best in terms
of reduced training times and CPU usage, LGR comes close
second while also significantly outperforming all methods on
GPU consumption. With LGR, we propose eliminating the
need of maintaining memory buffers to store data samples
(as in the case of NR) or even latent representations (as in
the case of LR) significantly reducing the memory footprint
of replay-based CL. Furthermore, as LGR uses a ‘lighter’
generator that learns to reconstruct only low-dimensional
representations, there are significant reductions in terms of
computational expenses compared to other pseudo-rehearsal
methods such as DGR. Additionally, LGR uses a pre-trained
root with the reconstructed latent representations replayed to
the solver ‘from the middle’ of the network. This further
reduces the computational cost of LGR.

B. Limitations and Future Work

We use a root network for LGR following the VGG-
16 architecture pre-trained on ImageNet. Despite optimising
some network parameters like GFC and GOUT , this still
limits the application of LGR to certain domains that are
well-represented in the root pre-training. To realise the true
potential of LGR, especially for real-world adaptation, it
is important to allow the root to also evolve during the
training, at least slowly at domain-level, allowing the model
to extend its learning to novel data, more freely. Van de
Ven et al. [48] in their brain-inspired approach embed the
generator model within the main learning model for internal
replay of information. Principally, this is similar to our

motivations for latent generative replay but may also offer
the additional benefit of extending model learning to novel
applications without needing to pre-train the root. However,
they do not optimise for resource-efficiency, which forms
the central focus of our approach. Future work for us would
focus on enabling real-time adaptation for the root while
still adhering to the assumptions of feature extraction layers
remaining sufficiently consistent across learning [31]. Ad-
ditionally, comparing generated latent representations with
root-extracted features, at different stages of learning, will
help evaluate LGR’s ability to efficiently model input data
distributions. Furthermore, we would also like to extend LGR
to other resource-intensive replay strategies such as Gradient
Episodic Memory (GEM) [36] and iCaRL [35] and evaluate
the real-world application of LGR on robotic platforms.

ACKNOWLEDGEMENT

For the purpose of open access, the authors have applied
a Creative Commons Attribution (CC BY) license to any
Accepted Manuscript version arising.
Data Access Statement: This study involves secondary
analyses of existing datasets, that are described and cited in
the text. Licensing restrictions prevent sharing of the datasets.
Code Access: https://bit.ly/3S7Awj5.

REFERENCES

[1] S. Voghoei et al., “Deep learning at the edge,” in International
Conference on Computational Science and Computational Intelligence
(CSCI). IEEE, 2018, pp. 895–901.

[2] D. Preuveneers et al., “Resource usage and performance trade-offs for
machine learning models in smart environments,” Sensors, vol. 20,
no. 4, p. 1176, 2020.

[3] I. Abdić et al., “Driver frustration detection from audio and video
in the wild,” in 25th International Joint Conference on Artificial
Intelligence, ser. IJCAI’16. AAAI Press, 2016, p. 1354–1360.

[4] C. Hewitt et al., “CNN-based Facial Affect Analysis on Mobile
Devices,” arXiv preprint arXiv:1807.08775, 2018.

[5] Y. Guo et al., “Real-time facial affective computing on mobile
devices,” Sensors, vol. 20, no. 3, p. 870, Feb. 2020.

[6] T. Chen et al., “TVM: An automated End-to-End optimizing compiler
for deep learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation. USENIX, Oct. 2018, pp. 578–594.

https://bit.ly/3S7Awj5


[7] R. Schwartz et al., “Green AI,” Communications of the ACM, vol. 63,
no. 12, pp. 54–63, 2020.

[8] P. Ekman et al., “Constants across cultures in the face and emotion.”
J Pers Soc Psychol, vol. 17, no. 2, p. 124, 1971.

[9] R. W. Picard, Affective Computing. Cambridge, MA, USA: MIT
Press, 1997, vol. 252.

[10] M. McCloskey et al., “Catastrophic interference in connectionist net-
works: The sequential learning problem,” ser. Psychology of Learning
and Motivation. Academic Press, 1989, vol. 24, pp. 109 – 165.

[11] M. Dundar et al., “Learning Classifiers When the Training Data is
Not IID,” in International Joint Conference on Artifical Intelligence,
2007, p. 756–761.

[12] T. Lesort et al., “Continual learning for robotics: Definition, frame-
work, learning strategies, opportunities and challenges,” Information
fusion, vol. 58, pp. 52–68, 2020.

[13] N. Churamani et al., “Continual Learning for Affective Robotics: Why,
What and How?” in IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), 2020, pp. 425–431.

[14] S. Thrun, Lifelong Learning Algorithms. Boston, MA: Springer US,
1998, pp. 181–209.

[15] G. I. Parisi et al., “Continual lifelong learning with neural networks:
A review,” Neural Networks, vol. 113, pp. 54–71, 2019.

[16] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” Proceedings of the National Academy of Sciences, vol. 114,
no. 13, pp. 3521–3526, 2017.

[17] F. Zenke et al., “Continual learning through synaptic intelligence,”
in Proceedings of the 34th International Conference on Machine
Learning. JMLR.org, 2017, pp. 3987–3995.

[18] C. Henning et al., “Posterior meta-replay for continual learning,” in
Conference on Neural Information Processing Systems, 2021.

[19] J. von Oswald et al., “Continual learning with hypernetworks,” in
International Conference on Learning Representations, 2020.

[20] A. Robins, “Catastrophic forgetting in neural networks: the role of
rehearsal mechanisms,” in Proceedings 1993 The First New Zealand
International Two-Stream Conference on Artificial Neural Networks
and Expert Systems, Nov 1993, pp. 65–68.

[21] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,”
Connection Science, vol. 7, no. 2, pp. 123–146, 1995.

[22] Y. D. Kwon et al., “Exploring system performance of continual
learning for mobile and embedded sensing applications,” in IEEE/ACM
Symposium on Edge Computing (SEC), 2021, pp. 319–332.

[23] E. Fini et al., “Online continual learning under extreme memory
constraints,” in European Conference on Computer Vision. Springer,
2020, pp. 720–735.

[24] J. Smith et al., “Memory-efficient semi-supervised continual learning:
The world is its own replay buffer,” in 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2021, pp. 1–8.

[25] N. D. Rodrı́guez et al., “Don’t forget, there is more than forgetting:
new metrics for Continual Learning,” in Continual Learning Workshop
at NeurIPS., 2018.

[26] H. Shin et al., “Continual Learning with Deep Generative Replay,”
in Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 2017, pp. 2990–2999.

[27] P. Lucey et al., “The Extended Cohn-Kanade Dataset (CK+): A
complete expression dataset for action unit and emotion-specified
expression,” in Proceedings of the Third International Workshop
on CVPR for Human Communicative Behavior Analysis (CVPR4HB
2010), San Francisco, USA, 2010, pp. 94–101.

[28] S. Li et al., “Reliable crowdsourcing and deep locality-preserving
learning for expression recognition in the wild,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2852–2861.

[29] A. Mollahosseini et al., “Affectnet: A database for facial expression,
valence, and arousal computing in the wild,” IEEE Transactions on
Affective Computing, 2018.

[30] Y. Hsu et al., “Re-evaluating Continual Learning Scenarios: A Cat-
egorization and Case for Strong Baselines,” in Continual Learning
Workshop at NeurIPS., 2018.

[31] L. Pellegrini et al., “Latent replay for real-time continual learning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 10 203–10 209.

[32] G. M. van de Ven et al., “Three scenarios for continual learning,”
CoRR, vol. abs/1904.07734, 2019.

[33] R. Kemker et al., “Measuring catastrophic forgetting in neural net-
works,” in Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, ser. AAAI’18. AAAI Press, 2018.

[34] G. Hu et al., “Prioritized experience replay for continual learning,” in
2021 6th International Conference on Computational Intelligence and
Applications (ICCIA), 2021, pp. 16–20.

[35] S.-A. Rebuffi et al., “iCaRL: Incremental Classifier and Representation
Learning,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[36] D. Lopez-Paz et al., “Gradient episodic memory for continual learn-
ing,” in International Conference on Neural Information Processing
Systems, ser. NIPS’17, 2017, pp. 6470–6479.

[37] D. Rolnick et al., “Experience Replay for Continual Learning,” in
Advances in Neural Information Processing Systems, vol. 32, 2019.

[38] B. Bagus et al., “An Investigation of Replay-based Approaches for
Continual Learning,” in IEEE International Joint Conference on
Neural Networks (IJCNN), 2021, pp. 1–9.

[39] I. Goodfellow et al., “Generative adversarial nets,” in Advances in
Neural Information Processing Systems, Z. Ghahramani et al., Eds.,
vol. 27. Curran Associates, Inc., 2014.

[40] D. P. Kingma et al., “Auto-encoding variational bayes,” 2014.
[41] A. Seff et al., “Continual learning in generative adversarial nets,”

CoRR, vol. abs/1705.08395, 2017.
[42] C. V. Nguyen et al., “Variational continual learning,” in International

Conference on Learning Representations, 2018.
[43] N. Churamani et al., “CLIFER: Continual Learning with Imagination

for Facial Expression Recognition,” in IEEE International Conference
on Automatic Face and Gesture Recognition (FG), 2020, pp. 322–328.

[44] R. Kemker et al., “FearNet: Brain-Inspired Model for Incremental
Learning,” in International Conference on Learning Representations,
2018.

[45] K. Thandiackal et al., “Match what matters: Generative implicit feature
replay for continual learning,” CoRR, vol. abs/2106.05350, 2021.

[46] Y. Xiang et al., “Incremental Learning Using Conditional Adversarial
Networks,” in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), 2019, pp. 6618–6627.

[47] X. Liu et al., “Generative feature replay for class-incremental learn-
ing,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE, Jun. 2020.

[48] G. M. van de Ven et al., “Brain-inspired replay for continual learning
with artificial neural networks,” Nature Communications, vol. 11,
no. 1, Aug. 2020.

[49] G. M. van de Ven et al., “Generative replay with feedback con-
nections as a general strategy for continual learning,” CoRR, vol.
abs/1809.10635, 2018.

[50] S. Li et al., “Deep facial expression recognition: A survey,” IEEE
Transactions on Affective Computing, March 2020.

[51] V. Lomonaco et al., “Avalanche: an end-to-end library for continual
learning,” in IEEE/CVF Computer Vision and Pattern Recognition
Conference, ser. Continual Learning in Computer Vision Workshop,
2021.

[52] T. Chen et al., “Training deep nets with sublinear memory cost,”
CoRR, vol. abs/1604.06174, 2016.

[53] N. K. Jha et al., “The ramifications of making deep neural networks
compact,” in 2019 32nd International Conference on VLSI Design
(VLSID), 2019, pp. 215–220.

[54] K. Simonyan et al., “Very deep convolutional networks for large-
scale image recognition,” in International Conference on Learning
Representations, 2015.

[55] M. Sandler et al., “MobileNetV2: Inverted Residuals and Linear
Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4510–4520.

[56] K. He et al., “Deep residual learning for image recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[57] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Proceedings of the 25th International Conference
on Neural Information Processing Systems, 2012, p. 1097–1105.

[58] H. Ding et al., “FaceNet2ExpNet: Regularizing a deep face recognition
net for expression recognition,” in 12th IEEE International Conference
on Automatic Face Gesture Recognition (FG), 2017, pp. 118–126.

[59] T.-H. Vo et al., “Pyramid with super resolution for in-the-wild facial
expression recognition,” IEEE Access, vol. 8, pp. 131 988–132 001,
2020.



Latent Generative Replay for Resource-Efficient
Continual Learning of Facial Expressions

Supplementary Data and Results

Samuil Stoychev, Nikhil Churamani and Hatice Gunes
Department of Computer Science and Technology, University of Cambridge, United Kingdom
ss2719@cantab.ac.uk, {nikhil.churamani,hatice.gunes}@cl.cam.ac.uk

I. DATASETS AND EXPERIMENT SETTINGS

A. Datasets

1) CK+: The CK+ dataset is a popular Facial Expression
Recognition (FER) dataset consisting of video recordings
of 123 subjects, annotated for 7 expression classes namely,
Anger, Surprise, Fearful, Disgust, Happy, Sad and Contempt.
In total, there are 327 sequences showing a shift from neutral
to peak expression intensity. We take the last 3 frames for
each sequence to represent the corresponding expression
class while the first frame is used to constitute the neutral
class samples. That gives us a total of 1310 images, each
labelled with one of 8 expressions. CK+ is an imbalanced
dataset with respect to the class distribution with ‘happy’
samples dominating the distribution while other classes such
as ‘contempt’ are underrepresented. To partition the images
into a train and a test set, we perform a cross-subject split,
assigning 86 subjects to the train set and 37 to the test
dataset (or a 70 : 30 split) while maintaining the data
distribution. Cross-subject validation is a common approach
in FER ensuring that the learned model can generalise well
to new, unseen subjects.

2) RAF-DB: The Real-world Affective Faces Database
(RAF-DB) dataset consists of ≈ 15K facial images down-
loaded from the internet and manually labelled by multi-
ple annotators for six expression classes namely, Surprise,
Fearful, Disgust, Happy, Sad and Anger along with Neutral
faces. RAF-DB samples represent in-the-wild settings with
great diversity with respect to gender, race, head pose, facial
attributes like facial hair and skin colour, and variations
resulting from lighting conditions. For our experiments, we
use the original train-test split as provided by the authors of
the dataset.

3) AffectNet: The AffectNet dataset consists of more
than a million facial images downloaded from the internet.
Half of the images (≈ 500K) are manually labelled by
multiple annotators for arousal and valence labels as well
as eight facial expression categories namely Anger, Surprise,
Fearful, Disgust, Happy, Sad, Contempt and Neutral. Much
like RAF-DB, AffectNet samples also represent in-the-wild
conditions. As these images are captured randomly from
the web, for several samples the face is either occluded or
not present or annotated for the data samples. Thus, from
the manually labelled samples, ≈ 287k provide expression

(a) Accuracy (b) GPU Memory Consumption

Fig. 1. (a) Accuracy and (b) GPU Memory Consumption for LGR over
different hyper-parameters for CK+.

labels. The data distribution for the AffectNet dataset is also
highly imbalanced for the 8 expression classes with ‘Happy’
samples constituting ≈ 32% of the usable samples. We
use the downsampled data split for AffectNet with ≈ 90K
training samples and 4K test samples.

B. Preprocessing

We pre-process the images by extracting the face region
in the images using a pre-trained Face Detector from the
the dlib Python library1. We additionally extend the width
and the height of the detected area by 20% to ensure the
cropped area captures facial features such as the ears, the
forehead and the chin. The extracted face-centred images are
then resized to (100 × 100 × 3) before using them to train
the models.

II. SETTING MODEL HYPER-PARAMETERS

Latent Generative Replay (LGR) is parameterised by the
size of the generator, more specifically, the number of hidden
units GFC and the output size of the generator GOUT . For
the three datasets, GFC and GOUT are of different sizes
with GOUT fixed at 30, 000 (image size) for Deep Generative
Replay (DGR) and 4096 (latent representations from VGG-
16) for LGR-based approaches. Thus, the performance of
the pseudo-rehearsal methods are hinged on optimising GFC

while the buffer size Bsize determines the performance for
rehearsal-based methods. Thus, we conduct a grid-search
hyper-parameter optimisation for LGR on by searching over

1http://dlib.net



(a) Accuracy (b) GPU Memory Consumption

Fig. 2. (a) Accuracy and (b) GPU Memory Consumption for LR over
different hyper-parameters for CK+.

GFC ∈ [200, 400, 800, 1600, 3200] and varying the number
of iterations across i ∈ [500, 1000, 2000, 3000]. For each
distinct combination of hyper-parameters, we train the model
3 times and average the system metrics.

We see that increasing the value of the GFC tends to
improve model accuracy (see Figure 1 (a)) yet, a higher
GFC also translates to a higher memory cost with the GPU
memory consumption increasing non-linearly and growing
over 100 times as GFC increases from 200 to 3200 (see Fig-
ure 1 (b)). This rapid increase in GPU memory consumption
results from the increased size of the generator. Although
here we only illustrate the trade-off between accuracy and
GPU memory consumption, an increase in GFC size also
increases other system metrics including GPU usage, CPU
usage and training time. The number of iterations does not
impact memory consumption and improves model accuracy
with convergence at around 2000 iterations.

A similar process is repeated for optimising the hyper-
parameters for Naı̈ve Rehearsal (NR), LR and DGR. For
NR and LR, the buffer size (Bsize) is optimised by varying
it between 200 and 1500 (see Figure 2). Bsize introduces a
trade-off, similar to GFC for LGR, where a larger replay
buffer size tends to increase model accuracy while also
linearly increasing the memory consumption of the model.

III. ABLATION RESULTS

A. Results for CK+

1) AlexNet: Table I presents CK+ results using a pre-
trained AlexNet-based root network.

TABLE I
CK+ RESULTS USING ALEXNET. BEST RESULTS FOR EACH ROW ARE IN

BOLD WHILE SECOND BEST ARE IN [BRACES].

NR LR DGR LGR DGR+d LGR+d

Accuracy (%) ▲ 98.19 [95.55] 93.23 92.31 ▼ 91.97 95.01 ▲
Training time (s)▼ [661.17] 632.20 871.13 681.60 ▼ 879.27 670.67 ▼

RAM Usage (MB) ▼ 2802.47 2781.29 2754.90 2782.38 ▲ [2759.07] 2781.86 ▲
CPU Usage (s) ▼ [758.71] 729.03 962.26 778.49 ▼ 977.42 766.90 ▼

GPU Usage (%) ▼ [3.91] 2.64 27.06 4.55 ▼ 26.93 4.47 ▼
GPU Memory (MB) ▼ 3916.00 [1744.00] 5682.00 1546.00 ▼ 5682.00 1546.00 ▼

2) MobileNet-V2: Table II presents CK+ results using a
pre-trained MobileNet-V2-based root network.

TABLE II
CK+ RESULTS USING MOBILENET-V2. BEST RESULTS FOR EACH ROW

ARE IN BOLD WHILE SECOND BEST ARE IN [BRACES].

NR LR DGR LGR DGR+d LGR+d

Accuracy (%) ▲ 78.75 [82.37] 73.34 78.59 ▼ 76.02 87.96 ▲
Training time (s)▼ [720.23] 678.17 922.10 743.73 ▼ 994.47 723.03 ▼

RAM Usage (MB) ▼ 2755.10 2760.72 2765.46 2763.42 ▲ 2765.23 [2759.17] ▲
CPU Usage (s) ▼ 819.46 775.46 1,015.95 846.30 ▼ 1,091.35 [816.91] ▼

GPU Usage (%) ▼ 8.71 5.73 30.55 [6.61] ▼ 29.24 6.87 ▼
GPU Memory (MB) ▼ 3580.00 [1329.33] 5074.00 1284.00 ▼ 5074.00 1284.00 ▼

3) ResNet-18: Table III presents CK+ results using a pre-
trained ResNet-18-based root network.

TABLE III
CK+ RESULTS USING RESNET-18. BEST RESULTS FOR EACH ROW ARE

IN BOLD WHILE SECOND BEST ARE IN [BRACES].

NR LR DGR LGR DGR+d LGR+d

Accuracy (%) ▲ [82.74] 81.66 74.34 79.48 ▲ 74.63 88.47 ▲
Training time (s)▼ [701.57] 668.03 920.30 702.10 ▼ 923.60 722.80 ▼

RAM Usage (MB) ▼ 2752.49 2821.64 [2759.36] 2821.92 ▲ 2759.57 2821.43 ▲
CPU Usage (s) ▼ 801.59 768.71 1018.13 [798.76] ▼ 1019.85 820.10 ▼

GPU Usage (%) ▼ 9.24 6.07 31.53 7.24 ▼ 31.22 [6.90] ▼
GPU Memory (MB) ▼ 3618.00 [1321.33] 5166.00 1308.00 ▼ 5166.00 1308.00 ▼

B. Results for RAF-DB

1) AlexNet: Table IV presents RAF-DB results using a
pre-trained AlexNet-based root network.

TABLE IV
RAF-DB RESULTS USING ALEXNET. BEST RESULTS FOR EACH ROW

ARE IN BOLD WHILE SECOND BEST ARE IN [BRACES].

NR LR DGR LGR DGR+d LGR+d

Accuracy (%) ▲ 75.72 78.62 81.58 [84.28] ▲ 83.91 86.85 ▲
Training time (s)▼ [797.83] 740.27 1063.10 809.23 ▼ 1129.30 803.93 ▼

RAM Usage (MB) ▼ 3057.71 2797.17 [2795.09] 2803.99 ▲ 2792.01 2,801.98 ▲
CPU Usage (s) ▼ 805.54 740.60 1064.31 [798.84] ▼ 1146.20 805.16 ▼

GPU Usage (%) ▼ 9.08 6.48 34.42 [7.73] ▼ 33.34 7.89 ▼
GPU Memory (MB) ▼ 5232.00 [1818.00] 5836.00 1542.00 ▼ 5836.00 1542.00 ▼

2) MobileNet-V2: Table V presents RAF-DB results using
a pre-trained MobileNet-V2-based root network.

TABLE V
RAF-DB RESULTS USING MOBILENET-V2. BEST RESULTS FOR EACH

ROW ARE IN BOLD WHILE SECOND BEST ARE IN [BRACES].

NR LR DGR LGR DGR+d LGR+d

Accuracy (%) ▲ 81.06 80.94 80.10 80.10 ▲
▼ 80.10 [81.02] ▲

Training time (s)▼ 979.93 834.13 1250.57 902.70 ▼ 1241.73 [875.70] ▼
RAM Usage (MB) ▼ 2940.20 2790.07 2793.48 2800.13 ▲ 2798.96 [2792.01] ▼

CPU Usage (s) ▼ 966.44 837.57 1257.85 908.76 ▼ 1246.60 [877.00] ▼
GPU Usage (%) ▼ 20.69 14.45 42.70 [14.57] ▼ 43.26 15.00 ▼

GPU Memory (MB) ▼ 4880.00 [1679.33] 5414.00 1604.00 5414.00 1604.00 ▼



3) ResNet-18: Table VI presents RAF-DB results using a
pre-trained ResNet-18-based root network.

TABLE VI
RAF-DB RESULTS USING RESNET-18. BEST RESULTS FOR EACH ROW

ARE HIGHLIGHTED IN BOLD WHILE SECOND BEST ARE IN [BRACES].

NR LR DGR LGR DGR+d LGR+d

Accuracy (%) ▲ 82.17 [82.64] 80.10 80.10 ▲
▼ 80.10 82.84 ▲

Training time (s)▼ 882.30 792.53 1225.70 884.13 ▼ 1220.10 [868.23]▼
RAM Usage (MB) ▼ 3240.22 2846.39 [2798.86] 2850.88 ▲ 2793.68 2850.32 ▲

CPU Usage (s) ▼ 883.95 785.29 1228.59 891.16 ▼ 1223.57 [875.40] ▼
GPU Usage (%) ▼ 19.33 [13.08] 41.95 12.94 ▼ 41.63 13.24 ▼

GPU Memory (MB) ▼ 5017.33 [1577.33] 5248.00 1554.00 ▼ 5248.00 1554.00 ▼

IV. MODEL ARCHITECTURES

A. VGG-16 Based Solver

We use a VGG-16-based architecture pre-trained on the
ImageNet benchmark to implement the solver (see Figure 3).
We use (100× 100× 3) RGB images as input to the model.
The model is split into the pre-trained root layers resulting in
a 4096-d latent representation layer while the final 3 fully-
connected layers are used for task-specific learning in the
top of the model.

40
96

12
8

12
8

825
08
8

100x100x3 100x100x64

50x50x128

28x28x256 12x12x512
6x6x512

top

pre-trained VGG-16 root

Legend

input

convolution

max pooling

fully-connected

latent replay
layer

output layer

Fig. 3. VGG-16 Implementation.

Table VII presents the implementation summary of the
model along with the number for parameters and estimated
model size (in MB). Since the root of the model is pre-
trained and frozen during the training, only the top of the
model contributes to the number of trainable parameters.

B. Variational Autoencoder (VAE)

For pseudo-rehearsal, both in DGR and LGR-based meth-
ods, we use the Variational Autoencoder (VAE) architecture
as the generator model for the scholar. Based on the image
size (100 × 100 × 3) or the size of the latent representa-
tion layer (4096 for VGG-16-based solver), the generator
uses several fully-connected layer to reconstruct the latent
representations. The generator is split into 4 sub-modules
representing the encoder (fcE), the decpder (fcD, network
layers extracting the latent variable z (toZ) and network
layers sampling from the latent variable z (fromZ).

100 x 100 x 3
flatten

μ
fc1

fc3

z
x

30
00

0

16
00

16
00

10
0

10
0

10
0

16
00

16
00

30
00

0

100 x 100 x 3

to image

σ

fc2 fc4 fc5

fc6

x'

Fig. 4. VAE implementation for the DGR generator.

Table VIII presents the implementation summary of the
VAE-based generator (as shown in Figure 5) used for re-
constructing 4096d latent representations from the VGG-16
root for the LGR-based methods along with the number for
parameters and estimated model size (in MB).

TABLE VII
SUMMARY OF THE VGG-16-BASED SOLVER ARCHITECTURE.

Layer Output Shape Number of Parameters

Conv2d-1 [-1, 64, 100, 100] 1,792
ReLU-2 [-1, 64, 100, 100] 0
Conv2d-3 [-1, 64, 100, 100] 36,928
ReLU-4 [-1, 64, 100, 100] 0

MaxPool2d-5 [-1, 64, 50, 50] 0
Conv2d-6 [-1, 128, 50, 50] 73,856
ReLU-7 [-1, 128, 50, 50] 0
Conv2d-8 [-1, 128, 50, 50] 147,584
ReLU-9 [-1, 128, 50, 50] 0

MaxPool2d-10 [-1, 128, 25, 25] 0
Conv2d-11 [-1, 256, 25, 25] 295,168
ReLU-12 [-1, 256, 25, 25] 0
Conv2d-13 [-1, 256, 25, 25] 590,080
ReLU-14 [-1, 256, 25, 25] 0
Conv2d-15 [-1, 256, 25, 25] 590,080
ReLU-16 [-1, 256, 25, 25] 0

MaxPool2d-17 [-1, 256, 12, 12] 0
Conv2d-18 [-1, 512, 12, 12] 1,180,160
ReLU-19 [-1, 512, 12, 12] 0
Conv2d-20 [-1, 512, 12, 12] 2,359,808
ReLU-21 [-1, 512, 12, 12] 0
Conv2d-22 [-1, 512, 12, 12] 2,359,808
ReLU-23 [-1, 512, 12, 12] 0

MaxPool2d-24 [-1, 512, 6, 6] 0
Conv2d-25 [-1, 512, 6, 6] 2,359,808
ReLU-26 [-1, 512, 6, 6] 0
Conv2d-27 [-1, 512, 6, 6] 2,359,808
ReLU-28 [-1, 512, 6, 6] 0
Conv2d-29 [-1, 512, 6, 6] 2,359,808
ReLU-30 [-1, 512, 6, 6] 0

MaxPool2d-31 [-1, 512, 3, 3] 0
AdaptiveAvgPool2d-32 [-1, 512, 7, 7] 0

Linear-33 [-1, 4096] 102,764,544
Linear-34 [-1, 128] 524,416
Dropout-35 [-1, 128] 0
Linear-36 [-1, 8] 1,032

Total parameters: 118,004,680
Estimated Total Size (MB): 493.62

The VAE-based generator used for reconstructing 100 ×
100 × 3 samples for the DGR-based methods is illustrated
in Figure 8 while Table IX presents the implementation
summary of the model along with the number for parameters
and estimated model size (in MB).



μ
x

fc2

z
10

24 20
0

20
0

10
0

10
0

10
0

20
0

20
0

40
96

σ

fc1 fc3 fc4

x'

Fig. 5. VAE implementation for the LGR generator.

TABLE VIII
SUMMARY OF THE VAE-BASED GENERATOR USED FOR LGR.

Layer Output Shape Number of Parameters

fcE

Flatten-1 [-1, 4096] 0
LinearExcitability-2 [-1, 200] 819,400

ReLU-3 [-1, 200] 0
fc_layer-4 [-1, 200] 0

LinearExcitability-5 [-1, 200] 40,200
ReLU-6 [-1, 200] 0

fc_layer-7 [-1, 200] 0

toZ

LinearExcitability-8 [-1, 100] 20,100
fc_layer-9 [-1, 100] 0

LinearExcitability-10 [-1, 100] 20,000
fc_layer-11 [-1, 100] 0

fromZ

LinearExcitability-12 [-1, 200] 20,200
ReLU-13 [-1, 200] 0

fcD

LinearExcitability-14 [-1, 200] 40,200
ReLU-15 [-1, 200] 0

fc_layer-16 [-1, 200] 0
LinearExcitability-17 [-1, 4096] 819,400

Sigmoid-18 [-1, 4096] 0
fc_layer-19 [-1, 4096] 0

Total parameters: 1,785,004
Estimated Total Size (MB): 6.90

V. ADDITIONAL RESULTS: MNIST AND CIFAR-10
EXPERIMENTS

We also evaluate the proposed LGR approach on popular
vision benchmarks of MNIST and CIFAR-10. While MNIST
evalutes the model on simpler data setting with a lower
number of samples, CIFAR-10 consists of complex data
settings (real-world images) albeit with the same size as that
of MNIST.

MNIST: The MNIST dataset consists of 70000 (32× 32)
grayscale images of handwritten digits between 0 − 9, split
into 60000 training images and 10000 test images. Each of
the 10 classes consists of 6000 training images and 1000 test
images, making it a perfectly balanced dataset.

CIFAR-10: The CIFAR-10 datasetCIFAR-10 constitutes
real-world images of objects such as airplanes, automobiles,
ships and animals such as dogs, cats and birds amongst others
classified in to 10 different classes. Each class consists of
6000 (32 × 32 × 3) RGB images with 5000 images used
for training and 1000 images constituting the test-set. For

TABLE IX
SUMMARY OF THE VAE-BASED GENERATOR USED FOR DGR.

Layer Output Shape Number of Parameters

fcE

Flatten-1 [-1, 30000] 0
LinearExcitability-2 [-1, 1600] 48,001,600

ReLU-3 [-1, 1600] 0
fc_layer-4 [-1, 1600] 0

LinearExcitability-5 [-1, 1600] 2,561,600
ReLU-6 [-1, 1600] 0

fc_layer-7 [-1, 1600] 0

toZ

LinearExcitability-8 [-1, 100] 160,100
fc_layer-9 [-1, 100] 0

LinearExcitability-10 [-1, 100] 160,000
fc_layer-11 [-1, 100] 0

fromZ

LinearExcitability-12 [-1, 1600] 161,600
ReLU-13 [-1, 1600] 0

fcD

LinearExcitability-14 [-1, 1600] 2,561,600
ReLU-15 [-1, 1600] 0

fc_layer-16 [-1, 1600] 0
LinearExcitability-17 [-1, 30000] 48,001,600

Sigmoid-18 [-1, 30000] 0
fc_layer-19 [-1, 30000] 0

Total parameters: 101,649,308
Estimated Total Size (MB): 393.08

our evaluations we convert these images to grayscale before
training the models.

Due to the small size of the images for both MNIST
and CIFAR-10, instead of using using ‘heavy’ pre-trained
backbones such as VGG-16, we use a simpler LeNet-based
model as the root and pre-train it on an unseen split of the
train data by setting aside 10000 images from the training set
and use the other 50000 for training the Continual Learning
(CL) models. For fairness, this is done for both DGR and
LGR ensuring that none of the approaches incur an additional
computational and memory cost of having to train the root
from scratch.

A. Hyper-parameter Optimisation

Latent Generative Replay (LGR) is parameterised by the
size of the generator, more specifically, the number of hidden
units GFC and the output size of the generator GOUT . To
optimise for model accuracy and resource-consumption, we
run the Task-IL experiments with the MNIST dataset setting
GFC = GOUT ∈ [10, 20, 50, 100, 200, 300, 400]. Varying
the size of the generator introduces a trade-off between
accuracy and GPU memory consumption (see Figure 6).
As the generator gets smaller, GPU memory consumption
reduces but so does the average accuracy of the model.

A lighter generative model may become incapable of
generating representative samples and fail to mitigate catas-
trophic forgetting, effectively. Even though we illustrate the
change in GPU memory consumption in Figure 6, a lighter
generator also tends to decrease other performance metrics
such as training time and GPU usage as the generative
model becomes less computationally expensive. The trade-



Fig. 6. Accuracy vs. Generator Size trade-off.

off the generator size introduces is thus not only between
accuracy and GPU memory consumption, but more generally
between accuracy and resource consumption. Thus, selecting
the “optimal” generator size comes down to balancing the
two objectives.

TABLE X
SELECTED HYPER-PARAMETERS FOR MNIST AND CIFAR-10

DATASETS.

Method Hyper-parameters

NR Bsize = 1000
LR Bsize = 1000

DGR GFC = 400 GOUT = 1024
DGR+d GFC = 400 GOUT = 1024

LGR GFC = 128 GOUT = 128
LGR+d GFC = 128 GOUT = 128

We set GFC = GOUT = 128 for LGR for MNIST
experiments. Other hyper-parameters for all the compared
approaches can be seen in Table X. For DGR and DGR+d,
we follow the recommendations from van de Ven et al. 2019.
For the rehearsal methods (NR and LR), we use a buffer size
(Bsize) of 1000, which has been shown to perform well for
these methods. We use the same model parameters for the
CIFAR-10 experiments as well owing to the similar scale of
the datasets.

B. Results

1) MNIST: MNIST results for Task-IL can be seen in
Table XI where we see that LGR and LGR+d improve
on the accuracy scores of DGR and DGR+d, respectively,
albeit marginally. More importantly, LGR-based methods
outperform their DGR variants on memory and resource-
efficiency metrics. LGR and LGR+d reduce the training
time required, CPU and GPU usage as well significantly
reduce the GPU memory consumption of DGR and DGR+d,
respectively. However, LGR+d witnesses a slight increase
in RAM usage. LGR and LGR-d report the lowest GPU
memory consumption of all the approaches reducing it by

≈ 0.8% compared to the lightest LR approach. Meanwhile,
LR and NR emerge as more efficient options in terms of
computation, overall, reporting lower training times as well
as lower CPU and GPU usage (in %) than pseudo-rehearsal
methods.

TABLE XI
MNIST RESULTS FOR TASK-IL. BEST RESULTS FOR EACH ROW ARE IN

BOLD WHILE SECOND-BEST ARE IN [BRACES].

NR LR DGR LGR DGR+d LGR+d

Accuracy (%) ▲ 98.82 98.86 99.16 [99.13] ▲ 99.42 99.49 ▲
Training time (s) ▼ [48.10] 44.33 62.66 61.36 ▼ 64.20 61.23 ▼

RAM Usage (MB) ▼ 2312.49 [2315.63] 2316.18 2315.89 ▼ 2316.95 2319.30 ▲
CPU Usage (s) ▼ [76.27] 72.63 92.16 90.55 ▼ 93.68 90.34 ▼

GPU Usage (%) ▼ [8.83] 6.06 16.00 10.52 ▼ 15.23 11.01 ▼
GPU Memory (MB) ▼ 1039.66 [963.00] 991.00 955.00 ▼ 991.00 955.00 ▼

2) CIFAR-10 Results: Task-IL experiments with CIFAR-
10 (see Table XII) show that the LGR+d approach outper-
forms all others in terms of model accuracy. Furthermore,
LGR-based methods outperform their DGR variants on all
the metrics not only improving on model performance but
also reducing the memory and resource consumption of these
methods. Overall, NR and LR methods remain consistent
with LR requiring the least training time and the least CPU
and GPU usage (in %), while LGR-based methods offer
significant savings in RAM and GPU Memory consumption.

TABLE XII
CIFAR-10 RESULTS FOR TASK-IL. BEST RESULTS FOR EACH ROW ARE

HIGHLIGHTED IN BOLD.

NR LR DGR LGR DGR+d LGR+d

Accuracy (%) ▲ [71.15] 66.39 66.25 67.47 ▲ 68.48 72.71 ▲
Training time (s) ▼ [78.87] 74.37 114.53 103.97 ▼ 115.67 104.30 ▼

RAM Usage (MB) ▼ 3468.45 [3467.73] 3499.95 3467.40 ▼ 3500.97 3481.04 ▼
CPU Usage (s) ▼ [135.87] 130.91 169.35 158.56 ▼ 169.94 159.38 ▼

GPU Usage (%) ▼ [7.88] 6.46 26.00 12.09 ▼ 25.44 11.88 ▼
GPU Memory (MB) ▼ 1116.33 [1002.33] 1379.00 993.00 ▼ 1379.00 993.00 ▼

C. Model Architectures

1) LeNet-Based Solver: For the MNIST and CIFAR-10
evaluations, the solver is implemented using a LeNet-based
architecture (see Figure 7). Input to the image consists of
(32×32) grayscale images that are passed to 2 convolutional
(conv) layers followed by a max pooling layer. The extracted
features are then flattened out and passed through a fully-
connected layer to extract the latent feature representations.
These latent representations are then passed through the
classifier consisting of 2 fully-connected layers.

The model is divided into two parts with the conv layers
along with the latent representation layer forming the root
of the solver with the rest of the network forming the top
of the network adapting to task-specific learning. Table XIII
presents the implementation summary of the model along
with the number of parameters as well as the estimated model
size (in MB).



32x32

fc2 fc3

root

12
8

12
8

1072
0

fc1 outputinput conv1 conv2 max_pool2d

top

latent replay
layer5x28x28 5x24x24 5x12x12

Fig. 7. LeNet-based CNN Implementation.

TABLE XIII
SUMMARY OF THE LENET-BASED CONVOLUTIONAL NEURAL

NETWORK (CNN) ARCHITECTURE.

Layer Output Shape Number of Parameters

Conv2d-1 [-1, 5, 28, 28] 130
Conv2d-2 [-1, 5, 24, 24] 630
Dropout-3 [-1, 5, 12, 12] 0
Linear-4 [-1, 128] 92,288
Linear-5 [-1, 128] 16,512
Dropout-6 [-1, 128] 0
Linear-7 [-1, 10] 1,290

Total parameters: 110,850
Estimated Total Size (MB): 0.49

2) Variational Autoencoder (VAE): For pseudo-rehearsal,
both in DGR and LGR-based methods, we use the Vari-
ational Autoencoder (VAE) architecture as the generator
model for the scholar. Based on the image size (32 × 32
for MNIST/CIFAR-10) or the size of the latent represen-
tation layer (128 for LeNet-based solver), the generator
uses several fully-connected layer to reconstruct the latent
representations. The generator is split into 4 sub-modules
representing the encoder (fcE), the decpder (fcD, network
layers extracting the latent variable z (toZ) and network
layers sampling from the latent variable z (fromZ).

32 x 32
flatten

μ
fc1

fc3

zx

10
24 40
0

40
0

10
0

10
0

10
0

40
0

40
0

10
24 32 x 32

to image

σ

fc2 fc4 fc5

fc6

x'

Fig. 8. VAE implementation for the generator for MNIST/CIFAR-10.

The VAE-based generator used for reconstructing 32× 32
MNIST/CIFAR-10 samples for the DGR-based methods is
illustrated in Figure 8 while Table XIV presents the imple-
mentation summary of the model along with the number for
parameters and estimated model size (in MB).

Table XV presents the implementation summary of the
VAE-based generator used for reconstructing 128d latent
representations for the MNIST/CIFAR-10 samples for the
LGR-based methods along with the number for parameters
and estimated model size (in MB).

TABLE XIV
SUMMARY OF THE VAE-BASED GENERATOR FOR DGR FOR

MNIST/CIFAR-10.

Layer Output Shape Number of Parameters

fcE

Flatten-1 [-1, 1024] 0
LinearExcitability-2 [-1, 400] 410,000

ReLU-3 [-1, 400] 0
fc_layer-4 [-1, 400] 0

LinearExcitability-5 [-1, 400] 160,400
ReLU-6 [-1, 400] 0

fc_layer-7 [-1, 400] 0

toZ

LinearExcitability-8 [-1, 100] 40,100
fc_layer-9 [-1, 100] 0

LinearExcitability-10 [-1, 100] 40,000
fc_layer-11 [-1, 100] 0

fromZ

LinearExcitability-12 [-1, 400] 40,400
ReLU-13 [-1, 400] 0

fcD

LinearExcitability-14 [-1, 400] 160,400
ReLU-15 [-1, 400] 0

fc_layer-16 [-1, 400] 0
LinearExcitability-17 [-1, 1024] 410,624

Sigmoid-18 [-1, 1024] 0
fc_layer-19 [-1, 1024] 0

Total parameters: 1,261,924
Estimated Total Size (MB): 4.88

TABLE XV
SUMMARY OF THE VAE-BASED GENERATOR FOR LGR FOR

MNIST/CIFAR-10.

Layer Output Shape Number of Parameters

fcE

Flatten-1 [-1, 128] 0
LinearExcitability-2 [-1, 128] 16,512

ReLU-3 [-1, 128] 0
fc_layer-4 [-1, 128] 0

LinearExcitability-5 [-1, 128] 16,512
ReLU-6 [-1, 128] 0

fc_layer-7 [-1, 128] 0

toZ

LinearExcitability-8 [-1, 100] 12,900
fc_layer-9 [-1, 100] 0

LinearExcitability-10 [-1, 100] 12,800
fc_layer-11 [-1, 100] 0

fromZ

LinearExcitability-12 [-1, 128] 12,928
ReLU-13 [-1, 128] 0

fcD

LinearExcitability-14 [-1, 128] 16,512
ReLU-15 [-1, 128] 0

fc_layer-16 [-1, 128] 0
LinearExcitability-17 [-1, 128] 16,512

Sigmoid-18 [-1, 128] 0
fc_layer-19 [-1, 128] 0

Total parameters: 105,966
Estimated Total Size (MB): 0.40


	I Introduction
	II Replay-based Continual Learning
	II-A Rehearsal
	II-B Generative Replay
	II-C Generative Replay of Features

	III Latent Generative Replay
	IV Evaluation
	IV-A Learning Scenario
	IV-B Datasets
	IV-C Compared Approaches
	IV-D Experiment Settings
	IV-D.1 Evaluation Metrics
	IV-D.2 Implementation Details


	V Results
	V-A CK+ Results
	V-B RAF-DB Results
	V-C AffectNet Results
	V-D Ablation: Selecting the Pre-trained Backbone as Root

	VI Discussion and Conclusions
	VI-A Resource-efficiency of LGR
	VI-B Limitations and Future Work

	References

