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Abstract— Since the beginning of world-wide COVID-19
pandemic, facial masks have been recommended to limit the
spread of the disease. However, these masks hide certain
facial attributes. Hence, it has become difficult for existing
face recognition systems to perform identity verification on
masked faces. In this context, it is necessary to develop masked
Face Recognition (MFR) for contactless biometric recognition
systems. Thus, in this paper, we propose Complementary Atten-
tion Learning and Multi-Focal Spatial Attention that precisely
removes masked region by training complementary spatial
attention to focus on two distinct regions: masked regions
and backgrounds. In our method, standard spatial attention
and networks focus on unmasked regions, and extract mask-
invariant features while minimizing the loss of the conventional
Face Recognition (FR) performance. For conventional FR, we
evaluate the performance on the IJB-C, Age-DB, CALFW,
and CPLFW datasets. We evaluate the MFR performance on
the ICCV2021-MFR/Insightface track, and demonstrate the
improved performance on the both MFR and FR datasets.
Additionally, we empirically verify that spatial attention of
proposed method is more precisely activated in unmasked
regions.

I. INTRODUCTION

With the advent of deep neural networks, the accuracy
of Face Recognition (FR) has become more than over
99% in controlled environments [6], [23], [1]. Accordingly,
identity authentication systems that employ FR have been
widely used in our daily life (e.g., airports, companies, and
smartphones). However, owing to the recent global COVID-
19 pandemic, it has become mandatory to wear facial
masks to protect public health. These facial masks cover
the nose and mouth, and hence, they significantly decrease
the performance of previous face recognition systems. Thus,
the necessity of Masked Face Recognition (MFR) has been
highlighted, and various MFR studies have been proposed
during the pandemic.

Previous studies on MFR have focused on the effective ex-
traction of mask-invariant features [27], [11], [21], [19], [4].
The method proposed in [27] discards the features obtained
from the lower half region of images by utilizing the prior
knowledge that a mask is located in the lower half of a face.
In addition, MMD loss, MSE loss, or adversarial loss with an
auxiliary mask-usage classification branch has been adopted
to reduce the distance between the features obtained from
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Fig. 1: Examples of the synthetic masked face, which is
generated by the online masked face generation function of
the ICCV2021/Insightface track.

masked and unmasked images [19], [14]. These approaches
have successfully improved the MFR performance by forcing
networks to neglect the facial attributes (nose and mouth)
that are typically behind a mask. However, this conflicts
with the goal of conventional FR and leads to performance
degradation on FR datasets.

To optimize the trade-off between the performances of
conventional FR and MFR, we propose the method that more
precisely separates masked regions from unmasked region
by adopting a spatial attention module [3]. Conventionally,
spatial attention modules, such as the Convolutional Block
Attention Module (CBAM) [25] have been adopted to make
networks focus on foreground objects, and have demon-
strated the localization capability that separates foreground
regions from background regions. In this paper, we propose
Complementary Attention Learning (CAL) that adversarially
utilizes the complementary spatial attention to enhance the
localization capability of CBAM inspired by recent studies
on unbiased visual recognition [24]. We train complementary
spatial attention to learn undesirable information (e.g., mask-
usage classification) to prevent standard spatial attention
from focusing on the undesirable region (e.g., masked re-
gion). We describe details in Section II-B

Additionally, we propose Multi-Focal Spatial Attention
(MFSA), which separates an image into three regions (i.e.,
unmasked regions, masked regions, and background regions).
Previously, sigmoid function has been generally adopted to
normalize spatial attention of CBAM, and divided the ele-
ments into binary (e.g., foreground and background). Thus, if
we train complementary attention to focus on masked region,
background region is more likely to be activated at standard
attention. To alleviate the issue, we employ so f tmax function
to classify elements into N-way. Also, instead of channel
attention module of CBAM, we employ the convolution
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Fig. 2: Schematic of the Convolutional Block Atten-
tion Module (CBAM) and Multi-Focal Spatial Attention
(MFSA). We replace the channel attention of CBAM and
the last sigmoid function with the convolutional layers and
so f tmax function, respectively. Additionally, we adopt the
Orthogonalization by Newton’s Iteration (ONI) to the weight
of convolutional layers to disentangle the representations.

layers that followed by batch normalization and ReLU. To
disentangle the representation of N-way attention, we adopt
the Orthogonalization by Newton’s Iteration (ONI) [12], and
it orthogonalizes the weight of convolution layers. Weight
orthogonalization enforces each output channel to depend
on a different channel of input channel, and it reduces
causality and correlation between output channels. With the
modification, we increase the model representation capacity,
and empirically demonstrate improved performance on both
MFR and FR datasets.

We follow the experimental setup of the baseline mod-
els presented at the Insightface track of the ICCV2021-
MFR challenge [4]. We train networks on the CASIA-
Webface [26] and MS1MV3 datasets [6], [5], [9] with
masked face augmentation that synthesizes masked face
with a given probability. To implement masked face aug-
mentation, we employ the online masked face generation
function provided by Insightface. We visualize the examples
of synthetic masked face in the Fig 1. We train networks
with randomly synthesized masked face, and evaluate on the
ICCV2021-MFR/Insightface track, which is a real masked
face dataset. To analyze the trade-off between MFR and FR
performances, we evaluate the FR performance on IJB-C,
Age-DB, CALFW, and CPLFW datasets [28], [17], [29],
[16]. From the results, we empirically verify that proposed
method achieves the superior performance on both FR and
MFR datasets.

As wearing masks have been highly recommended, many
disciplines that require to recognize and interact with hu-
man need to develop masked face recognition algorithms
(e.g., cyber-security, transportation, public health, human-
computer interaction, and smart technologies). Especially,
our method demonstrates the masked region by spatial atten-
tion maps, so our method is explainable to human, which is

an essential behavior for human-computer interaction. Also,
our method can be applied to other type of facial occlusions
(e.g., glasses and hats), if synthetic image generator is exist.
Therefore, we expect our algorithm can be ubiquitously
applied to other disciplines.

II. LOCALIZATION USING MULTI-FOCAL SPATIAL
ATTENTION

We propose the method that precisely localizes the un-
masked region of a face. First, we propose the Comple-
mentary Attention Learning (CAL), which prevents spatial
attention from being activated in an undesirable area, such as
the masked region of a face. Second, we propose the Multi-
Focal Spatial Attention (MFSA), which does not only divide
the region into binary (e.g., foreground and background), but
divides into 3-way (e.g., masked region, unmasked region,
and background region). Details of the proposed method are
described in the following sections.

A. Preliminary: CBAM

Before introducing our method, we briefly describe Con-
volutional Block Attention Module (CBAM) [25]. CBAM
is a representative attention module that sequentially applies
channel attention and spatial attention modules. It can be
expressed using the following formulas:

Ac = sigmoid(Mc(X)), Xc =Ac ⊗X , (1)
As = sigmoid(Ms(Xc)), Y =As ⊗Xc, (2)

where X ,Y ∈ RC×H×W are the input and output features
of the CBAM, respectively. ⊗ denotes element-wise mul-
tiplication, and Mc(·) and Ms(·) are the channel and spatial
attention modules, respectively. Xc ∈ RC×H×W is an inter-
mediate feature refined with channel attention. The chan-
nel attention module Mc(·) is composed of max-pooling,
average-pooling along spatial dimensions, and multi-layer
perceptrons (MLPs). The spatial attention module Ms(·) is
composed of max-pooling, average-pooling along a chan-
nel dimension, and convolution layers. Mc(X) ∈ RC×1×1,
Ms(Xc) ∈ R1×H×W are normalized by sigmoid function to
compute the channel and spatial attention, respectively.
Channel attention Ac ∈ RC×1×1 and spatial attention As ∈
R1×H×W represent the importance of channel and spatial
locations, respectively. Empirically, the CBAM demonstrates
the localization capability, and As focuses on the foreground
objects. In this work, we enhance the localization capability
to make the network precisely focus on the unmasked region
of a face.

B. Complementary Attention Learning

To extract mask-invariant features while minimizing the
loss of the FR performance, we propose the method that
precisely separates a masked region by employing and en-
hancing the localization capability of the CBAM. First, we
generate two attention maps, Aum,Am and two features,
Xum,Xm, using the following equations:

Zs = Ms(Xc), Aum = sigmoid(Zs), Am = 1−Aum, (3)
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Fig. 3: Overview of proposed localization method. Spatial attention module generates attention maps from input images
to separate masked and unmasked regions. Am,Aum are masked attention and unmasked attention, respectively. To localize
masked and unmasked regions without annotation, Am is used to learn face recognition with arcface loss and, Aum is used
to learn mask-usage classification with cross-entropy loss. We empirically verify that masked and unmasked regions are
successfully localized, and the performances on both MFR and FR are improved with CAL

Xum =Aum ⊗Xc, Xm =Am ⊗Xc, (4)

where, Xc is the intermediate feature computed using eq 1,
and Ms is the spatial attention module of the CBAM. We
illustrate the procedure in the Fig 2a. Am ∈ R1×H×W is
the complementary attention of Aum ∈ R1×H×W ; hence,
they activate mutually exclusively. Then, two distinct fea-
tures Xum,Xm are generated by mutually exclusive attention
Aum,Am, respectively. We use Xum for training face recog-
nition, and it makes Aum to localize the face region in an
image. To prevent Aum focus on the masked region of a face,
we use Xm to train mask-usage classification. Xm is optimized
to get information related to mask-usage. This makes Am
focus on masked region, and prevents Aum from being
activated in the masked region owing to their complementary
property. This method is named “Complementary Attention
Learning” (CAL), and compare the performance of baseline
with an auxiliary adversarial learning branch. We visualize
the overall procedure of CAL and adversarial branch in the
Fig 3. Adversarial branch is the same structure with the
mask-usage branch, excepts there is the gradient reversal
layer [7] at the beginning of the branch. For comparison,
we use Xum for training the adversarial branch, and it makes
Xum invariant to mask-usage.

We train FR with arcface loss [6], and train the mask-usage
classification branch and adversarial branch with the cross-
entropy loss [8], as expressed by the following equations:

Larc =− 1
Nb

Nb

∑
i=1

log(
es(cos(θyi+m))

es(cos(θyi+m))+∑
Nc
j=1, j ̸=yi

es(cos(θ j))
),

(5)

θ j = cos−1(
Wj

⊤ · zi

∥W j∥∥zi∥
) (6)

LCE =− 1
Nb

Nb

∑
i=1

log(
ezyi

∑
Nc
j=1 ezy j

), (7)

where Nb and Nc are mini-batch size and the number of the
classes, respectively. yi,zi is the target label index and logit
of xi, respectively. W ∈ RC×Nc is the weight of last linear
classifier, where C is the dimension size of the z. s and m
are the scale and margin of arcface loss, and θ j is the angle
between features zi and weight Wj.

C. Multi-Focal Spatial Attention

In the CBAM, the spatial attention module divides the
region into binary regions, such the foreground and back-
ground. Then, with CAL, we train complementary attention
Am to localize a masked region and standard attention Aum
to localize a unmasked region. In this case, it is ambiguous
to classify a background region that does not belong to
the masked and unmasked regions. Therefore, we propose



Train Datasets Models Test Datasets

MFR MR-ALL IJB-C Age-DB CALFW CPLFW

CASIA

Baseline 18.49 23.65 69.63 94.07 94.07 88.97

Baseline + MA=0.1 31.23 26.35 58.54 93.96 93.27 88.7
Baseline + Adv + MA=0.1 33.36 26.64 31.63 93.95 93.15 88.7
CBAM + CAL + MA=0.1 35.35 28.58 50.36 93.92 93.35 89.2
MFSA + CAL + MA=0.1 35.76 27.61 48.21 94.03 93.22 88.73

Baseline + MA=0.3 40.37 26.55 47.82 93.87 93.32 88.82
Baseline + Adv + MA=0.3 41.73 24.31 30.62 93.33 93 88.37
CBAM + CAL + MA=0.3 42.1 26.14 35.13 93.8 92.8 88.53
MFSA + CAL + MA=0.3 43.44 28.94 35.99 93.95 93.07 88.92

Baseline + MA=0.5 42.83 21.80 18.34 93.07 92.7 87.68
Baseline + Adv + MA=0.5 43.15 22.36 8.92 92.95 92.6 87.98
CBAM + CAL + MA=0.5 44.4 20.74 11.45 92.68 92.52 87.9
MFSA + CAL + MA=0.5 45.2 21.87 11.86 92.9 92.83 87.97

MS1MV3

Baseline 65.86 80.53 94.80 98.30 96.17 92.90

Baseline + MA=0.5 78.25 69.41 93.68 97.90 96.03 92.50
Baseline + Adv + MA=0.5 78.48 68.71 93.54 97.03 95.13 92.30
CBAM + CAL + MA=0.5 78.45 69.30 93.57 98.03 96.13 92.72
MFSA + CAL + MA=0.5 78.70 69.64 93.62 97.90 96.08 92.70

TABLE I: Open-sourced face recognition datasets verification performances. We report 1:1 verification TAR (@FAR=1e-
5) on the IJB-C dataset, and verification performance (%) of Age-DB, CALFW and CPLFW. “MFR” and “MR-ALL”
denote TAR (@FAR=1e-4) on the masked test set and TAR (@FAR=1e-6) on the multi-racial test set of the ICCV2021-
MFR/Insightface track, respectively. “MA” means the masked face augmentation probability. Best in bold, second-best
underlined.

the Multi-Focal Spatial Attention (MFSA) to apply N-way
classification to a region. There are three classes for MFR
(unmasked, masked, and background regions); hence, we
use MFSA with 3-way classification. Then, MFSA can be
expressed by the following formulas:

Zs = f (X), [Aum,Am,Abg] = so f tmax(Zs) (8)

Xum =Aum ⊗X , Xm =Am ⊗X , Xbg =Abg ⊗X , (9)

where f (·) is a network composed of pointwise convolution
layers, batch normalization layers, and ReLU [15], [18].
To enhance the discriminative capability of f (·), we adopt
Orthogonalization by Newton’s Iteration (ONI) [12]. It or-
thogonalizes the weight of the pointwise convolution layers,
and disentangle the attention representations. Orthogonaliza-
tion is a popular technique, which is well-conditioning the
network training behavior [2], [13]. Also, weight orthogonal-
ization enforces each channel of Zs to depend on a different
input channel, so it reduces causality and correlation between
attentions. To compute attention, Zs ∈R3×H×W is normalized
by so f tmax function along the channel dimension. Finally,
Aum,Am,Abg ∈ R1×H×W are element-wise multiplied to
the input feature X to generate three features Xum,Xm,Xbg,
respectively. We visualize the procedure of MFSA in the
Fig 2b. We utilize the Xum,Xm by following the CAL de-
scribed in Section II-B. Xbg is not explicitly utilized during
training, but it alleviates the ambiguity of the background
region.

III. EXPERIMENTS

A. Training details

We adopt ResNet-50 [10] as the backbone architecture.
We train networks using the standard data augmentation
(i.e., flipping, translation, cropping), and mask augmentation
using the tools introduced in the ICCV2021-MFR/Insightface
track [4]. We train the CASIA-Webface and MS1MV3
datasets [26], [5], [6], [9] by employing SGD with a mini-
batch size of 512. Momentum and weight decay are set to 0.9
and 5e-4, respectively. We set initial learning rate to 0.2, and
employ the polynomial learning rate decay scheduler [20],
[22] with 2 epochs of warm restart. We finish the training at
25 epochs and 34 epochs for MS1MV3 and CASIA-Webface
datasets, respectively. Following the setup of [6], we set the
scale s to 64 and the margin m to 0.5 for arcface loss.

B. Evaluation details

We evaluate the conventional FR performance on the
four benchmark FR datasets: IJB-C, Age-DB, CALFW,
CPLFW [28], [17], [29], [16]. Additionally, we report the
performance on the multi-racial face dataset (MR-ALL) and
masked face dataset (MFR) provided by the ICCV2021-
MFR/Insightface track [4].
Masked Test Set of ICCV2021-MFR/Insightface track
(MFR): It contains 6,964 real-world masked facial images
and 13,928 unmasked facial images. There are 20,892 images
of 6,964 identities. We evaluate the 1:1 face verification TAR
(@FAR=1e-4).
Multi-Racial Test Set of ICCV2021-MFR/Insightface
track (MR-ALL): It consists of four demographic groups
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Fig. 4: Visualization of the attention maps. From input images, spatial attention modules generates attention maps Aum,
Am. We visualize the attention maps as varying the attention modules. “Channel Att + so f tmax” denotes the intermediate
attention module that replace sigmoid function of CBAM with so f tmax function.

(African, Caucasian, South Asia, and East Asia), and con-
tains 1.6M images of 242K identities. We evaluate the 1:1
face verification TAR (@FAR=1e-6).
IJB-C: It is large-scale face recognition dataset that contains
148.8K images of 3,531 identities. We evaluate the 1:1 face
verification TAR (@FAR=1e-5).

To investigate efficacy of proposed method, we evaluate
the performance of FR and MFR as varying the spatial
attention modules (CBAM, MFSA) and training methods
(Adv, CAL). “Baseline” denotes the performance of ResNet-
50 trained with arcface loss. “MA” means the probability of
the masked face augmentation. “Adv” denotes the adversarial
learning with auxiliary adversarial branch to make features
invariant to mask-usage.

From the results shown in Table I, we verify that Multi-
Focal Spatial Attention (MFSA) with Complementary Atten-
tion Learning (CAL) demonstrates the best performance on
MFR regardless of the MA probability and train datasets.
Additionally, CAL shows smaller IJB-C performance drop
than for the Adv. For IJB-C, Baseline+MA obtains the
best performance, but CAL+MA obtains the second best
performance. It indicates CAL successfully enhances the
localization capability of spatial attention modules and more
precisely extracts mask-invariant features. Therefore, the per-
formances of conventional FR datasets are less degenerated.

C. Qualitative Results

We visualize two attention maps Aum and Am as varying
the spatial attention modules in the Fig 4. As we expected,
in the CBAM, background regions are ambiguous to be

classified. Therefore, background regions are not clearly
removed on Aum, and it is not desirable phenomenon.
“Channel Att + so f tmax” denotes the attention module that
replace sigmoid function of CBAM with so f tmax function.
In the “Channel Att + so f tmax”, the background regions
are not ambiguous to classified, but unmasked regions are
not activated at Aum. Also, background regions are activated
at Am. We suspect that the representation capacity should
be increased to alleviate the problem. Therefore, we propose
MFSA that replace channel attention with convolution layers
with ONI, and obtain the desirable results. Aum of MFSA
is relatively invariant to the mask-usage, and unmasked,
masked, and background regions are more clearly divided.

D. Ablations

Models MFR MR-ALL IJB-C

Baseline 18.49 23.65 69.63
Baseline + MA=0.1 31.23 26.35 58.54

Baseline + Adv + MA=0.1 33.36 26.64 31.63
CBAM + MA=0.1 32.71 27.24 37.20
CBAM + Adv + MA=0.1 34.04 27.47 33.66
CBAM + CAL + Adv + MA=0.1 33.89 27.148 40.02
CBAM + CAL + MA=0.1 35.35 28.58 50.36

TABLE II: Comparisons of 1:1 verification performance
(%) on MFR, MR-ALL, and IJB-C. CAL shows the best
performance on all test sets. Best in bold.

To investigate the efficacy of CAL, we conduct ablation
studies as varying the training methods. As shown in Table II.



We verify that MA improves the MFR performance, but
degenerates the MR-ALL and IJB-C performance. With Adv,
the performance of MFR is improved by 2.13%, but the per-
formance of IJB-C is significantly decreased by 16.91%. By
contrast, CBAM with CAL improves the MFR performance
by 3.12%, and decreased the FR performance by 8.18%.
Notably CAL + Adv shows the worse performance than
CAL. It indicates that CAL is more effective training method
to extract mask-invariant features than adversarial learning.

IV. CONCLUSION

In this paper, we propose the method to extract the mask-
invariant features by employing and enhancing the localiza-
tion capability of the CBAM, which is a representative atten-
tion module. First, we propose the Complementary Attention
Learning (CAL) that adversarially utilizes the complemen-
tary attention to prevent the standard attention is being
activated on the undesirable area. From the ablation studies,
we empirically demonstrate that CAL is more efficient to
extract mask-invariant feature than simple adversarial learn-
ing. Second, we propose the Multi-Focal Spatial Attention
(MFSA) that divides a image into N-way. It alleviates the
ambiguity of the background regions classification. From the
visualized attention maps of CBAM and MFSA, we verify
that MFSA successfully neglects the background regions
and extracts mask-invariant features. Additionally, MFSA
with CAL gets the best MFR performance regardless of the
train dataset and MA probability with relatively smaller FR
performance degeneration.

REFERENCES

[1] F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper. Elasticface:
Elastic margin loss for deep face recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1578–1587, 2022.

[2] Y. Cho, H. Cho, Y. Kim, and J. Kim. Improving generalization of
batch whitening by convolutional unit optimization. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
5321–5329, 2021.

[3] Y. Cho, Y. Kim, H. Cho, J. Ahn, H. G. Hong, and J. Kim. Rethinking
efficacy of softmax for lightweight non-local neural networks. In 2022
IEEE International Conference on Image Processing (ICIP), pages
1031–1035. IEEE, 2022.

[4] J. Deng, J. Guo, X. An, Z. Zhu, and S. Zafeiriou. Masked face
recognition challenge: The insightface track report. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages
1437–1444, 2021.

[5] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou. Retinaface:
Single-shot multi-level face localisation in the wild. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pages 5203–5212, 2020.

[6] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 4690–
4699, 2019.

[7] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by
backpropagation. In International conference on machine learning,
pages 1180–1189. PMLR, 2015.

[8] I. J. Good. Rational decisions. In Breakthroughs in statistics, pages
365–377. Springer, 1992.

[9] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A
dataset and benchmark for large-scale face recognition. In European
conference on computer vision, pages 87–102. Springer, 2016.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[11] S. Hemathilaka and A. Aponso. A comprehensive study on occlusion
invariant face recognition under face mask occlusion. arXiv preprint
arXiv:2201.09089, 2022.

[12] L. Huang, L. Liu, F. Zhu, D. Wan, Z. Yuan, B. Li, and L. Shao.
Controllable orthogonalization in training dnns. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6429–6438, 2020.

[13] L. Huang, Y. Zhou, F. Zhu, L. Liu, and L. Shao. Iterative nor-
malization: Beyond standardization towards efficient whitening. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4874–4883, 2019.

[14] M. Huber, F. Boutros, F. Kirchbuchner, and N. Damer. Mask-invariant
face recognition through template-level knowledge distillation. In 2021
16th IEEE International Conference on Automatic Face and Gesture
Recognition (FG 2021), pages 1–8. IEEE, 2021.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. PMLR, 2015.

[16] B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C. Otto,
A. K. Jain, W. T. Niggel, J. Anderson, J. Cheney, et al. Iarpa
janus benchmark-c: Face dataset and protocol. In 2018 international
conference on biometrics (ICB), pages 158–165. IEEE, 2018.

[17] S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and
S. Zafeiriou. Agedb: the first manually collected, in-the-wild age
database. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshop, volume 2, page 5, 2017.

[18] V. Nair and G. E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Icml, 2010.

[19] P. C. Neto, F. Boutros, J. R. Pinto, N. Darner, A. F. Sequeira, and J. S.
Cardoso. Focusface: Multi-task contrastive learning for masked face
recognition. In 2021 16th IEEE International Conference on Automatic
Face and Gesture Recognition (FG 2021), pages 01–08. IEEE, 2021.

[20] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approx-
imation by averaging. SIAM journal on control and optimization,
30(4):838–855, 1992.

[21] D. Qi, K. Hu, W. Tan, Q. Yao, and J. Liu. Balanced masked and stan-
dard face recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1497–1502, 2021.

[22] H. Robbins and S. Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[23] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu. Cosface: Large margin cosine loss for deep face recognition.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5265–5274, 2018.

[24] T. Wang, C. Zhou, Q. Sun, and H. Zhang. Causal attention for unbiased
visual recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3091–3100, 2021.

[25] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon. Cbam: Convolutional
block attention module. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[26] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from
scratch. arXiv preprint arXiv:1411.7923, 2014.

[27] Y. Zhang, X. Wang, M. S. Shakeel, H. Wan, and W. Kang. Learning
upper patch attention using dual-branch training strategy for masked
face recognition. Pattern Recognition, 126:108522, 2022.

[28] T. Zheng and W. Deng. Cross-pose lfw: A database for studying
cross-pose face recognition in unconstrained environments. Technical
Report 18-01, Beijing University of Posts and Telecommunications,
February 2018.

[29] T. Zheng, W. Deng, and J. Hu. Cross-age LFW: A database for
studying cross-age face recognition in unconstrained environments.
CoRR, abs/1708.08197, 2017.


	INTRODUCTION
	Localization using Multi-Focal Spatial Attention
	Preliminary: CBAM
	Complementary Attention Learning
	Multi-Focal Spatial Attention

	Experiments
	Training details
	Evaluation details
	Qualitative Results
	Ablations

	Conclusion
	References

