

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-26T17:59:49Z

Some rights reserved. For more information, please see the item record link above.

Title NetTopo: Beyond Simulator and Visualizer for Wireless
Sensor Networks

Author(s) Shu, Lei; Wu, Chun; Hauswirth, Manfred

Publication
Date 2008

Publication
Information

Lei Shu, Chun Wu, Yan Zhang, Jiming Chen, Lei Wang,
Manfred Hauswirth "NetTopo: Beyond Simulator and
Visualizer for Wireless Sensor Networks", in The Second
International Conference on Future Generation Communication
and Networking (FGCN 2008), IEEE and LNCS, 2008.

Publisher IEEE and LNCS

Item record http://hdl.handle.net/10379/442

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

NetTopo: Beyond Simulator and Visualizer for Wireless Sensor Networks

Lei Shu1, Chun Wu1, Yan Zhang2, Jiming Chen3, Lei Wang4, Manfred Hauswirth1
1Digital Enterprise Research Institute, National University of Ireland, Galway

1{lei.shu, chun.wu, manfred.hauswirth}@deri.org
2 Simula Research Laboratory, Norway email: yanzhang@ieee.org

3 Zhejiang University, China email: jmchen@ieee.org
4 Dalian University of Technology, China email: lei.wang@dlut.edu.cn

Abstract

Deploying real WSN testbed provides a realistic
testing environment, and allows users to get more
accurate test results. However, deploying real testbed
is highly constrained by the available budget when the
test needs a large scale WSN environment. By
leveraging the advantages of both simulators and real
testbed, an approach that integrates simulation
environment and testbed can effectively solve both
scalability and accuracy issues. In this paper, we
present NetTopo for providing both simulation and
visualization functions to assist the investigation of
algorithms in WSNs. One case study is described to
prove the effectiveness of NetTopo.

1. Introduction

Using testbeds allows rigorous and replicable
testing. However, there are two serious limitations on
this approach in the following two conditions: 1) Large
scale. Until today, it is still very expensive to buy a
large number of sensor nodes for a large scale testbed.
Especially, for most academic researches the cost for
building a large scale testbed is not acceptable. 2) Not
replicable environment. For some specific applications,
e.g., monitoring an erupting volcano, deploying a
testbed is unwanted since the devices are exposed to
dangerous conditions which can cause serious damage.

Due to the complementary properties of simulators
and testbeds, a better solution can be the integration of
simulation environment and physical testbed. Having
this integrated framework, applications can run
partially in a simulation environment and partially in a
physical WSN testbed which can solve both scalability
and accuracy issues for the evaluation of algorithms in
WSNs. This integration is specially motivated by the
following two concrete scenarios: 1) Researchers want
to compare the performance of running a same
algorithm in both simulator and real testbed. The

comparison can guide researchers to improve the
algorithm design and incorporate more realistic
conditions. A good example is the applying of face
routing algorithm in GPSR [1], which is proved to be
loop free in theory but actually is not loop free in
realist situations, due to the irregular radio coverage [2].
2) A budget limitation prevents researchers from
buying enough real sensor nodes but the research work
has to base on a large scale WSN. For example, to
evaluate the performance of sensor middleware [3], a
large scale sensor network is needed. Researchers can
actually do the research work by integrating a small
number of real sensor nodes and a large number of
virtual sensor nodes generated from the simulator.

The integration of simulation environment and
physical testbed brings three major challenges: 1)
Sensor node simulation. Normally, a number of
heterogeneous sensor devices can be used for building
a WSN testbed. The integrated platform should not
simulate only a specific sensor device, which means
that the heterogeneous problem requires the integrated
platform to be flexible enough to simulate any new
sensor device. 2) Testbed visualization. Sensor nodes
are small in size and do not have user interfaces as
displays or keyboards, which is difficult to track the
testbed communication status. On the other hand, the
communication topology in testbed is invisible, but
researchers usually need to see the topology to analyze
their algorithms. For example, when implementing a
routing algorithm in the testbed, the actual routing path
is expected to be visible. 3) Interaction between the
simulated WSN and testbed. The simulated WSN and
the real testbed need to exchange information, e.g.,
routing packet. Their horizontal interconnection,
communication, interaction, and collaboration are all
emerging difficult problems that need to be addressed.

In this paper, we present an extensible integrated
framework of simulation and visualization called
NetTopo to assist investigation of algorithms in WSNs.
With respect to the simulation module, users can easily

2008 Second International Conference on Future Generation Communication and Networking

978-0-7695-3431-2/08 $25.00 © 2008 IEEE

DOI 10.1109/FGCN.2008.18

17

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on March 17, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

define a large number of on-demand initial parameters
for sensor nodes, e.g., residential energy, transmission
bandwidth, radio radius. Users also can define and
extend the internal processing behavior of sensor nodes,
such as energy consumption, bandwidth management.
It allows users to simulate an extremely large scale
heterogeneous WSN. For the visualization module, it
works as a plug-in component to visualize testbed’s
connection status, topology, sensed data, etc. These
two modules paint the virtual sensor nodes and links
on the same canvas which is an integration point for
centralized visualization. Since the node attributes and
internal operations are user definable, it guarantees the
simulated virtual nodes to have the same properties
with those of real nodes. The sensed data captured
from the real sensor nodes can drive the simulation in a
pre-deployed virtual WSN. Topology layouts and
algorithms of virtual WSN are customizable and work
as user defined plug-ins, both of which can easily
match the corresponding topology and algorithms of
real WSN testbed. As a major contribution of this
research work, NetTopo is released as open source
software on the SourceForge. Currently, it has more
than eighty java classes and 11,000 Java lines source
codes. Users can freely download the latest version of
NetTopo by accessing the NetTopo website [4].

The rest of the paper is: Section 2 illustrates
NetTopo architecture and Section 3 describes features
of NetTopo. Section 4 presents one case study
provided in NetTopo as examples. Section 5 concludes
this paper and describes the future work.

2. NetTopo architecture

From the high-level point of view, NetTopo consists

of both simulation and visualization functions. These
two functions need to interact with each other and
access/manipulate some common resources. For
focusing on the integration issues of them, we use
component based NetTopo architecture, which is
flexible enough for adding new components in the
future. The basic architecture is illustrated in Figure 1.

Main Control and Utility are two components
involved in all layers. Main Control is the core
component working as a coordinator in charge of the
interactions of other components. It can be regarded as
an adaptor between input and output interfaces of other
components and enables them to work smoothly.
Utility provides some basic services, e.g., defined
application exceptions, format verification, number
transforms, and dialogue wrappers.

File Manager is for the purpose of data persistence,
e.g., logging runtime information, recording statistical
results, keeping references of virtual sensor nodes.

Figure 1. NetTopo Architecture

Log information and statistical results are recorded as
character streams into human readable format.
References of virtual sensor nodes are stored as
serialized format for easy recovery and reuse. All these
references are encapsulated in Virtual WSN, which
works like a runtime sensor nodes repository and also
declares interface to allow other components to add
new virtual nodes, delete particular nodes, retrieve the
same type of nodes and their derived children, etc.

Node, Topology and Algorithm components are
designed as highly extensible modules that can be
regarded as plug-ins. Node represents a virtual sensor
node. Virtual sensor nodes do not have fixed properties
or structures. For example, sensor nodes can have very
different sensing attributes: temperature, humidity,
vibration, pressure, etc. To allow users to create their
own virtual sensor nodes, an abstract interface named
VNode is declared to define several basic methods
representing actions of a real sensor node. Any user
desired node that wishes to run on the simulator must
implement the VNode interface. Topology stands for
the topology to be deployed in Virtual WSN. Network
topology can be various shapes, e.g., line, circle,
triangle, tree. Users can flexibly implement any needed
network topology. Algorithm represents an algorithm
to be applied in the Virtual WSN. The algorithm can be
any routing, clustering, scheduling, controlling
algorithm, etc. Users can freely implement their needed
algorithms for their specific studies.

The graphical user interface (GUI) in Figure 2
consists of three major components: a display canvas
(on the upper left), which can be dragged in case of
viewing a large scale WSN, a property tab for
displaying node properties (on the upper right), and a
display console for logging and debugging information.
Painter is separated from the main GUI due to the
frequent paining tasks. The painter is also designed as
an abstract interface for various painting requirements,
e.g., 2D or 3D. The specific painter used in Figure 2 is
Painter_2D. Additionally, the painter encapsulates the
lower painting API, interacts with the Virtual WSN and
main GUI and provides advanced painting methods,
e.g., it can paint a link between any two nodes by just
using their ID information.

Simulator and Visualizer represent the high level
functions in NetTopo. The structure difference between

18

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on March 17, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

Figure 2. NetTopo main GUI (the TPGF [20] multipath

routing algorithm is executed in the WSN)

these two components is that simulator is a built-in of
NetTopo but visualizer is loaded as a plug-in. This is
because different accessing interfaces (wrappers) are
needed for different devices, e.g., the HTTP based
connection is used for getting image streams from
wireless camera and the socket connection is used for
getting Crossbow sensor data. The common
components they all utilize include Virtual WSN,
Painter, Node, Configuration and GUI. Using these
shared resources sometimes can cause synchronization
problem, e.g., when both Simulator and Visualizer
components need to add new sensor nodes in the
graphical display canvas.

3. Features of NetTopo

Features of NetTopo in current version can be
classified in the following four categories: 1)
Extensibility. Configurable sensor nodes with defined
attributes. Users can define their own virtual sensor
nodes with expected attributes. New type of nodes will
be loaded as a plug-in, which provides an extra choice
when users plan to deploy a WSN. Customizable
sensor network topology layout. Users can define their
own topology based on the API described in the
Topology component. This is helpful when users focus
on studying a particular topology of the network. User-
defined algorithms and functions. An algorithm can be
composed of several functions, each of which acts for a
particular purpose. User can debug a single function or
add a new function without influencing others in the
same algorithm. Device based wrappers for
visualization. A wrapper is used to get information
from sensor device. To visualize different hardware
devices, users can create different wrappers to set up

the connection for extracting information. 2) Flexibility.
Single node deployment. Users can deploy a single
node in a given location. This is useful for a slight
modification to the virtual WSN or placement for a sink
node or source node. Random multi-node deployment.
Users can randomly deploy a specified number of
sensor nodes. The random seed can be the
irreproducible current time point of the running
computer or any specified reproducible integer.
Specific multi-node deployment. Users can deploy a
specified number of sensor nodes based on pre-defined
topologies to form some special shapes, e.g., users can
deploy a circle by specifying the location of circle
center, radius, and node number. Repeated node
deployment. Users can repeatedly deploy different kind
of sensor nodes in the Virtual WSN. This allows the
deployment of heterogeneous sensor networks. 3)
Practicability. Data persistence for virtual WSN. The
network deployment state can be saved in a specific
type of file using “.wsn” as the postfix. Users can base
on these files to reuse the deployed virtual WSN or
share these files with friends to discuss a common
problem. Snapshot for virtual WSN. Users can capture
a snapshot for a virtual WSN and save it as “.bmp”
picture. This feature allows users to further analyze the
simulation results and use the saved picture for sharing
or writing papers. Node manipulation. Users can delete
specified nodes, view the current properties of the
nodes, modify the property values of a node before
starting a simulation, search a node by its ID and
disable nodes or kill nodes in a specified region to
make a hole in the WSN or make an irregular WSN
field. Recording of simulation results. NetTopo can
save the simulation results in a specific type of file
using “.report” as the postfix. Users can use normal
text editor software to open it and read the simulation
result. The simulation results are formulated into a
unified format that allows users to further import them
into Microsoft Office Excel to get the graphical results,
e.g., curves and charts.

4. Case studies

To demonstrate the usability of NetTopo we present
one case study on simulation and visualization as user
example. In this case study, a testbed composed of
Crossbow Mica2 sensor nodes is visualized.
Additionally, these real sensor nodes are considered as
source nodes in a pre-deployed virtual WSN: when the
sensed temperature value of any real node exceeds a
threshold, which means an event is detected, it then
automatically starts a simulation for exploring
one/multiple routing paths by using TPGF [5] in the
integrated virtual WSN. Crossbow WSN testbed

19

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on March 17, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

Figure 3. Crossbow WSN testbed visualization flow

consists of six Mica2 nodes. Figure 3 shows the whole
network structure and flow of sensed data. The
Crossbow driver called xServe is installed in gateway
for converting sensed data into XML stream and
providing a TCP/IP service on port 9005. NetTopo can
be located on gateway or another computer that can
communicate with the gateway.

The sink node collects packets sent from sensor
nodes. Each packet of any node includes lots of
properties, e.g., its node ID and its parent node ID. By
using a wrapper to set up a TCP/IP connection on port
9005, NetTopo can read the XML stream from the
gateway, extract the node ID information and draw
some round circles representing virtual sensor nodes on
the canvas. In addition to using Painter to update the
GUI, this particular Visualizer component also creates
virtual sensor nodes in the virtual WSN, which allows
the references of these nodes to be obtained by
Simulator for using in the simulation. Consequently,
by getting the node ID and parent ID mapping
information in the XML packet, NetTopo can easily
draw the topology of the network connection. Nodes’
latest properties and sensed data, e.g., voltage,
temperature, humid, pressure, can also be periodically
captured from the XML stream by setting a specific
sampling rate. The values of all these properties are
presented on the property tab of the main GUI and
refreshed when new data arrive. Furthermore, these six
virtualized Mica2 nodes are considered as source nodes
in the virtual WSN. When the temperature reading of
any Mica2 node exceeds a threshold, the Simulator is
involved to explore multiple routing in a pre-deployed
virtual WSN, which include many other deployed
simulated virtual sensor nodes. Figure 4 (a) shows the
visualization of the six Crossbow nodes in the pre-
deployed virtual WSN. Figure 4 (b) shows that one of
the Crossbow nodes explored four routing paths by
using TPGF.

5. Conclusion

In this paper, we present NetTopo, an integrated
framework of simulation and visualization for WSNs.
The friendly GUI makes it easy to use and the modular

(a) Six Crossbow nodes are virtualized

(b) One Crossbow node explored 4 routing paths

Figure 4. An example of the integration of the testbed
and the simulation environment

components enable it to be flexibly extended. NetTopo
can support an extremely large scale network
simulation by integrating simulated sensor networks
and visualized testbed. It is very useful for a fast rapid
prototyping of an algorithm.

6. Acknowledgement

This paper was supported by: (in part) the Lion project
supported by Science Foundation Ireland under grant
no. SFI/02/CE1/I131, (in part) by the European project
CONET (Cooperating Objects NETwork of
excellence) under grant no. 224053, (in part) by the
Nature Science Foundation of China under Grant
60604029, (in part) by Nature Science Foundation of
Zhejiang Province under Grant Y106384, and (in part)
by Joint Funds of NSFC-Guangdong under Grant
U0735003.

7. Reference

[1] B. Karp, H.T. Kung, “GPSR: greedy perimeter stateless

routing for wireless networks”, in Proceedings of the
Annual International Conference on Mobile Computing
and Networking (MobiCom 2000), Boston, USA, August.

[2] K. Seada, A. Helmy, R. Govindan, “Modeling and
Analyzing the Correctness of Geographic Face Routing
Under Realistic Conditions. Ad Hoc Networks”,
doi:10.1016/j.adhoc.2007.02.008, pp. 855-871, 2007.

[3] K. Aberer, M. Hauswirth, A. Salehi, “Infrastructure for
data processing in large-scale interconnected sensor
network”, in 8th International Conference on Mobile
Data Management Mannheim, Germany, 2007.

[4] http://lei.shu.deri.googlepages.com/nettopo
[5] L. Shu, Z. Zhou, M. Hauswirth, D. Phuoc, P. Yu, L.

Zhang, "Transmitting Streaming Data in Wireless
Multimedia Sensor Networks with Holes", in Proc. of the
Sixth International Conference on Mobile and Ubiquitous
Multimedia, Dec. 12-14, 2007. Finland.

20

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on March 17, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

