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Abstract

Current 2D face recognition systems encounter difficul-
ties in recognizing faces with large pose variations. Uti-
lizing the pose-invariant features of 3D face data has the
potential to handle multiview face matching. A feature ex-
tractor based on the directional maximum is proposed to
estimate the nose tip location and the pose angle simul-
taneously. A nose profile model represented by subspaces
is used to select the best candidates for the nose tip. As-
sisted by a statistical feature location model, a multimodal
scheme is presented to extract eye and mouth corners. Us-
ing the automatic feature extractor, a fully automatic 3D
face recognition system is developed. The system is evalu-
ated on two databases, the MSU database (300 multiview
test scans from 100 subjects) and the UND database (953
near frontal scans from 277 subjects). The automatic sys-
tem provides recognition accuracy that is comparable to the
accuracy of a system with manually labeled feature points.

1. Introduction

Current 2D face recognition systems encounter difficul-
ties in handling facial variations due to head poses and light-
ing condition [1], which introduce large amount of intra-
class variations. Range image based 3D face recognition
has been demonstrated to be effective in enhancing the face
recognition accuracy [5, 17, 2]. Since each range image pro-
vides only a single view point of the face, instead of the full
3D view (see Fig. 1), we use 3D face models to recognize
2.5D face (range) images [12].

In both 2D and 3D face recognition systems, alignment
(registration) between the query and the template is nec-
essary [1]. Registration based on feature point correspon-
dence is one of the most popular methods [10]. To make the
face recognition system fully automatic, robust facial fea-
ture extraction is one of the crucial steps. Facial features
can be of different types: region [15, 8], landmark [19, 16],

and contour [7, 20]. Generally, landmarks provide more
accurate and consistent representation for alignment pur-
poses than region-based features and have lower complexity
and computational burden than contour feature extraction.
We select a subset of the facial landmarks (or the fiducial
points), as defined in anthropometry [9], including nose tip,
inner eye corners, outside eye corners, and mouth corners.
In the presence of large head pose variations, heuristics used
for frontal scans may not hold, e.g., the nose tip is not the
closest point to the sensor as in frontal scans. With the head
pose unknown, the configuration models of the facial fea-
ture points, such as EGM [19] and AAM [7], are difficult to
apply without a good initialization. Therefore, head pose is
also considered as a feature to be extracted.

(a) (b) (c)

Figure 1. 2.5D scans and 3D model. (a) A 2.5D
scan with large pose changes. (Notice the
missing data due to pose change.) (b) A 2.5D
frontal scan. (c) A 3D face model. Each pair
is the same scan/model but displayed from
different viewpoints.

A number of approaches have been proposed for feature
extraction from (near) frontal facial scans [18, 4]. Wang et
al. [18] used the point signature [6] and the stacked Ga-
bor filter responses [19] to identify 3D and 2D features.
Boehnen and Russ [4] explored 2D color information to ex-
tract skin tone regions and identify the eyes and the mouth.
The 3D information contained in the range image was uti-
lized to compute the geometry constraint. However, few of
these studies address feature extraction in the presence of
large pose changes.
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We have focused on automatically extracting feature
points and estimating the head pose in the presence of large
pose variations. The extracted features are used for face
alignment in three-dimensional space. Utilizing the auto-
matic feature extraction module, a fully automatic 3D face
recognition system is developed and evaluated.

2. Feature Extraction

The overall feature extraction process is shown in Fig. 2.
Each 2.5D scan provides 4 matrices, X(r, c), Y (r, c),
Z(r, c), and M(r, c) 1, where X , Y , and Z are the spatial
and depth coordinates in the units of millimeters and M is
the mask, indicating which point is valid; M(r, c) equals 1
if the point p(r, c) is valid and 0 otherwise.
2.1. Face Segmentation

The first step in the face recognition system is to extract
the facial area from the background. Given a facial scan, the
invalid points in X , Y , and Z are filtered out by matrix M .
The facial area is segmented by thresholding the horizontal
and vertical integral projection curves of M . The face seg-
mentation result of the facial scan in Fig. 2 is provided in
Fig. 3.

Figure 3. Segmentation of facial scan. (a)
Mask image; (b) horizontal integral projection
of M ; (c) vertical integral projection of M ; (d)
face segmentation result.

2.2. Nose Tip and Pose Estimation

The nose tip is a distinctive point of the human face, es-
pecially in the range map. It is also insensitive to the facial

1r and c are the row and column indices, respectively.

expression changes. The pose of a face scan is represented
by the angle of rotation w.r.t. the frontal pose (zero degree).
For a frontal facial scan, the nose tip usually has the largest
z value. But, in the presence of large pose changes, e.g.,
rotation along the yaw 2 direction, this heuristic does not
hold. However, if the original coordinate system is rotated
with the same pose change as the non-frontal scan, the nose
tip will have the largest value along the rotated Z-axis. See
Fig. 4. In other words, the nose tip still has the largest depth
value if projected onto the corrected pose direction. We call
it the directional maximum. Since the nose tip and the pose
angle are coupled, we estimate them simultaneously.

Figure 4. Directional maximum of the nose
tip.

We illustrate the proposed algorithm based on an exam-
ple with yaw angle changes. After the raw face scan is cen-
tered at its centroid, the nose tip extraction and pose estima-
tion algorithm follows five steps: pose quantization, direc-
tional maximum, pose correction, nose profile extraction,
and nose profile identification.

1. Pose quantization. The yaw angle change ranges
from −90 degrees (full right profile) to 90 degrees (full left
profile) in the X-Z plane. This 180 degree range (Rpose)
is quantized into Npose angles with equal angular interval
(∆θ). (∆θ and Npose values are 2 degrees and 91, respec-
tively, in our experiments.) See Fig. 5.

Figure 5. Pose angle quantization.

2. Directional maximum. At each pose angle θj (j =
1, . . . , Npose), find the point with the maximum projection
value along the corresponding pose direction as the nose tip
candidate. The (xi, yi, zi) coordinate of each face point pi

2The rotation w.r.t. the Y -axis.



Figure 2. Automatic feature extraction for 3D face matching.

(i = 1, . . . , N , where N is the total number of valid face
points) is rotated to the new position (xθj
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The point pk for which z
θj

k = max(zθj

i , i = 1, . . . , N) is
used as a nose tip candidate with the corresponding pose
angle θj . By repeating this for every θj , M candidate
pairs (nose tip candidate p and associated pose angle θ)
are obtained (see Fig. 6). Since the directional maximum
may happen with the same face point p at multiple θjs,
M 6 Npose. In such case, the angle with the largest pro-
jection value is selected as the pose angle to be associated
with the point p. In the example of Fig. 6, M is 18. To
determine the best candidate from M pairs, the nose profile
will be utilized from the pose-corrected face scan.

3. Pose correction. For each candidate pair (p, θ), the
coordinates (x, y, z) of all the original face points are trans-
formed to (x′, y′, z′) so that point p is at the origin, and
the face points are rotated according to the pose angle θ as
follows:
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The pose-corrected scans based on candidates 1 and 2 in
Fig. 6 are shown in Figs. 7(a) and (b), respectively.

4. Nose profile extraction. From the pose-corrected
scans based on each candidate (p, θ), extract the nose pro-
file at p (the origin of the coordinate system after pose cor-
rection), i.e., the intersection between the facial surface and
the Y -Z plane. Let X ′(r, c), Y ′(r, c), and Z ′(r, c) denote
the point coordinate matrices after pose correction. For
each row ri, find the point closest to the Y -Z plane, i.e.,

(a) (b)

Figure 6. Example of directional maximum.
The markers in (a) are the positions of the di-
rectional maximum with the associated pose
direction plotted in (b). The pose angles of
candidates 1 and 2 are 40 and −16 degrees,
respectively.

(a) (b)

Figure 7. Pose corrected scans based on (a)
candidate 1 and (b) candidate 2 in Fig. 6.

(ri, c
i) = arg minc(|X ′(ri, c)|), resulting in a sequence of

point pairs (Y ′(ri, c
i), Z ′(ri, c

i)). To make all the profiles
comparable, each profile is normalized by centering it at
the nose tip candidate and resampling it with equal inter-
val along Y -axis, resulting in a nose profile vector. Linear



interpolation is applied for resampling.

Figure 8. Top: extracted nose profiles; mid-
dle: normalized and resampled nose profile;
bottom: extracted profiles overlaid on the
original scan. The left (right) column is based
on candidate 1 (2) in Fig. 6.

5. Nose profile identification. To identify the nose tip
from the candidate pairs (p, θ), we apply the subspace anal-
ysis on the nose profile vector space. A number of nose
profiles from an independent group of subjects are extracted
with manually labeled nose tip and pose, aligned at the nose
tip, and resampled in the same way described in Step 4, re-
sulting in a training set {Vi}. These (training) nose pro-
files are used to construct the nose profile subspace based
on PCA. Given a test profile vector V , the distance-from-
feature-space (DFFS) [13] is used as the distance metric.
The nose tip candidates with the smallest DFFS is identi-
fied as the nose tip and the associated pose angle is used as
the pose estimation result. In the example of Fig. 6, candi-
date 1 has the smallest DFFS among all the candidates.

2.3. Extracting Eye and Mouth Corners

A statistical model of the facial feature point locations
is used as a prior constraint to reduce the search area for
the feature points. The model contains constraints (in terms
of interpoint distance and geometric relationship) between
facial feature points. This not only enhances the accuracy
of feature extraction, but also improves the computational
efficiency. In our experiments, 145 frontal facial scans were
used to compute the model.

Given the estimated nose tip and the pose angle, the fea-
ture point location model can be overlaid onto the given
scan, and the search region for each feature point is con-
strained. The eye and mouth corners are then determined
by using shape index from the range image and cornerness
from the intensity image. The final score F (p) for each fea-
ture point is a weighted sum of scores from range and inten-
sity modalities. Figure 9 shows an example of the extracted
corners by fusing range and intensity results. See [11] for
details.

Figure 9. Feature extraction using fusion.

3. Automatic Face Recognition

A fully automatic 3D face recognition system has been
developed, which matches stored 3D face models to 2.5D
face scans in the presence of large pose changes. Using the
nose tip position and the corresponding pose angle, the pose
of the test face scan can be normalized up to a rigid trans-
formation, i.e., translation and rotation. An iterative closest
point (ICP) scheme [3], is applied to further improve the
alignment results. The performance of ICP algorithms de-
pends on the initial alignment. Since the nose profile sub-
space is built on a limited number of training samples, there
is a possibility that the second best nose tip candidate may
provide better matching results. Therefore, we keep the top-
K nose tip candidates. The minimum distance among all
the obtained K matching distances generated by ICP is cho-
sen as the final matching distance.

To account for some errors in nose tip position and pose
angle, we also used the eye and mouth corners to obtain a
better initialization for the ICP algorithm.

4. Experiments and Discussion

Experiments are conducted on two databases. One was
collected at our laboratory with large pose variations, called
the MSU database. The other one is provided by the Uni-
versity of Notre Dame (UND) [5], which is also used in
FRGC [14]. UND database contains (near) frontal facial
scans. Both databases were collected using Minolta VIVID
series scanners.

Experiment on the MSU database



There are 100 subjects in the MSU database with corre-
sponding 100 3D face models stored in the gallery. For each
subject, three 2.5D scans were captured with pose angles of
less than −45, 0 (frontal), and more than 45 degrees along
the yaw direction, respectively. In total, the test database
consists of 300 multiview scans of the same 100 subjects.
Representative test scans are shown in Fig. 10.

Figure 10. Multiview 2.5D test scan examples.

Our feature extractor correctly located the nose tip re-
gion in 98% of the test scans. Using the manually labeled
position as the ground truth, the localization displacement
is computed as the Euclidean distance between the position
of the automatically extracted feature point and the ground
truth position, see Table 1. Figure 11 provides examples
of the feature extraction results. The large displacement of

(a) (b) (c) (d)

Figure 11. Feature extraction results which
lead to correct 3D face matches on the MSU
database. The number in the top-left corner
is the estimated pose angle. The inner eye
corner of (c) and the outside eye corner of (d)
are not considered as valid feature points for
matching due to low feature score F .

nose tip localization is often due to facial hair.
Fig. 12 shows the identification results for matching 300

multiview test scans to the 100 3D face models. The iden-
tification results using manually labeled feature points are
also plotted for comparison. The fully automatic system
provides an identification accuracy close to the system us-
ing manually labeled feature points by taking two (or more)
feature candidate sets into consideration.

Experiment on the UND database

The UND database contains 953 facial scans from 277
subjects. Representative facial scans along with automati-
cally extracted feature points are given in Fig.13. Table 1
provides the statistics of the localization displacement on

the UND database compared with the ground truth posi-
tions. If the head pose (near frontal) is provided, a more
accurate algorithm can be designed [11]. For each sub-
ject, the scan with the earliest time stamp is used as the
template and the remaining scans are used for queries. In
total, there are 676 query scans and 277 templates. Un-
like the MSU database, there is no 3D face model stored
in the gallery for each subject. Both templates and queries
are 2.5D scans. The identification results are provided in
Fig. 14, compared with those obtained by using manually
labeled feature points.

Figure 12. CMC curves of experiments on the
MSU database. ‘Top-K’ indicates the number
of feature candidate sets used for matching.

Figure 13. Examples of feature extraction re-
sults on the UND database.

5. Conclusions and Future Work

We have proposed an automatic feature extraction
scheme to locate the nose tip and estimate the head pose,
along with other facial feature points in multiview 2.5D fa-
cial scans. With the estimated pose, the system rejects the
feature points that are not valid due to self-occlusion. The
extracted features are used to align the multiview face scans
with stored 3D face models to conduct surface matching.
As a result, a fully automatic 3D face recognition system
has been developed, which can recognize 2.5D facial scans
in the presence of large pose changes. Our automatic face
recognition system achieves an identification accuracy close
to the system with manually labeled feature points.



Table 1. Statistics of the distance (in 3D) between the automatically extracted and manually labeled
feature points. (distance between two pixels in x and y directions is ∼1mm.) NT: nose tip; LE: inner
left eye corner; RE: inner right eye corner; ORE: outside right eye corner; OLE: outside left eye
corner; RM: right mouth corner; LM: left mouth corner.

Experiment MSU database UND database
Features NT LE RE ORE OLE RM LM NT LE RE ORE OLE RM LM
Mean (mm) 6.4 7.1 9.0 13.6 13.3 6.7 5.2 8.3 8.2 8.3 9.5 10.3 6.0 6.2
Std (mm) 13.4 9.2 13.1 11.9 10.1 12.9 9.0 19.4 17.2 17.2 17.1 18.1 16.9 17.9
Median (mm) 4.3 5.3 6.0 12.7 11.7 3.8 3.2 5.3 5.8 5.4 5.5 7.4 2.9 3.3

Figure 14. CMC curves of experiments on the
UND database.

The proposed algorithm is designed to estimate the nose
tip and head pose change by angle space quantization. The
computational cost to handle the entire 3D space including
three directions (i.e., yaw, pitch, and roll) would be expen-
sive using brute force search. Therefore, a more efficient
search scheme is being pursued. We are also exploring to
utilize the matching score as a confidence measure to ro-
bustly select the most reliable points for registration or de-
sign a reject option to make the system generate fewer in-
correct decisions.
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