
Comparison of Silhouette Shape Descriptors for
Example-based Human Pose Recovery

Ronald Poppe and Mannes Poel∗

University of Twente, Dept. of Computer Science, Human Media Interaction Group
P.O. Box 217, 7500 AE Enschede, the Netherlands

E-mail:{poppe,mpoel }@ewi.utwente.nl

Abstract

Automatically recovering human poses from visual input
is useful but challenging due to variations in image space
and the high dimensionality of the pose space. In this paper,
we assume that a human silhouette can be extracted from
monocular visual input. We compare three shape descrip-
tors that are used in the encoding of silhouettes: Fourier
descriptors, shape contexts and Hu moments. An example-
based approach is taken to recover upper body poses from
these descriptors. We perform experiments with deformed
silhouettes to test each descriptor’s robustness against vari-
ations in body dimensions, viewpoint and noise. It is shown
that Fourier descriptors and shape context histograms out-
perform Hu moments for all deformations.

1 Introduction

Being able to estimate human poses from visual input
automatically is useful in many application domains, in-
cluding surveillance, animation and human-computer inter-
action (HCI). However, the problem is difficult since the
relation between image observations and poses is multi-
valued in both directions. Variations in human body di-
mensions, appearance, and environmental settings such as
lighting conditions and camera viewpoint possibly result in
many observations for the same pose. On the other hand,
similar observations can correspond to a range of poses, due
to projection, (self)occlusions and limited visual accuracy.
All these parameters, and the large number of degrees of
freedom (DOF) in the human body, inhibit an exhaustive
search. Therefore, many pose recovery approaches adopt a
(detailed) human body model that describes how the human
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body appears in the image space. Poses are estimated by
optimizing the error between visual input and the projec-
tion of the pose to image space. One problem with these
model-basedapproaches is that initialization is often dif-
ficult. Learning-basedapproaches do not use an explicit
human body model but instead learn a mapping from image
space to pose space.

Usually, image features are extracted from the visual in-
put to allow more efficient matching. Features that are often
used are edges, silhouettes, color or motion. Here we focus
on silhouettes because they can be extracted relatively ro-
bustly from images; they are insensitive to variations in sur-
face such as color and texture; and they encode a great deal
of information to recover 3D poses [1]. However, perfor-
mance is limited due to artifacts such as shadow and noisy
background segmentation, and it is often difficult or impos-
sible to recover certain degrees of freedom due to the lack
of depth information.

In this paper, we assume that a human silhouette can be
extracted from monocular visual input. We compare three
shape descriptors that are used in the encoding of silhou-
ettes: Fourier descriptors, shape contexts and Hu moments.
An example-based approach is taken to recover upper body
poses from each of these three descriptors. In this research
pose estimation reduces to the estimation of joint angles in
the upper body. Our output space is a 9-dimensional vector
corresponding to 9 DOF in the upper body, as summarized
in Table 1. We test the robustness of the three shape de-
scriptors by investigating how shape deformations due to
changes in body dimensions, viewpoint and noise affect the
recovery of the pose. Note that we only investigate the ro-
bustness of the descriptors without modeling temporal de-
pendencies or including statistical information about pose
frequency. Therefore, the estimation errors that are reported
in this paper are higher than if we used this additional infor-
mation.

The paper is organized as follows. Section 2 summarizes
related work. In Section 3 the three shape descriptors that
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are compared in this paper are discussed in more detail, fol-
lowed by the description of our pose recovery approach in
Section 4. Experiment setup, results and analysis are dis-
cussed in Section 5 and we conclude in Section 6.

2 Related work

Vision-based human pose recovery techniques enable es-
timation of human poses and movement without obtrusive
or expensive equipment. An extensive overview of the
topic can be found in [5]. Current research can roughly be
divided intomodel-basedand learning-basedapproaches.
Model-based approaches [3, 12] presuppose an explicitly
known parametric body model. The pose recovery prob-
lem is typically solved by matching the pose variables to a
forward rendered human model based on labelled extracted
features. Drawbacks of these approaches are the often dif-
ficult labelling and initialization. Estimating the pose has
many local minima which can lead to low performance [13].
Learning-based approaches [1, 11] do not assume an ex-
plicit human body model. Instead, a relation from extracted
features to pose variables is learned from training data. In
example-basedapproaches, a subcase of learning-based ap-
proaches, a collection of images or image features is stored
together with their corresponding pose description. For a
given input image, a similarity search is performed and
the poses are interpolated. Learning-based approaches are
viewpoint dependent and require a large amount of train-
ing data, especially when many DOF are modeled or the
allowed motion is unconstrained.

We focus on learning-based pose recovery. The key point
of these approaches is to have a robust image descriptor.
This descriptor should be able to generalize over variations
in pose observation but distinguish between different poses.
This is a difficult requirement, and many different image de-
scriptors have been used throughout literature. Silhouettes
and edges are used the most, because they can be easily ex-
tracted and are, to some extent, lighting invariant.

Howe [6] uses silhouettes which are matched to a collec-
tion of known poses using turning angle and Chamfer dis-
tance. Agarwal and Triggs [1] encode the silhouette bound-
ary using shape contexts and use Bayesian non-linear re-
gression to recover a 54 DOF body pose with high accuracy.
Elgammal and Lee [4] learn view-based activity manifolds
from silhouettes. Mappings from silhouette to activity man-
ifold and from activity manifold to pose are learned from
training data.

Edges contain more information but are also more sensi-
tive to texture. Mori and Malik [9] extract shape contexts of
edge points from an image. They store an example collec-
tion to recover the 2D joint positions, that are transformed to
a 3D pose estimation in a subsequent step. Shakhnarovich
et al. [11] use edge direction histograms within a contour

and apply an efficient search mechanism to find correspond-
ing upper body poses from an example set.

Dynamics are often used to improve pose recovery.
Deutscheret al. [3] use a particle filter to propagate move-
ments in time. Another approach is to learn the dynamics
of human movement from training samples [1, 4, 12]. Al-
though this often leads to more stable and accurate estima-
tion results, it also puts a strong prior on the movements that
can be recovered.

Our work is related to these approaches in that we re-
cover poses from visual input. However, we only compare
shape descriptors, thus ignoring the dynamics. Therefore,
our work is also closely related to content based image re-
trieval. There exist a large number of descriptors, see [14].
We selected Fourier descriptors, shape contexts and Hu mo-
ments because of their different characteristics and their use
in previous work.

3 Silhouette shape descriptors

An ideal descriptor for our pose recovery problem would
be able to distinguish between different body poses while
being able to generalize over body dimensions, variations
in viewpoint and local boundary noise. Here we focus on
three descriptors: Fourier descriptors, shape contexts and
Hu moments. Each of the descriptors has distinct character-
istics, which are described in the next sections.

3.1 Fourier descriptors

The idea behind Fourier descriptors [15] is to de-
scribe a silhouette by a fixed numbern of sample points
{(x0, y0), . . . , (xn−1, yn−1)} on the boundary. Since
Fourier descriptors can describe only a single closed-curve
shape, we only sample along the external boundary. Sam-
pling can be done randomly but in practice, equidistant sam-
pling is preferred to make sure the sampling is more uni-
form. Poppe and Poel [10] experimented with sampling ex-
treme boundary points but found no significant difference in
performance. The sample points are transformed into com-
plex coordinates{z0, . . . , zn−1} with zi = xi + yi

√
−1

and are further transformed to the frequency domain us-
ing a Discrete Fourier Transform (DFT). The results of this
transformation are called the Fourier coefficients, denoted
by {f0, . . . , fn−1}.

The coefficients with low index contain information on
the general form of the shape and the ones with high in-
dex contain information on the finer details of the shape.
The first coefficient depends only on the position of the
shape and setting it to zero makes the representation po-
sition invariant. Rotation invariance is obtained by ignor-
ing the phase information and scale invariance is obtained
by dividing the magnitude values of all coefficients by the
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magnitude of the second coefficientf1. Since after normal-
izationf0 is always zero andf1 is always one, we haven−2
unique coefficients given by:

FD = (
|f2|
|f1|

, . . . ,
|fn−1|
|f1|

)

This descriptor is a shape signature and can be used as
a basis for similarity and for retrieval. When we deal with
Fourier descriptors of lengthn, we actually use onlyn − 2
coefficients. It is clear that Fourier descriptors describe a
shape globally. The finer details are filtered out.

Now consider two shapes indexed by Fourier descriptors
FD1 andFD2. Since both Fourier descriptors are (n − 2)-
dimensional vectors, we can use the Euclidian distanced as
a similarity measure between the two shapes:

d =

√√√√(
n−3∑
j=0

|FD1j − FD2j |2)

3.2 Shape contexts

Shape contexts [2] are rich local descriptors of sampled
internal or external boundary points. A shape context de-
scribes the spatial locations of the othern−1 sampled points
in a histogram. Each histogram bin is uniform in log-polar
space. The shape context is parameterized by the number of
radial binsφ, number of log-distance binsr, and inner and
outer distance boundaryrinner androuter. A single shape
is described by the shape contexts of alln sampled points.

Shape contexts are translation invariant by definition
since the distances are measured with respect to the sam-
pled point. Scale invariance is obtained by normalizing the
distances between points with the mean distances between
all n2 point pairs. Rotation invariance for each point can be
achieved by taking as a reference frame the tangent vector
of the point, instead of the positivex-axis.

We use the default valuesφ = 12 and r = 5 for the
number of bins. Agarwal and Triggs [1] lowerrouter and
suggest that by normalizing the shape context, robustness
against shape deformations is increased. Indeed, in infor-
mal experiments we notice a small increase in performance
over the defaultrouter and without normalization. In our
experiments, we setrouter to the mean distance between all
points. The number of shape context bins over an entire im-
age isrφn. This number gets large for a high number of
sampled points, which is inconvenient for storage and com-
parison. Therefore we cluster the shape context space into
m clusters. We will usem = 100 clusters throughout the
paper. The contributionηi of the ith (1 ≤ i ≤ m) cluster
Ci to shape contextSC is calculated using soft voting:

ηi(SC) =
minr=1...m|SC−Cr|2

|SC−Ci|2

The ηi’s are summed over the shape contexts of alln
sampled points of a shape and normalized to unit length.
This allows us to compare two shapes with a different num-
ber of sampled points with the Euclidian distance between
two m-dimensional vectors, but we lose all spatial informa-
tion [8]. This histogram of shape context center contribu-
tions forms a descriptor that captures both the global and
local characteristics of the shape. Agarwal and Triggs [1]
also use vector quantization to vote softly into the centers
but instead use Gaussian weights. Since we have normal-
ized our shape contexts, all points lie on a 60D hypersphere,
which makes the covariance matrixC nearly singular. We
could solve this problem by usingC

′
= C + λI instead but

choosing the value ofλ is non-trivial.

3.3 Hu moments

In contrast to Fourier descriptors and shape contexts,
moments are region-based descriptors. Hu [7] derived 7 or-
thogonal invariant moment descriptors of order 2 and 3. The
first 6 descriptors encode a shape with invariance to transla-
tion, scale and rotation. The 7th descriptor ensures skew in-
variance, which enables us to distinguish between mirrored
images. A Hu momentHU is denoted by its descriptors
HUi (1 ≤ i ≤ 7).

The descriptors are of different orders and therefore the
difference between two Hu moments cannot be computed
using Euclidian distance. Instead, we calculate the differ-
enced2 between two Hu momentsHU1 andHU2 as:

d2 = |HU1−HU2|Σ−1|HU1−HU2|T

In this equation,Σ is the covariance matrix that is calcu-
lated over the entire example set.

4 Pose recovery

We want to recover poses from images. We could ap-
proximate the mapping from image space to pose space
functionally (see for example [1]) but estimating function
parameters is difficult given the high non-linearity of the
mapping. Instead, we choose to represent the pose space by
a finite number of exemplars that sparsely cover the pose
domain. For each exemplar, we have a corresponding de-
scription in image space. To recover the pose of a new im-
age, we compare the image description with the descrip-
tions in the database. The estimated pose is the pose that
corresponds to the exemplar with the most similar image
description. Instead of taking the single best match, one
could also take then-best matches and interpolate the poses.
Similar to [10], we use a normalized weightedn-best inter-
polation of the 25 best matches.
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5 Experimental results & discussion

This section describes the setup and results of the exper-
iments. The example database and test sets are described in
Section 5.1 and 5.2 respectively. The experimental results
are presented in Section 5.3 and discussed in Section 5.4.

5.1 Example database

Using Curious Labs’POSERwe constructed a database
with 46,656 silhouette images of thePOSERP5 default man
in various poses and viewed from different angles. The 9
degrees of freedom and their possible values are summa-
rized in Table 1.

Table 1. Degrees of freedom with the angle
values (in °) that are stored in the example
database

Rotation Angle values
Right shoulder twist ( -90, -45, 0 )
Right shoulder bend ( -40, 0, 40, 80 )
Right shoulder front-back ( 0, 45, 90 )
Left shoulder twist ( -90, -45, 0 )
Left shoulder bend ( -80, -40, 0, 40 )
Left shoulder front-back ( -90, -45, 0 )
Right forearm bend ( 0, 40 )
Left forearm bend ( -40, 0 )
Rotation aroundy-axis ( -80, -60, ... 60, 80 )

We only consider joint rotations in the upper body to
limit the number of needed exemplars somewhat, but the
approach could be used for full body poses without loss
of generality. Furthermore, we excluded the head rotations
and assumed a static rotation around thex-axis (elevation)
of 10°. Shoulder twist is the rotation around the upper
arm, the front-back rotation is performed in the hand-elbow-
shoulder plane and the bend rotation is perpendicular to the
other two rotations.

We calculated the image descriptors (Fourier descriptors,
histograms of shape contexts and Hu descriptors) offline.
These descriptors, together with their corresponding pose
descriptions form the example database.

5.2 Test sets

We used four different test sets (T1 . . . T4) to measure
the pose recovery performance for different kinds of shape
deformations. Each test set contains 1,000 poses, and the
jth image each the test setTi,j (1 ≤ i ≤ 4) corresponds to
the same posepj ∈ R9. Each degree of freedom in posepj

is chosen within the ranges given in Table 1. Two example
poses, rendered in each test set, are shown in Figure 1.

(a) (b) (c) (d)

Figure 1. (a-c) Example pose rendered in T1,
T2 and T3 respectively. (d) The filled polygon
of contour points with noise added. Images
of this type are only used in T4 for the ex-
periments with Hu moments. The rows each
represent a randomly chosen sample.

• T1 contains thePOSERP5 default man.

• T2 contains thePOSERP5 default woman, who has
different body dimensions.

• T3 contains thePOSER P5 default man but viewed
from a different angle. The elevation is 20° instead
of 10°. This rotation is not part of the pose descrip-
tion and the test set serves to see if small changes in
viewpoint can be handled correctly.

• T4 contains thePOSERP5 default man but with noise
generated on the boundary. This set allows us to see
how much effect noise has on the recovery perfor-
mance. Noise was added to a sample point by adding a
vector of lengthl in the direction of the contour normal
in the sampled point.l is sampled from a normal dis-
tribution with zero-mean and a variance of 2% of the
silhouette height. For the Hu moment test set, we cre-
ated images where we filled the polygon of all points
with added noise (Figure 1d).
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5.3 Experiment results

We estimated the pose from each of the three shape de-
scriptors individually. The means and standard deviations
of the sum of the 9 joint rotation errors of the experiments
are shown in Table 2, 3 and 4 for Fourier descriptors, shape
context histograms and Hu moments respectively. Note that
we carried out the Fourier descriptor and shape context ex-
periments with three different values for the number of sam-
pled pointsn.

5.4 Discussion

The baseline for the sum of errors of all DOF for a sin-
gle image is 280°. This is the sum over all DOF of expected
values for the distance between two numbers randomly se-
lected from a uniform distribution between the ranges for
a single DOF. It is clear that all summed errors are signifi-
cantly lower than this baseline.

Table 2. Mean and standard deviation (in °) of
the sum of estimation errors for the Fourier
descriptor experiments

Test
FD16 FD64 FD256

Mean (SD) Mean (SD) Mean (SD)
T1 154.59 (46.96) 153.24 (50.41) 153.53 (50.59)
T2 164.29 (49.47) 163.33 (52.83) 163.08 (52.84)
T3 152.68 (43.39) 150.51 (44.21) 150.98 (44.27)
T4 157.47 (46.93) 154.76 (51.44) 153.88 (50.20)

Table 3. Mean and standard deviation (in °)
of the sum of estimation errors for the shape
context histogram experiments

Test
FD16 FD64 FD256

Mean (SD) Mean (SD) Mean (SD)
T1 163.42 (44.27) 147.79 (47.99) 150.45 (52.43)
T2 174.07 (47.42) 163.39 (53.40) 164.56 (55.97)
T3 169.36 (45.62) 152.33 (45.62) 153.92 (46.09)
T4 169.51 (45.69) 150.09 (47.38) 153.12 (52.54)

The first observation is that the differences between
shape descriptors are small. The Hu moments score a lit-
tle lower than the contour-based descriptors. The errors for
the Fourier descriptor experiment are in line with the results
reported in [10]. Two shape contexts are usually matched
using bipartite graph matching, where an additional penalty
term is introduced for alignment error between the two con-
texts. Since we describe a silhouette as a single histogram,

Table 4. Mean and standard deviation (in °) of
the sum of estimation errors for the Hu mo-
ment experiments

Test Mean (SD)
T1 183.24 (55.90)
T2 194.80 (58.95)
T3 199.17 (50.28)
T4 195.40 (58.54)

this spatial arrangement information is lost. This might ex-
plain the fact that the results for the rich shape contexts are
comparable to those of the Fourier descriptors.

We also note small differences between the test sets of
a single descriptor. Compared toT1, both contour-based
descriptors show good results onT3 andT4. We may con-
clude that both descriptors are robust against small varia-
tions in shape due to viewpoint changes and noise. We
report slightly higher error scores in theT2 set for the
contour-based descriptors. Remarkably enough, this effect
is not present in the Hu moment experiments.

The number of sampled pointsn in the experiments with
the contour-based descriptors does not make a big differ-
ence. This was already observed for Fourier descriptors
[10]. For the histograms of shape contexts, this is due to
the fact that we used soft voting. In an additional experi-
ment where we used hard clustering instead, we reported a
sum of errors that was approximately 10° higher forn = 16.
The results forn = 64 andn = 256 are almost similar to
those obtained using soft voting.

Table 5 shows the mean estimation error onT1. For the
contour-based descriptors,n was set to 64. We see relatively
low errors for the forearm bend. This could also be due to
the limited range of only 40°, which would yield a mean
estimation error of 13.3° for a random guess. The error for
the shoulder twist is a little higher than the other shoulder
rotations because it is very difficult to estimate this rotation
when the forearm is completely stretched. This situation
occurs in 50% of all samples. Furthermore, we report a low
error for the rotation around they-axis but also note that we
have example images every 20° for this DOF instead of ev-
ery 40 or 45°. The results of three additional experiments
are summarized at the bottom of Table 5. We see that vot-
ing hard into shape context centers performs equally well
as soft voting. The experiments with the default shape con-
text parameters that have been used in [2] for shape match-
ing result in slightly higher errors than the experiments with
an our adjustedrouter. Not surprisingly, ignoring Hu mo-
ments’ skew invariance results in a dramatically higher error
for the rotation around they-axis.
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Table 5. Average joint estimation errors (in °) for Fourier descriptors, shape context histograms and
Hu moments with different sets of parameters

Test conditions
Right shoulder Left shoulder Forearm bend Around

Twist Bend Front-back Twist Bend Front-back Right Left y-axis
Shape context soft vote 20.61 22.79 16.09 20.44 22.59 16.20 10.97 10.84 7.27
Fourier descriptor 21.03 23.21 17.34 20.40 23.88 17.04 11.17 10.42 8.76
Hu moment 24.13 29.94 20.64 23.36 29.29 20.79 11.30 11.74 12.05
Shape context hard vote 21.15 22.86 16.43 20.59 22.66 16.65 10.65 10.42 6.70
Shape context default params 20.75 25.82 18.10 20.43 25.98 19.29 10.04 10.48 13.11
Hu moment skew variant 23.98 30.92 22.02 23.43 30.66 21.40 11.13 11.20 40.11

6 Conclusions & future work

We compared silhouette shape descriptors for vision-
based pose recovery. An example set of 46,656 images,
each representing a different pose, was encoded using
Fourier descriptors, shape context histograms and Hu mo-
ments. These were stored, together with their correspond-
ing poses. We performed tests with deformed shapes to test
each descriptor’s robustness against variations in body di-
mensions, viewpoint and noise. It is shown that Fourier de-
scriptors and shape context histogram outperform Hu mo-
ments for all deformations.

Future work will aim at finding a robust descriptor that
is also able to cope with large-scale occlusions. This allows
the work to be used for pose recovery in realistic situations.
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