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Abstract

Active appearance models (AAMs) are generative para-
metric models commonly used to track faces in video se-
quences. A limitation of AAMs is they are not robust to
occlusion. A recent extension reformulated the search as
an iteratively re-weighted least-squares problem. In this
paper we focus on the choice of error function for use in
a robust AAM search. We evaluate eight error functions
using two performance metrics: accuracy of occlusion de-
tection and fitting robustness. We show for any reasonable
error function the performance in terms of occlusion detec-
tion is the same. However, this does not mean that fitting
performance will be the same. We describe experiments for
measuring fitting robustness for images containing real oc-
clusion. The best approach assumes the residuals at each
pixel are Gaussianaly distributed, then estimates the pa-
rameters of the distribution from images that do not con-
tain occlusion. In each iteration of the search, the error
image is used to sample these distributions to obtain the
pixel weights.

1. Introduction

Active Appearance Models (AAMs) are generative
parametric models commonly used to track faces in
video [1, 2]. A major limitation of AAMs is they are not
robust to occlusion and only a small amount of occlusion
can cause the AAM search to diverge. A robust extension
to AAMs that is an efficient formulation of earlier fitting
algorithms [3, 4] was described in [5]. In this paper we
consider the choice of error function for use in this robust
AAM search. This is not a problem that be answered using
synthetically occluded data, as was done in [5]. Choosing
an error function is effectively the same as askingwhat is
the real distribution of outliers in images? Two ways this
could be answered are by measuring the accuracy of occlu-
sion detection, or measuring the robustness of the search.
In this paper we test eight error functions using both of

these metrics. We show that for any reasonable error func-
tion (monotonic and symmetric), the occlusion detection
performance is the same. However, this does not mean
that fitting performance will be the same as thetypeof er-
ror is important. A search that includes a small number
of borderline outlier pixels (Type I error) may converge as
these pixels are down-weighted to reduced their influence.
Likewise, a search that ignores a number of inlier pixels
(Type II error) may also converge. In this case not all of the
available information is used in the search. All evaluation
in this paper is conducted on a video sequence of a deaf-
signer and we show the best results are obtained when the
distribution of the residual at each pixel is assumed to be
Gaussian. Clean, unoccluded images are used to estimate
the parameters of these distributions, which are sampled in
each iteration of the search using the error image.

2. Active Appearance Models: AAMs

The shape, s, of an AAM is defined by the 2D coordi-
nates of theN vertices that form a triangulated mesh:

s=
(
x1,y1,x2,y2, . . . ,xN,yN

)T
. (1)

AAMs allow linear shape variation, meaning a shape can
be expressed as a base shape,s0, plus a linear combination
of n template shapes,si :

s= s0 +
n

∑
i=1

pisi , (2)

where the coefficientspi are the shape parameters.
AAMs are normally computed by hand-aligning the ver-

tices of the mesh with the corresponding features in a set of
training images and applying PCA [1]. The base shape is
the mean shape and the template shapes are the eigenvec-
tors corresponding to then largest eigenvalues. An exam-
ple is illustrated in the top row of Figure 1.

The appearanceof the AAM is defined withins0. Let
s0 also denote the set of pixelsx = (x,y)T that lie inside
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Figure 1. The linear shape model (top row) and ap-
pearance model (bottom row) of an AAM. Shown are
the base shape and appearance (left column) and first
three modes of variation.

s0, a convenient abuse of terminology. The appearance of
the AAM is then an image,A(x), defined over the pixels
x ∈ s0. AAMs allow linear appearance variation, meaning
A(x) can be expressed as a base appearance,A0(x), plus a
linear combination ofm appearance imagesAi(x):

A(x) = A0(x)+
m

∑
i=1

λiAi(x) ∀ x ∈ s0, (3)

where the coefficientsλi are the appearance parameters. As
with the shape, the base appearance,A0(x), and appearance
images,Ai(x), are usually computed by applying PCA to
the (shape normalised) training images [1]. An example is
illustrated in the bottom row of Figure 1.

2.1. Robust Fitting of AAMs

The goal of the robust AAM search [5] is to minimise:

∑
x∈s0

ρ

(
[A(x)− I(W(x;p))]2 ;σ

)
, (4)

with respect to the shape and appearance parameters.
I(W(x;p)) is the image warped onto the base mesh,ρ(•)
is arobust error function[6] andσ is a vector ofscale pa-
rameters. Updates forλ are required that minimise:

∑
x

ρ
′ (E(x)2)[

E(x)+
m

∑
i=1

∆λiAi(x)

]2

, (5)

whereE(x) has been normalised so the component of the
error image in the direction ofAi(x) is zero [5]. The least
squares minimum of this expression is:

∆λ = −H−1
A ∑

x
ρ
′ (E(x)2)

AT(x)E(x), (6)

whereA(x) = (A1(x), . . . ,Am(x)) andHA is the appearance
Hessian:

HA = ∑
x

ρ
′ (E(x)2)

A(x)TA(x). (7)

The steepest descent parameter updates are computed
using:

∆p = −H−1
ρ ∑

x∈s0

ρ
′(E(x)2)

[
∇A0(x)

∂W
∂p

]
E(x), (8)

where∇A0(x) is the gradient of the base appearance and
∂W
∂p is the Jacobian of the warp [2]. The Hessian,Hρ is

computed using:

Hρ =
K

∑
i=1

ρ
′
i

(
E(x)2) ∑

x∈Ti

[
∇A0(x)

∂W
∂p

]T [
∇A0(x)

∂W
∂p

]
,

(9)
where the base appearance is subdivided intoK triangles,
T1,T2, . . . ,TK , allowing the search to deal with occlusion.
Assume thatρ ′(E(x)2) is constant in each triangle; i.e. as-
sumeρ ′(E(x)2) = wi , say, for allx ∈ Ti . Pixels with a
large error inE(x) have a small weight,wi , so have less
significance in updating the parameters. In practise the as-
sumption thatwi is constant for allx ∈ Ti holds only ap-
proximately, sowi must be estimated fromρ ′(E(x)2), for
example by setting it to be the mean value computed over
the triangle [7]. The efficiency of this search arises since
the internal part of Equation 9 does not depend on the error
so is constant across iterations. Denote:

H i
ρ = ∑

x∈Ti

[
∇A0(x)

∂W
∂p

]T [
∇A0(x)

∂W
∂p

]
, (10)

The HessianH i
ρ is the Hessian for triangleTi and can be

precomputed. Equation 9 then simplifies to:

Hρ =
K

∑
i=1

wi ·H
i
ρ . (11)

Although this Hessian does vary from iteration to iteration,
the cost of computing it is minimal and the same spatial
coherence approximation can be made for the appearance
Hessian of Equation 7.

The following sections consider the selection ofρ, and
evaluate eight possibilities using the accuracy of occlusion
detection and fitting robustness as performance metrics.
The evaluation is conducted on video sequences of a deaf-
signer, thus we consider onlyreal occlusions.

3. Error Functions for Robust AAMs

The purpose of the robust error function in Equation 4
is to down-weight pixel outliers. Desirable properties on
the form of the error function include a function that is
non-negative, symmetric, monotonic and piecewise differ-
entiable. The final property is desired since it is the deriva-
tive, ψ, of the objective function that determines the influ-
ence of each pixel. The symmetry property is desired so



a Gauss-Newton optimisation can be applied, rather than
the less efficient Newton optimisation [8]. In this paper we
consider the following eightweightingfunctions:

E1: — Huber function [6] (c = 1.345):

ψ(E(x);σx) =
{

1 |E(x)| ≤ c
c

|E(x)| |E(x)|> c

E2: — Talwar function [9] (c = 2.795):

ψ(E(x);σx) =
{

1 |E(x)| ≤ c
0 |E(x)|> c

E3: — Tukey bisquare function (c = 4.685):

ψ(E(x);σx) =


(

1−
(

E(x)
c

)2
)2

|E(x)| ≤ c

0 |E(x)|> c

E4: — Cauchy function (c = 2.385):

ψ(E(x);σx) =
1

1+
(

E(x)
c

)2

E5: — Standardised distance:

ψ(E(x)) =

{
1 |E(x)

σx
| ≤ 2σx

0 otherwise

E6: — Pixel-wise threshold:

ψ(E(x)) =
{

1 |E(x)| ≤ Emax(x)
0 otherwise

E7: — Probability density function assuming the distribu-
tion of the residual at each pixel is Gaussian:

ψ(E(x)) =
1

σx
√

2π
e

(
− |E(x)|

2σ2
x

)

E8: — Decaying exponential:

ψ(E(x)) = e

(
− |E(x)|

2σ2
x

)

E1–E4 are theW-estimatorsfor the correspondingM-
estimators[6]. The tuning constant,c, adjusts the scale,
which is usually estimated from the residuals using the me-
dian of absolute deviations (MAD) [6]. In this work, we
use the standard deviation of the residuals in unoccluded
images as the measure of scale. We denote this asσx to
reflect that each pixel is treated independently. The distri-
bution of the residuals is modelled per-pixel, not overE(x).
Hence, the decision as to whether a pixel is occluded is not
influenced by any other pixel.

4. Evaluation

Two metrics have been used to evaluate robust er-
ror functions: occlusion detection accuracy and robust-
ness of fit. Thefitting algorithms in [5] were tested by
first labelling (occlusion-free) images using a non-robust
search, then comparing the result of the robust search after
addingartificial occlusion. This is fine since the relative
performance of the fitting algorithms is not expected to de-
pend on the data. In this work the relative performance of
theerror functionsare being tested, which will depend on
the data. Hence our evaluation must be performed on real
data.

A short video sequence of a deaf-signer is divided into
112 frames containing occlusion and 136 frames without
occlusion. Examples from the occluded set are shown in
Figure 2.

Figure 2. Example images used in the evaluation of
robust AAMs. Note, the body suit forms the basis of
an optical tracking system (not used in this work).

Two forms of ground-truth are required: which pixels
are occluded and the location of the landmarks in each
frame. Occluded pixels are identified by creating a binary
mask and hand-painting over occluded regions in each im-
age. The landmarks are slightly more tricky. It is unde-
sirable to compare the output of the fitter with hand-labels
as these are likely to be noisy. A non-robust fit cannot be
used to determine the ground-truth as the search will likely
fail, see Figure 5. Also, a robust search using anysin-
gle error function cannot be used as the results will be
biased towards this function. Instead we first hand-label
all 112 images in the occluded set, taking care to ensure
occluded landmarks are in a reasonable position. Next, a
robust AAM search using all eight error functions is per-
formed using the hand-labels as an initial guess. Examples
that diverge are ignored and the ground-truth is the mean of
the converged (visible) landmarks. Example ground-truth
is shown in Figure 3.



Figure 3. Example ground-truth data: The left image
shows the binary mask for the image displayed on the
right. White pixels in the mask denote the occluded
pixels. The ground-truth landmarks are overlaid on
the image on the right.

4.1. Occlusion Detection

There are two types of error when classifying pixels as
inliers or outliers.

Type I Error — a pixel outlier is classified as an inlier.

Type II Error — a pixel inlier is classified as an outlier.

The following describes evaluating error functions in terms
of occlusion detection accuracy.

4.1.1. Procedure

Each of the 112 (occluded) images are warped from
the ground-truth landmarks onto the base shape and the
residuals computed. These residuals are then input to
each error function and the result compared with the
hand-painted ground-truth. Since some functions make
only a soft decision as to which pixels are occluded
(i.e. E1, E4, E7 andE8), a threshold,τ, is required that
defines a decision boundary. This threshold isnot used in
the robust search, it is used only to make a decision in this
detection experiment. Since the decision as to whether a
pixel is visible or occluded is sensitive toτ, we consider
the affect of varying the threshold.

4.1.2. Results

Figure 4 shows the average number of pixels correctly
identified as occluded against the average Type II error for
each error function.

The results in Figure 4 are as should be expected. The
curves1 for any symmetric, monotonically increasing error
function will be the same in the following sense. Consider
the two sets of pixels parameterised by the thresholdτ:

FP(τ) = {x ∈ ρ(|E(x)|) < τ | x /∈ y}
TP(τ) = {x ∈ ρ(|E(x)|) < τ | x∈ y}

1For some error functions such as (E2, E3, E5 andE6), the curves are
degenerate and consist just of a single point.
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Figure 4. Curves showing the accuracy of occlusion
detection against misclassified outlier rate for the er-
ror functions defined in Section 3.

wherey ⊂ I(W(x;p)) are the occluded pixels,TP(τ) are
the true positives,FP(τ) are the false positives andτ is the
decision threshold. Asτ varies the proportion of|FP| and
|TP| to the total number of pixels map out the ROC curve.
Thus, for any symmetric and monotonically increasing er-
ror function for which

ρ(Ei) > ρ(E j) ∀ (|Ei |< |E j |)

it follows that:

|FP(τ)| ≤ |FP(t)| ∀ (t ≥ τ)
|TP(τ)| ≤ |TP(t)| ∀ (t ≥ τ)

and

FP(τ) ⊂ FP(t) ∀ (t ≥ τ)
TP(τ) ⊂ TP(t) ∀ (t ≥ τ)

sinceρ cannot change the ordering of the residuals.FP(τ)
andTP(τ) are improper subsets of the respective supersets.

4.2. Fitting Robustness

It is clear from Figure 4 that in terms of occlusion de-
tection accuracy, monotonic and symmetric error functions
perform the same. However this does not mean that they
perform the same in terms of fitting robustness. The fol-
lowing describes the evaluation of the error functions from
Section 3 in terms of the fitting robustness.

4.2.1. Procedure

Twenty of the images from the unoccluded frames were
hand-labelled using the landmark configuration shown in
Figure 3. An AAM was constructed from these labelled
images and the non-robust AAM search [2] used to anno-
tate the remaining unoccluded images. Each image was
then warped onto the base shape and the error image com-
puted. The standard deviation of the residual and maximum



absolute value of the residual at each pixel was computed,
providing the parameters for the error functions.

For each of the 112 occluded images, 500 starting lo-
cations for a robust search were generated by randomly
perturbing the ground-truth shape and similarity transform
parameters with additive white Gaussian noise. The vari-
ance of the distribution used to perturb each shape param-
eter was equal to a multiple of the variance captured by
the corresponding mode of variation. Specifically, fifty
offsets were generated for each of ten evenly spaced lev-
els of shape perturbation ranging from 0.3 to 3 times the
variance of the corresponding mode. The similarity trans-
form parameters were generated by perturbing two points
in the mesh with Gaussian noise of variance five times the
shape offset and the similarity transform parameters then
solved for [2]. At each iteration of the search, the image
was warped onto the template and the robust error func-
tions used to estimate and down-weight occluded pixels
from resulting residuals. The triangle weights,wi in Equa-
tion 11, were computed as the mean of the pixel weights
within each triangle. This however is not the only option.
For example, pixel-wise weights could be applied (an in-
efficient search), or the minimum pixel weight within each
triangle could be used. Experiments evaluating different
triangle weighting schemes are ongoing.

In all cases, the robust fitter was run for twenty iterations
and the search was deemed to have converged if the RMS
error between the ground-truth and fitted landmarks was
below 2.0 pixels. Both thefrequencyof convergence (ro-
bustness) and therate of convergence (accuracy) are used
to quantify the performance of error functions.

4.2.2. Results

The set of 112 images containing occlusion were di-
vided into two further sets: those that contain 0< n≤ 25%
occlusion (80 frames) and those that contain 25< n≤ 50%
occlusion (23 frames)2. The frequency and rate of conver-
gence averaged over all trials and all images for each image
subset are shown in Figure 5.

The performance of the error functions is similar for
low degrees of occlusion (≤ 10%). However, as the level
of occlusion increases weighting pixels using error func-
tion E7 appears to be the most robust technique. The aver-
age frequency of convergence is approximately 15% higher
for ≤ 25% occlusion than the next best error functions (E6
andE8). As is expected, the frequency of convergence de-
creases as the amount of occlusion and shape perturbation
increases. The unweighted L2 norm (non-robust) AAM
search is surprisingly robust for low amounts of occlusion
and performed only slightly worse than error functionE5.

2The nine frames with> 50% occlusion were ignored in this experi-
ment as the fitter always failed to converge.

In terms of the rate of convergence, the error functions
behave the same for low/moderate amounts (≤ 25%) of
occlusion — they are within one pixel at each iteration.
Indeed it appears that, with the exception of the Tukey
Bisquare function, the degree of occlusion does not in-
fluence how quickly the robust AAM will converge, only
whether or not it will converge.

Figures 4 and Figure 5 suggest that robust AAMs are
able to cope with a relatively large Type II error. The lo-
cation on the curve forE7 shows that, with the exception
of τ = 0, this error function classifies many of the unoc-
cluded pixels as occluded. Thus, as we would expect, it
is better to ignore unoccluded pixels than to include oc-
cluded pixels during the fit. In terms of the M-estimator
functions (E1—E4), the best performing are the Talwar
function and Cauchy function. The Talwar function was
also used in [10] for robustly fitting morphable models to
images.

5. Conclusions

In this paper we have reviewed the efficient robust AAM
search algorithm and described a number of robust error
functions that can be used in this search. We evaluated
these error functions using two evaluation metrics: one to
determine the accuracy of occlusion detection and another
to determine the robustness of the search. We have shown
that in terms of occlusion detection accuracy, all monotonic
and symmetric error functions perform the same, whereas
in terms of fitting robustness some perform significantly
better than others. We have found that of the eight func-
tions tested here, the best approach is to model, using a
Gaussian, the distribution of the residuals at each pixel
for known, unoccluded data. The weights used during the
search are then computed by sampling the respective distri-
butions given the residuals at each pixel in each iteration.
FunctionsE1–E4 are well understood general purpose er-
ror functions used by the robust statistics community for
performing an iteratively re-weighted least squares fit. It is
perhaps to be expected thatE7 out-performs these as the
parameters of this error function are estimated from known
good data.

The error functions were tested on only a single video
sequence. This was due to the difficulty in obtaining
ground-truth. Every frame containing occluded pixels re-
quires the manual placement of the landmarks and the man-
ual marking of the occluded pixels. Further work will
involve labelling more sequences and performing similar
tests on more subjects. We will also compare different
ways of computing the triangle weights from the pixel
weights. In this work, the triangle weight is the mean of
the pixel weights within the triangle. We will also contrast
the robustness of this efficient algorithm with a less effi-
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Figure 5. Frequency and rate of convergence of the robust AAM search using the error functions defined in
Section 3 for Top row: 0 < N ≤ 25%occlusion and Bottom row: 25< N ≤ 50%occlusion.

cient algorithm which retains the individual pixels weights,
but must recompute the Hessian in each iteration.
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