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Abstract

In the PLAYBOT project, we aim at assisting disabled
children at play. To this end, we are developing a semi au-
tonomous robotic wheelchair. It is equipped with several
visual sensors and a robotic manipulator and thus conve-
niently enhances the innate capabilities of a disabled child.
In addition to a touch screen, the child may control the
wheelchair using simple head movements. As control based
on head posture requires reliable face detection and head
pose recognition, we are in need of a robust technique that
may effortlessly be tailored to individual users. In this pa-
per, we present a multilinear classification algorithm for
fast and reliable face detection. It trains within seconds and
thus can easily be customized to the home environment of a
disabled child. Subsequent head pose recognition is done
using support vector machines. Experimental results show
that this two stage approach to head pose-based robotic
wheelchair control performs fast and very robust.

1 Introduction and Motivation

The work reported in this paper results from a project
on assistive technologies for children living with physi-
cal impairments. Our overall goal is a semi autonomous
wheelchair that assists these children at play. The current
prototype is equipped with a robot arm and several cameras
so that it can safely navigate and manipulate objects within
the play environment. One of the cameras registers head
movements of the user. This provides a rather effortless way
for the child to control the orientation of the wheelchair:
turning the head left or right causes the chair to turn in that
direction after a little while. The face cam is mounted on
the lower left of the person sitting in the chair (see Fig. 1)
to be unobtrusive.

In this paper, we focus on a two-staged process for coarse
but highly reliable head pose estimation in our scenario.
The first step is to detect the user’s face in the images

2Deutsche Telekom AG
Laboratories
10587 Berlin, Germany

Face Cam

Figure 1. The PLAYBOT robotic wheelchair.

recorded by the face cam. In the second step, head posture
is determined from those image patches showing the face.
Since face detection and head pose estimation are very
active areas in computer vision (cf. e.g. [6, 8, 11, 18, 20]),
it is no surprise to find reports on methods that provide the
speed and reliability required in robotic control. Especially,
boosting techniques (e.g. [10, 15]) are known to be fast
and robust. But, their performance comes at the cost of
an extensive and exhaustive training phase. Given our sce-
nario, however, there are three major reasons why we need
algorithms that can quickly be adjusted to different envi-
ronments and users. (1) The view angle of the face cam is
unorthodox in that it does not provide frontal views of faces.
Moreover, depending on the individual needs of the child,
the way the camera is mounted may need to be reconfig-
ured. (2) Pre-trained current state of the art face detectors
were trained on data sets that are heavily biased towards
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able-bodied persons. Presently, there is no image repository
dedicated to the disabled. For both these reasons, training
face detection and head pose recognition algorithms in the
user’s home is desirable. However, (3) state of the art face
detectors rely on the analysis of huge training sets. Pro-
viding correspondingly exhaustive training data is of course
infeasible for a disabled child or his caregivers.

In the next section, we introduce multilinear classifiers.
We shall see that this technique achieves very fast learning
for face detection in color images. The results in section 3
underline that it also provides fast runtime and reliable re-
sults. Afterwards, we will briefly discuss support vector
machines for coarse but reliable head pose estimation for
wheelchair control. A conclusion closes this contribution.

2 Multilinear Discriminant Classifiers

Many pattern recognition techniques that are being ap-
plied in computer vision require vectorial representations of
image data. Recent findings, however, suggest, that treating
images for what they really are, namely multiindexed ob-
jects or higher order tensors, improves performance in tasks
such as image coding or classification [1, 12, 14, 16, 17, 19].
Extending an approach by Bauckhage and Tsotsos [1] to
third-order tensors, we will next discuss multilinear dis-
criminant analysis of color image data.

2.1 Classical Discriminant Analysis

Given a set of pairs {(x;,y;)|l = 1,..., L} where the
x; € R” are feature vectors sampled from two classes and
the y; € R (usually either +1 or —1) denote class member-
ship, linear discriminant analysis (LDA) seeks a projection
w -x; of the samples that maximizes the inter-class distance
of the resulting scalars. The arguably most popular way of
finding the projection vector w is to maximize the Rayleigh
quotient of the between- and within-class scatter of the data
[3]. Alternatively, one can minimize a least squares error
criterion [2, 3, 7]. If the samples x; are normalized to zero
mean, the optimal w is given by

L
w = argmin E(w) = argminZ(yl —w- xl)2. (1)

w W i=0
Often, the error is written as E = ||y — Xw/||? where the

sample vectors form the rows of the L x n matrix X and the
class labels are gathered in y € R”. This results in a simple
closed form expression for the optimal projection direction:

w = (XTX)"'XTy. )

. . -1
Below, we will refer to the matrix (XTX) XT as the
Moore-Penrose inverse.

2.2 Higher Order Discriminant Analysis

The least squares approach to LDA can be generalized
to discriminant analysis of multilinear objects of arbitrary
order. However, to simplify matters, we restrict our discus-
sion to third-order tensors A € R™1*™2X™s for these lend
themselves to the modeling of color images: an RGB image
consists of ms = 3 layers of a resolution of m1 X my each.

The inner product of two third-order tensors A and B is
defined as

mi mg Mm3

AB=3 3> AniisBiii 3)

i1=11i=113=1

Therefore, if a, b € R™1™2™3 are vector unfoldings of A
and B, we see that A-B = a-b. Dealing with discriminant
analysis of tensorial data, the minimization problem in (1)
can thus be cast as

L
W:argminZ(yl —W-X;)z. 4)
w

=0

This tensorial formulation leads to a highly efficient
learning process, if we require W to be expressible as a
sum of R rank-1 tensors

R
W:Zur®vr®wr. 5)

r=1

Here, ® denotes the outer product of two vectors. In the fol-
lowing, we will drop summation signs and apply Penrose’s
abstract index notation. In this formalism indices of tensor
components assume the role of abstract markers in terms of
which the algebra is formulated'.

With the rank-1 constraint on WV, there is no closed form
solution for (4). However, by means of an alternating least
squares scheme, the problem can be reduced to solving sev-
eral ordinary least squares equations similar to (1). For the
simple case of an R = 1 term solution for VW, the algorithm
consists of ¢ = 1,..., Ty, iterations of the following steps.
Given an initial, random guess for the vectors u € R™* and
v € R™2, compute the fensor contractions

xl X’lligig Ugy (t> Vi, (t)7

13 7

I=1,....,L. (6

Stacking the resulting vectors x; € R into a sample ma-
trix X yields w(t) = (X7X) “'XTy. Given w, the train-
ing set can be contracted over u and w in order to compute
a new estimate for v; finally, given v, a new estimate for u
can be computed.

IConsider the matrix-vector multiplication Mu = v. As the com-
ponents of v are given by v; = M;ju;, the following expressions are
equivalent using abstract index notation: Mu = v < v; = M;ju;.
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Input: a training set { X}, y; };=1,..., 1, of image patches
X € RmixmaXms with class labels y;

Output: a rank-R approximation of a third-order
projection tensor W =u" @ v Q@ w’

forr=1,...)R
t=20
randomly initialize u” (t)
orthogonalize u” (t) w.r.t. {ul,... u" !}
randomly initialize v" (¢)
orthogonalize v (t) w.r.t. {vi, ... ,v"~1}
repeat

t—t+1

Iyl
contract x;, = Xj ;. ;.

ug, (t) v, (¢)
compute w” (¢) = (XTX) 'XTy
orthogonalize w” (t) w.r.t. {w!,... , w"~1}
similarly compute v" (t)

similarly compute u” (¢)

until |[u”(t) —u"(t = 1)|| <€ V ¢ > tnax
endfor

Figure 2. Alternating least squares scheme
to compute a third-order tensor classifier YV
given as a sum of completely orthogonal ba-
sistensors u”" @ v @ w’.

As the algorithm starts with arbitrary vectors u and v,
it has to be iterated until convergence. To this end, we
consider the refinement of the vector u. If, in iteration ¢,
[lu(t) — u(t — 1)|| < e, the process is stopped. In our ex-
periments, this usually led to convergence in less than 10
iterations.

Extending the procedure to multi-term tensors is
straightforward. If W = Z,’:Zl u" ® v ®w"isak term
solution for the projection tensor, a k£ + 1 term represen-
tation can be found by minimizing E(u*+!, vF+1 wh+1),
Note that it is appropriate to require that every newly found
rank-1 tensor u**! @ v¥*! @ w**! be orthogonal to its pre-
decessors. In this way, the resulting projection tensor W
favors directions of maximum variance in the data tensor
space. Therefore, the (modified) Gram-Schmidt procedure
is applied to each of the vectors u”, v and w" derived in
the procedure. Figure 2 summarizes the overall algorithm
to find an R-term sum of third-order tensors of rank 1 for
multilinear discriminant analysis.

2.3 Benefits of the Tensorial Approach

The alternating least squares approach to higher order
tensor discriminant classification provides valuable advan-
tages for face detection.

First, tensor classifiers provide fast runtime. Classi-
fying the content of a color image Z using a projection
tensor YV amounts to a convolution Z « W. If W is a
sum of rank-1 tensors, this reduces to a sequence of one-
dimensional convolutions Y, ((Z % u”) % v") % w". This
requires O(R(m1 + mz + m3)) operations per pixel and
therefore enables fast object detection. For larger mask
sizes my X mgy X mg, further speedup is gained, if the clas-
sifier is applied in the frequency domain: F(Z * W) =
F(Z)F(W). Using a very fast Fourier transformation [4],
we achieved processing times of almost 20Hz in our exper-
iments.

Second, Multilinear discriminant classifiers train
quickly. If multivariate data of size m; X mg X mg were
unfolded into vectors, conventional LDA based on Fisher’s
criterion or on least squares would have to invert matrices
of sizes mimsoms X mimaoms. Even for moderate values
of m; and ms and not too many training examples, this may
become infeasible. However, the Moore-Penrose inverses
that appear in our algorithm only require inversion of matri-
ces of considerably reduced sizes ms X mg, ms X meo and
mq X my. Therefore, our technique significantly shortens
training time. In practice, we found that, compared to LDA
on very high dimensional vector spaces, the tensor based
method reduces training times from hours to seconds.

Third, tensor-based discriminant classification tackles
the small sample size problem. This term refers to the ef-
fect that for conventional LDA the within-class scatter ma-
trix may be singular because the number of training sam-
ples is much smaller than the dimension of the embedding
space [5]. Again, as the Moore-Penrose matrices necessary
for computing R-term rank-1 tensor classifiers are of small
sizes, small sample sizes will not hamper multilinear dis-
criminant analysis.

In the next section, we will present empirical results
which corroborate these considerations.

3 Face Detection

In order to test the general applicability of tensor classi-
fiers to our scenario, we collected a set of images of 10 in-
dividuals sitting in our robotic wheelchair. Recorded by the
face cam mounted on the robot, the images have a resolu-
tion of 320 x 240 pixels and show faces of different gender,
race, facial expression and head pose.

For 302 images, ground truth was provided manually;
101 images were used for training, 201 images formed our
test set. From each training image, 4 image patches were
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Figure 3. Face detection examples with an R = 3 term tensor discriminant classifier; on a 3Ghz Xeon
PC, training with 1616 color image patches took 7 seconds; using frequency domain computations,
201 test images of size 320 x 240 were processed in 11 seconds.

T
§ 0.9
window size 80x80 ——
window size 70x70 ----------
0.8 T 7
0 0.1 0.2 0.3
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Figure 4. Precision vs. recall for face detec-
tion. The classifier of dimensions 80 x 80 x 3,
achieved an EER of 98%.

randomly cut around the indicated center of the face; 12
patches randomly cut from the background served as coun-
terexamples. Given the resulting 1616 examples, we trained
different 3-term third-order tensor classifiers. In all exper-
iments, the data was normalized to zero mean X — M,
where M denotes the mean of the training samples. Dur-
ing runtime, this accounts only for a single operation per
pixel, since (X — M)W = X - W — M - W, where the
scalar constant M - VW can be computed beforehand.

Figure 4 shows precision recall curves we obtained for
classifiers of dimensions 70 x 70 x 3 and 80 x 80 x 3.
While training the former took 9 seconds, training the lat-
ter required 7 seconds. In spite of the small sample size
and short training time both classifiers achieved very high
detection accuracy; the 80 x 80 x 3 variant, in particular,
yielded an equal error rate of 98%. Figure 3 shows some of
the results obtained using this classifier.

4 Head Posture for Wheelchair Control

As pointed out in the introduction, wheelchair control by
simple head movements not only requires rapid and robust
face detection but also reliable head pose recognition. In
order to achieve the latter, we opted for support vector ma-
chines (SVMs) because many empirical studies have shown
that SVMs possess the generalization properties to solve
real life problems [13]. Since online training is essential for
our application, we apply the SVM"€" algorithm [9], which
provides fast training and classification, especially for the
linear kernel.

In order to test the feasibility of the SVM, we recorded
several colored videos in different environments. All of
these videos show the same individual sitting in the robotic
wheelchair and moving the head in different directions.
Again, all image sequences were labeled manually. This
time, labeling was done with regard to the following view
directions: left, center, right. Consequently, ground truth
for testing was available. Our training set consists of 260
image patches of size 80 x 80 pixels which were chosen
randomly from two videos showing different environments.
The dimension of the data was reduced by transforming
color images to grey value images. The resulting train-
ing vectors were 1600-dimensional. On a 3Ghz Xeon PC,
training a linear kernel SVM then took 80 seconds on av-
erage. This satisfies our requirement for rapid learning.
The test set consisted of 1116 patches from two different
videos. Head pose classification of this test data took an
average of 0.75 seconds (without I/O) and yielded a suc-
cess rate of 95.7%. Therefore, combining this classification
scheme with the face detection algorithm from section 3
does not threaten our realtime requirements but neverthe-
less achieves very reliable results.

Applying our two stage pose estimation approach to
wheelchair control requires a mapping of recognized head
poses to motor commands of the robotic chair. One problem
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Figure 5. Face detection and head pose classification examples in two different environments. The
first column shows the input frames. The second and the third column depict the corresponding
detection and classification results, respectively. Head pose classification results are translated
into wheelchair rotations by analyzing the temporal context of each classification. The histograms
in the rightmost column display the classification results (w.r.t. the point of view of the user) of the
last 75 frames. This corresponds to a temporal buffer of three seconds. The wheelchair is rotated
only if a label exceeds a specific threshold during this time and if the user does not face forward.

associated with this mapping is that occasional misclassifi-
cations of head orientation could result in sudden changes
of motion. This is solved by analyzing the temporal context
of each classification. Instead of issuing motor commands
based on the currently produced classification the percent-
age of orientation labels generated during the last 75 frames
is considered. This corresponds to a temporal buffer of three
seconds (see rightmost column of Fig. 5). Only if an orien-
tation label exceeds a specific threshold during this time, a
turning command should be initiated. If the user is found to
face forward, no motor command should be issued at all. A
second problem, resulting from this strategy, is as follows.
If the user intends to halt turning by facing forward, but
the classifier fails to immediately recognize this, then the
wheelchair could enter an unsafe configuration. As this can
be frustrating for the user, it needs to be filtered out. Our
solution is to treat each classification percentage and its rate
of change as an input to a fuzzy logic controller. Its rule
base implements the following expert notions: if either the

percentage of left or right classification is high, it outputs
a strong signal to turn left or right, respectively. However,
if either the percentage of center classification is high or its
rate of change is large and positive, then it outputs a zero
turning signal. In this way the controller errs on the side of
caution.

5 Conclusion

In this paper, we considered the problem of fast learning
for customizable face detection and subsequent head pose
recognition.

Dealing with an application in robotic wheelchair con-
trol, we presented an algorithm for multilinear discrimi-
nant analysis of color images. Using an alternating least
squares scheme, rank-1 decomposable projection tensors
can rapidly be learned from a small set of examples. In
experiments with third order tensors of considerably large
spatial extension, we measured training times between 6
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and 15 seconds. These experiments also revealed that ten-
sor classifiers achieve very fast runtime; applied in the fre-
quency domain, our multilinear classifiers process about 19
images per second. With respect to reliability, they detect
faces very accurately if tested on color images of different
subjects with different facial expressions and head poses.
In experiments with videos of a single person, tensor-based
face detection achieved 100% accuracy.

In the second stage of the proposed head pose estimation
scheme, image patches returned by the multilinear face de-
tector are fed into a support vector classifier. Using linear
kernels in order to classify face images into three classes of
head orientation, we were able to achieve 95.7% accuracy
where the training only took 80 seconds. In order to trans-
late the per-frame recognition results into motor commands
for the wheelchair, temporal context is taken into account
and a fuzzy control scheme is applied. Motor commands are
issued only once the user has been recognized to be looking
to either side over a short period of time.

Since both algorithms perform rapidly and reliably, our
two-stage approach to wheelchair control using head move-
ments meets the requirements encountered in robotic con-
trol. Moreover, due to their short training times, both algo-
rithms can be adopted quickly to the conditions in the home
environment of a disabled user. With help from experts in
human computer interaction, we are currently developing
an easy-to-use touch screen interface that allows for an ef-
fortless acquisition of training data. Our hope is to provide a
simple, on-site calibration and customization procedure for
the PLAYBOT that can be carried out by caregivers or even
by the physically impaired child.
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