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Abstract—We describe an approach for developing a campus-
wide sensor network using commodity single board comput-
ers. We sketch various use cases for environmental sensor
data, for different university stakeholders. Our key premise is
that supersensors—sensors with significant compute capability—
enable more flexible data collection, processing and reaction. In
this paper, we describe the initial prototype deployment of our
supersensor system in a single department at the University of
Glasgow.

I. INTRODUCTION

What does a 21st century university campus look like?
At Glasgow, we are redeveloping our campus at a cost of
e 1bn over the next decade. One headline objective is to
create a ‘smart’ campus. However it is not clear what this
means in practice. This paper explores possible infrastructure
and use cases for a prototype smart campus testbed. As a
starting point, we assume that all campus users have mobile
devices (smartphones or tablets) and that there is extensive wifi
coverage across the university premises, indoors and outdoors.

Our key idea is to embed physical sensors directly into the
fabric of the campus. These might include footfall-sensors on
walkways, temperature sensors in rooms, and sound sensors
in public spaces. In general, such small-scale sensors should
be widely distributed and unobtrusive. They should be low-
power electronic devices, with minimal costs for procurement,
installation, operation and maintenance. To allay concerns over
privacy, no personal data should be collected directly by the
sensors. Instead, data collection and reporting should focus on
environmental factors, rather than personal ones. For instance,
sound sensors will monitor ambient volume rather than the
actual sound signal waveform.

There are many use cases for this style of environmental
sensing data infrastructure. In a university administrative con-
text, a plausible use case would be ‘collect room utilization
statistics’ across centralized teaching spaces. For students, the
use case might be ‘locate a quiet study area’.

These Internet of Things (IoT) based sensors and end-
user scenarios are largely standard, e.g. [1], [2]. However our
project features the following three novel characteristics:

1) We are advocating the use of supersensors. Our sensor
nodes are moderately powerful Linux servers, hosted on
Raspberry Pi devices. They are capable of local compute
operations, as well as transmitting data to a centralized
database. Each node can behave autonomously to carry

Fig. 1. The Raspberry Pi with its many exposed interfaces and powerful CPU
makes for a flexible base platform to evaluate sensor devices, and prototype
data collection and compute applications.

out tasks like sending tweets, processing data, dynamic
reconfiguration and communicating with other local de-
vices.

2) We use ad-hoc networking for nodes in poorly connected
locations. The old university buildings have particularly
thick stone walls, so wifi coverage or signal strength is
impaired. Our system will support sensor-to-sensor com-
munication via bluetooth, or delay-tolerant networking
with mobile phones acting as data mules.

3) We employ sensor fusion and machine learning tech-
niques. In addition to deployed sensors, we will harvest
other feature data such as university timetable data and
social media streams. We can process this multidimen-
sional data using machine learning techniques to infer
events.

These innovations increase the applicability of our scheme.
While our smart campus sensor system is currently only in
prototype stage, i.e. deployed in a small part of a university
environment with limited use cases, we argue that the system
should scale up effectively and be useful in a wide variety of
contexts.

II. SENSOR NODES

A. Specification

Each individual sensor node is built around a Raspberry
Pi device, see Figure 1. This single-board general-purpose
computer has a small footprint (90 ⇥ 60 ⇥ 20mm3) and



relatively low power requirement (< 3W ). The hardware
is mass-produced and readily available. Over eight million
boards have been sold to date [3].

The Raspberry Pi device has a variety of interfaces for
attaching hardware sensor devices. We use the I2C bus for
simpler sensors (light, temperature, motion, sound) and USB
for more complex sensors (Wifi). The system runs a standard
Linux distribution. We add several low-utilization daemon
services to gather realtime sensor readings and cache the data
in local memory. This data is periodically flushed to a remote
server via a secure TCP/IP connection.

Each board currently requires two physical connections, for
wired ethernet and DC power supply via mains transformer.
These connectivity requirements limit the deployment options
for our sensors, so we are considering a switch to wireless
networking and renewable power (e.g. solar).

The Raspberry Pi board is relatively inexpensive. There are
various generations of boards; we are using generation 1 model
B at present. Each board costs around e 30. However in this
era of disposable compute devices, Raspberry Pi boards are
given away ‘free’ with computing magazines [4]. The cost of
the sensor devices is minimal, around e 20 in total.

Individual sensor node configuration is supported. Configu-
ration options include:

1) hostname of data collection server.
2) frequency at which each sensor gathers data.
3) frequency at which aggregated data is pushed to server.
4) which sensors are enabled/disabled on this node.

Configuration is possible via TCP/IP connection to individual
nodes. Also, all nodes can be configured directly from the
server.

Each supersensor that is physically embedded in the campus
has a Quick Response (QR) code label. (We intend to support
beacon-style Bluetooth URL payloads too.) This per-node
label directs people to information about the Glasgow smart
campus infrastructure in general, as well as a stream of data
readings from this local node.

B. Benefits

This section discusses the advantages and disadvantages
of supersensors, i.e. ‘fat’ sensor nodes that have sufficient
compute capability to do more than simply supplying a stream
of readings to a server.

While larger nodes will use more electrical power (i.e.
have higher operational costs) and will be more expensive to
purchase (i.e. have higher installation costs), we feel that the
Raspberry Pi device is below the impracticality threshold.

The power draw is small enough to embed in campus
architecture. If there is one supersensor in each public room,
this is a small power cost in relation to lighting that space.
Further, the initial cost of the sensor is small, its physical
footprint is negligible and it can be easily secured. We do not
expect significant ‘sensor vandalism’ [5] given the low cost of
the sensors, the security of the university campus and the non-
intrusive nature of the sensing [6]. However a planned future

project will look at new ways to assure the trustworthiness of
this infrastructure.

Supersensors allow for richer on-node computation. This
might include intelligent filtering of sensor data. It is possible
to capture and buffer incoming data while network connec-
tivity is disrupted. It is also straightforward to use ad-hoc
networking techniques or delay-tolerant networking protocols
to relay data to the server.

One key issue at Glasgow that currently prevents outdoor
footfall sensing on paths across campus is the logistical dif-
ficulty of providing a wired network connection to externally
mounted boxes. Instead, we propose to use wireless ad-hoc
networking where we can (with only a subset of the Pis having
wired network connections).

Edge computation is supported in our system. This might
include per-node event triggers, that are defined and monitored
on each supersensor device directly. Further compute tasks
might include local aggregation of data such as map/reduce
[7] or per-node user queries executing on-device.

The most significant advantage of using general-purpose
compute devices for sensor infrastructure is that they are
remotely reprogrammable, which allows us to retarget the
sensing infrastructure, either using new sensors or employing
existing sensors in new ways.

III. SOFTWARE PLATFORM

We have implemented a distributed data gathering appli-
cation using a flexible micro-services architecture and where
appropriate making use of well-known Linux idioms and ex-
isting open source software. Figure 2 shows the implemented
services. They are partitioned into those intended to run on
each sensor node, and those providing a centralized service.
As all services are configured with a network address this
distinction is flexible, and they can be re-deployed easily. Each
is registered with systemd, providing a reliable restart and
configuration mechanism. On the server side, we connect our
own applications to proven scalable open source software for
a persistent document data store (MongoDB), and a perfor-
mant publish-subscribe system, cache, and queuing system
(REDIS). We make use of Protocol Buffers for serialising and
parsing transmitted data using the proto3 format to specify
message types and service endpoints. Using these service
contracts, we can later implement different services in different
languages if needed and maintain interoperability. Our services
are currently implemented in Python as this language is well
supported on the Raspberry Pi, and provides libraries for easily
connecting to the various hardware interfaces required by our
choice of sensors, including I2C, SPI, and general-purpose IO
pins.

Each sensor node has one required service: The collector
buffers data received from each of the optional sensor services
and forwards it to the measurements server at a configured
maximum frequency. A heartbeat mechanism provides moni-
toring of the sensor node health and allows the server to reply
with updated configuration for the collector and sensors as
required. Connections are initiated by the distributed nodes.



Fig. 2. A flexible micro-services architecture connects sensors to central server.

This way, losing network connectivity is not a problem since
data is stored locally, and the only well known name on the
network that has to be configured is the main server’s address.

The server services, REDIS, and MongoDB are currently all
running on a single commodity server. The use of a publish-
subscribe model for real time event streams and work queues
for data storage and processing tasks, make it easy to add
load balancing and distribute the data store across a cluster of
multiple machines.

Users of our data are provided with two read only interfaces:
An HTTP REST API allows for polling current and historical
node and sensor data. A streaming websockets server provides
a near-realtime stream of sensor change events and changes
in a node’s availability. Due to the flexible publish-subscribe
model, we can easily add more specialized tasks that publish
higher level events as we discover new use cases and data
processing opportunities. We also plan to add an interface for
autonomously reconfiguring the sensor nodes, e.g. to adjust
the measurement frequency of specific sensors in response to
certain events.

Our flexible and well-specified service architecture imple-
ments a test-bed for prototyping new applications and trying
out various sensors. The system is designed to cope well with
both scaling up and future additions: We plan to extend our
Bluetooth sensor usage to collect and forward data from less
powerful beacons or battery powered sensors in the vicinity.
This will be closely integrated with the ad-hoc mesh network
for sensors without their own reliable internet connection.
We also anticipate using the ‘spare’ cycles on the Raspberry
Pi devices for edge computing experiments and using our
existing monitoring infrastructure to record utilisation data and
processing results from these.

IV. USE CASES

In this section, we outline a selection of use cases for
the smart campus. We report which of these have been
implemented already. The other use cases are still under
development at Glasgow.

Fig. 3. Web dashboard showing environment state of an office

A. Room Temperature Monitor (done)

Several staff offices have been equipped with supersensors
featuring temperature and light monitors. These simple envi-
ronmental sensors log readings with a frequency of 0.3Hz.
Figure 3 gives a webpage rendered view of the sensors.

Studies show that environmental factors like temperature
[8] and air quality [9] can have significant effects on the
productivity of office workers. Our web dashboard allows
users to identify optimal rooms for hot-desk working. It also
allows managers to monitor current environmental conditions
in the building.

B. Free Meeting Rooms (in progress)

We have installed a supersensor node with sound and motion
sensors in each public meeting room in the School of Com-
puting Science. Note that the sound sensor monitors a sound
envelope rather than a true audio stream. Generally, public
meeting rooms should be booked via a shared calendar system.
However the calendar data is often unreliable: sometimes ad-
hoc meetings occur without bookings if a room is seen to be



empty, and at other times scheduled meetings may be cancelled
without rescinding the calendar booking.

A remotely accessible sound sensor in each room allows
building users to find a meeting room that is currently free.
We define ‘free’ as a meeting where the sound level is lower
than a certain threshold, and has been below this threshold
value for a few minutes.

We are currently developing a smartphone app that super-
imposes meeting room sound levels on top of a schematic plan
of the building. This app has been requested by end-users, and
we will evaluate its deployment in detail.

One possible extension of this use case involves machine
learning. We intend to train each supersensor to recognise
different kinds of events based on different sound envelope
patterns, i.e. acoustic event detection [10], Ideally, the training
would be localized on each node due to the varying acoustics
of each room. This would require significant compute capa-
bility, which is provided by the powerful ARM supersensor
processor. It may be preferable to extract features from the true
sound signal rather than the envelope, to achieve better event
recognition accuracy. We will revisit this decision at a later
date. The audio processing could take place on each super-
sensor node, to avoid the privacy implications of transmitting
sensitive audio recordings across the network.

C. Room Occupancy Census (to do)
The estates management team at Glasgow is keenly inter-

ested in building utilization. They regularly monitor whether
teaching venues are in use, and if used, whether they are
occupied by an appropriate number of people. For instance,
it is inefficient to hold a class for 10 students in a 200-seat
lecture theatre.

A summary of recent studies [11] suggests that 20-40%
utilization is normal in a UK university. The UK Higher
Education Space Management Group (SMG) is a sector-wide
working committee that studies the problem of utilization.
Their report [12] presents data from a range of UK universities,
with the summary statistic that 27% utilization is the sector
average—this implies that the university provides 3.7m2 of
space for every 1m2 actually in use.

The SMG report acknowledges that the data is incomplete
and expensive to collect. A local census at Glasgow to
monitor utilization occurs once per semester. The management
reserves the right to penalize under-utilization on the part of
individual departments. Generally, a university administrator
with a clipboard traverses the campus and makes manual
observations during actual lecture events. In a smart campus,
it would be possible to use embedded sensors to detect
whether a particular room is in use, and how many people
are in that room. Binary room utilization might be as simple
as checking the value of a sound sensor or motion sensor.
More fine-grained measures of occupancy levels would require
complex sensor fusion, possibly based on counts of unique
wifi MAC addresses or motion sensors. Some researchers
have investigated using audio stream processing to infer the
number of people in a room [13] but this generally depends on

multiple individuals conversing during a meeting, rather than
a single lecturer delivering a monologue. Ideally, we could
use machine learning to tune such occupancy prediction over
time. It would be sensible to train a supersensor, by supplying
oracle occupancy values during an initial learning phase.

D. Custom Event Triggering (to do)
So far, we have incorporated five different sensors (light,

temperature, motion, sound and wifi) with individual sensor
nodes. In the previous use cases, sensor data is relayed to the
server, where event processing occurs for end-user applica-
tions. However it is also possible to support per-node complex
events. These events might be defined by individual users
for particular localized nodes. Example might be a sudden
increase in sound, light and temperature, which could indicate
a fire or an explosion.

The predefined combination of events could be logically
checked on the local node, then if the event is triggered, local
computation could be executed, e.g. issue alarm via email or
tweet. This is similar to existing ‘if this then that’ services,
but the logic and processing is local to the sensor node, rather
than executing on the server.

There may be potential issues due to nodes that are over-
loaded with queries. This is a possible vector for denial of
service attacks. We need to determine managed approaches
to event trigger registration. Another possibility is to offload
query processing to nearby devices, i.e. dynamically shift the
compute load. This is the approach of cyber foraging [14].

E. Robotic Support Infrastructure (to do)
In mobile robotics applications, it is useful to provide pre-

computed maps of the local environment. Our supersensor
nodes can provide a distributed infrastructure for storing and
broadcasting availability of local data sets. For example, a
robot might create a map of a room’s environment during its
first visit, and store this at the local sensor node.

Furthermore, the live sensor status data might also advise
autonomous robots to avoid or prioritize different rooms
depending on how crowded they are.

Robots and other mobile devices may also use our planned
ad-hoc networking facilities to access computational offload-
ing or other remote services.

V. RELATED WORK

Saffo [15] identifies sensors as the basis for a decade
of technical innovation. He refers to ‘smart artifacts’. To
develop this further, we consider the campus to be a ‘smart
environment’. Kyriazopoulou [16] reviews the notion of a
smart city and presents alternative architectural approaches to
realizing a smart environment. Our solution maps onto the IoT
category, in her review. Szabo et al. [17] present the notion
of a smart campus. However they use this term to refer to
students that engage in participatory sensing to crowd-source
information about lecture timetables and event information.
On the other hand, we focus on environmental (rather than
academic and organizational) data with our sensors.



Kukka et al. [18] describe a study to predict users’ informa-
tion needs in a smart city. They ask users which information
would be valuable, then build a system and observe which
information is accessed most frequently. News and maps
appear to be widely used; travel and event information much
less used. We intend to conduct a similar study to determine
campus users’ information requirements.

Yoneki [19] presents a sensor system build around Rasp-
berry Pi devices. Her key constraint is that she deploys this
system in a remote rural environment. Her nodes are battery
powered and use delay-tolerant networking to transfer data
between nodes via data mules. Many of her solutions are
also applicable for campus network deadspots in our system.
Banerjee et al. [20] use Raspberry Pi boards for medical sens-
ing applications. They justify the use of Raspberry Pi devices
because of their small footprint and low cost, combined with
relatively high compute performance. Ferdoush and Li [21]
describe a wireless sensor network deployment using low-cost
Arduino and Raspberry Pi boards. They contrast their solution
with earlier TinyOS-based research platforms, which are much
more difficult to configure and expensive to develop. Unlike
our system, they use the Raspberry Pi boards as base stations
for remote sensors which transmit sensor data to the Pi devices
via Zigbee.

Wang et al. [22] describe the StudentLife system, which
monitors student wellbeing on campus. Each student has a
mobile phone which captures sensor data such as sound,
light and motion. This data is fed into behavioural classifiers,
which are then correlated against student grades and self-
reported stress levels. The authors report significant correlation
between captured sensor data with student stress and academic
performance. Our system is much more coarse-grained, in
that we are capturing data at room-level rather than student-
level. However it could be used to perform similar longitudinal
academic studies.

VI. CONCLUSION

We have outlined the motivation for supersensors, based
on inexpensive Raspberry Pi devices attached to off-the-shelf
sensors. These supersensor nodes are currently being deployed
on the campus at the University of Glasgow, to support a
range of use cases. The sensor data is stored in a NoSQL
database server, and may be queried via a RESTful API.
Our currently deployed system includes ten nodes deployed
in a single university department. The typical network traffic
generated by each node is 0.2 KB/s, the database grows by
11 MB per day. A variety of end user apps should benefit
university administrators, students and staff alike.
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