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Abstract

Cloud Computing and Internet of Things (IoT) have evolved to meet
the requirements of many real-world applications. Many of these
requirements cannot be fulfilled by using either technology separately. In
order to fulfil such diverse requirements, the integration of Cloud
Computing and IoT is emerging as a new paradigm called Cloud of
Things (CoT). CoT is expected to host heterogeneous resources and
fulfil complex requirements of resource providers and consumers. This
complexity poses a real challenge for resource allocation in CoT. To
tackle this challenge, resource allocation is described as a trading
optimisation problem and utility functions are used to rank candidate
resource allocation assignments. The contributions of this paper are 1)
introducing vocabularies needed for trading CoT resources 2) proposing
a marketplace system architecture to enable efficient trading of CoT
resources 3) examining the use of different utility functions to rank
candidate resource assignments 4) performing simulations to validate the
effectiveness of the proposed approach using three optimisation
algorithms.

Keywords: Cloud Computing, Internet of Things, Cloud of Things,
Trading, Optimisation

1 Introduction

Cloud Computing transforms computing resources into a modern utility. Cloud
resources are provided as services over the Internet rather than as physical
assets. It is widely adopted in many applications such as e-learning, e-business,
health, logistics and manufacturing. The physical scope of Cloud Computing is
limited because it is focused on data-centres and does not interact with physical
world.

IoT is a technology that can be viewed as complementary to Cloud
Computing. The paradigm aims to interconnect heterogeneous things that can
interact with each other and the surroundings. This can overcome the limited
reachability of Cloud Computing to physical world events that are far away
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from Cloud data-centres. The applications of IoT spread over many domains
such as logistics, transportation, defence and public safety. The main
limitation of IoT resources is their constrained computational capabilities.

Due to the shortcomings of both technologies, considerable research efforts
argue for a new paradigm that integrates both technologies [1]. The new
paradigm is commonly known as Cloud of Things. CoT is expected to extend
the limited scope of the Cloud and provide IoT with virtually unlimited Cloud
resources. It enables many emerging applications that require the integration
of both Cloud Computing and IoT technologies.

Latency sensitive applications (e.g. military, emergency services) benefit
from the wide coverage of IoT resources in monitoring their operations while
utilising the power of Cloud resources in processing and storing data. Less
time-sensitive applications (e.g marketing, planning) utilise the scalability and
reliability of the Cloud to process big data generated from distributed IoT
resources and make decisions accordingly.

Despite the strong interest in integrating Cloud Computing and IoT, there
are still many open challenges [2]. One of the major issues is how efficiently CoT
resources can be shared especially the IoT physical resources. Using market-
based mechanisms to commodify resources is an approach used in similar large-
scale computing infrastructure to CoT such as Grids and federated Clouds [3].

The approach of trading CoT resources is motivated as follows. IoT
deployments normally require considerable investment in hardware, software
and maintenance. Such investment is not affordable to many communities and
it slows down the rate of IoT adoption [4]. In CoT marketplace, resources are
traded as commodities rather than as physical products and priced using
Cloud pay-per-use pricing model. The commoditisation of CoT resources will
likely to reduce the overall costs, enable sharing and reusing of IoT resources,
motivate for new services and applications.

Commoditisation of CoT resources is also motivated by many technical
and business benefits. Small and medium vendors are likely to invest in IoT
commodities reducing the chance of monopoly and market dominance by large
vendors similar to the Cloud market [5]. Competition in the emerging market
is expected to improve providers’ service level agreements (SLAs). It is also
expected to enable hardware and software innovations when a large number of
software developers and hardware makers respond to the requirements of the
CoT market.

The objective of this paper is to support the integration of Cloud and IoT and
to evaluate the use of optimisation approaches in trading CoT resources. The
contributions of this paper are summarised as follows: 1) vocabularies needed
for trading CoT resources are introduced 2) a marketplace architecture for CoT
resource trading is proposed 3) the use of different utility functions to evaluate
potential allocation assignments is investigated.

The remainder of this paper is as follows. Section 2 reviews the related work.
Section 3 describes the proposed architecture and defines the problem of trading
resources in CoT. Evaluation results are discussed in Section 4. Conclusions and
future work are presented in Section 5.
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Figure 1: CoT applications can request exclusive utilisation of certain IoT
resources. This approach enables shared access to and reusing of constrained
IoT resources. It is assumed that a single exclusive access to the resource(s)
from one consumer application during the lease time of the resource.

2 Related Work

Many resource management problems in large-scale computing infrastructures
are non-deterministic polynomial-time hard (NP-hard) [6]. This means there
are no best or exact solutions to such problems in a reasonable time due to the
complexity, scalability and uncertainty of users’ requirements. CoT is a large-
scale computing infrastructure by nature and its resource management aspects
are challenging [7, 8].

The efforts made to efficiently allocate resources when integrating Cloud
Computing and IoT is described in 2.1. The related work of resource allocation
in CoT by commoditising resources is reviewed in 2.2.

2.1 Resource Allocation when Integrating Cloud and IoT

An early attempt to integrate wireless sensor networks(WSNs) and Cloud
Computing has been discussed and implemented in [1]. The proposed
architecture enables WSNs tasks to be offloaded to Amazon EC2 Cloud. A
device/Cloud framework has been presented in [9] to enable collaboration
between smart devices and Clouds. The framework uses real-world case
studies to elaborate on the benefits of integrating smart devices and Cloud
Computing. A scalable CoT architecture has been developed in [10] along with
two algorithms to discover and virtualise IoT resources. The proposed
algorithms have been developed to minimise the number of physical resources
deployed and communication overhead. A detailed theoretical modelling for
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integrating sensors and Cloud Computing has been provided in [11] to
evaluate the cost-effectiveness and performance of the architecture.

Resource allocation techniques in IoT environment are still emerging. A
considerable amount of research investigates resource allocation in IoT as part of
other systems (e.g. Cloud Computing, CoT, WSNs). Authors in [12] categorise
approaches of resource allocation in IoT into three categories, namely, Cloud
only approaches, IoT Cloud approaches and IoT only approaches. IoT Cloud
approaches focus on integrating IoT resources into a Cloud as part of its services.
These approaches aim to enable on-demand provisioning of shared IoT resources
via the Cloud of Things.

A consensus-based framework has been developed in [13] to allocate IoT
resources in the Cloud. The goal of allocation algorithm is to improve the
lifetime of the connected resources. A three-tier CoT architecture has been
proposed along with the development of multi-objective scheme to optimise task
allocation in CoT [14]. The scheme aims to minimise the energy consumption
and latency. Another three-tier architecture is designed in [15] to enable sharing
of Cloud resources in vehicular networks. In this scenario, vehicles are the
Things of IoT. The intent of the proposed system is to reduce service dropping
rate. [16] proposes a resource allocation algorithm to enable Cloud providers
optimising the throughput, occupancy and utilisation of the IoT requests.

An architecture that integrates sensors and Cloud Computing for military
operations has been developed and implemented in [17]. Resource allocation in
the proposed architecture is based on user prioritises to improve the performance
and availability of resources for priority users. A model has been developed to
cooperate between airborne sensor network and back-end Cloud in [18]. The
model applies heuristics to minimise the travel time of the drones and failures
in meeting their deadlines.

2.2 Commoditisation of CoT Resources

A solution to resource allocation problem in CoT is to enable efficient resource
sharing. One of the main obstacles to this is the lack of support to share CoT
resources. An emerging trend argues for market mechanisms to trade resources
in large-scale infrastructures similar to CoT (e.g. Grids, Clouds, WSNs,
Vehicular Networks) [3, 5, 19].

A conceptual model has been proposed in [4] to argue for the creation of
trading-based value for IoT resources. The model aims to enable sharing and
reusing IoT resources by trading them similarly as Cloud resources. A
marketplace architecture is designed in [20] to commodify and trade CoT
resources. The trading problem is described as a multi-attribute combinatorial
problem and vocabularies needed for the trading process are introduced.

The development and implementation of a market-based model are
presented in [21]. The three-tier model considers the Cloud as a broker for IoT
resources. Resource allocation has been formulated as a multi-objective
optimisation problem aiming to allocate traded resources with the minimum
response time of the requests, minimum energy consumption of the system and
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maximum profit of the broker. A federation model for Cloud IoT providers has
been proposed in [22] to support market mechanisms. The goal of the
proposed model is to satisfy providers’ requirements and improve the rate of
resource utilisation of assigned tasks.

A combinatorial auction algorithm has been developed to allocate resources
in CoT [23]. The objective of the algorithm is to maximise the providers’
profit and rate of job completion. A reputation-based framework for CoT
architectures has been presented in [24]. The framework uses auction
procedure to select physical resources for sensing tasks and made payments for
users. An auction model has been designed in [25] to assign CoT computation
resources to the consumers. The model targets performance improvement
when allocating distributed IoT resources. Another auction-based algorithm
has been developed to in [26] to support resource allocation in CoT
environments. The proposed algorithm aims to maximise the providers’ profit
while maintaining their capacity constraints.

This paper builds on [20] to evaluate the use of optimisation algorithms
when trading CoT resources. The approach of using optimisation algorithms to
solve this trading problem is justified due to their capabilities in finding optimal
solutions to similar complex problems. In this case, the complexity resides here
due to the heterogeneity of Cloud and IoT resources that results in difficulties
when quantifying their value and leading to the involvement of multifaceted
variables and decisions.

3 trading of cloud of things resources

The rapid development of IoT hardware and software platforms reduces the
costs of building and deploying IoT applications. This makes CoT
deployments feasible and motivates commoditisation of its resources.
Commoditised resources can be greatly utilised in high-density areas (e.g.
metropolitan areas) where CoT resources can be offered to many consumers.
To elaborate, the following application scenario is presented.

Various IoT nodes including sensors and actuators are deployed by
multiple providers across one of the main streets in a metropolitan area. There
are different Cloud providers to provide Cloud resources (e.g processing,
memory and storage). Consumers can request resources for various
applications. For instance, law enforcement agencies can utilise footfall and
motion-detection sensors to monitor, analyse and manage public emergencies
(e.g. public events management, smart evacuation planning). A metropolitan
council can use environmental and footfall sensors to draw a map of activities
in the area and associated pollution caused so better management and
planning actions can be taken (e.g. traffic management, pedestrian pavement
planning). An illustration of CoT applications is shown in Fig. 1.
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3.1 Proposed Marketplace Architecture

For efficient commoditisation of CoT resources, global on-demand access,
efficient sharing, and optimal allocation of CoT resources have to be enabled.
In order to achieve this goal, a marketplace architecture for trading CoT
resources is proposed in Fig. 2. The proposed architecture and the process of
trading CoT resources are described in this section.

The resource request manager submits available resources/requests to the
optimiser. The optimiser consists of two components, namely utility directory
and optimisation tool. The utility directory maintains all utilities defined for
trading proposes (e.g. cost-based utilities, time-based utilities, performance-
based utilities). The optimisation tool implements most suitable optimisation
techniques to efficiently optimise matching providers to consumers. The optimal
assignment is submitted by the optimiser to the resource allocation manager.
The scheduler maintains the resource schedule and control the lease-time of
resources and manages the assignments of tasks in the Cloud. The allocator
orchestrates mechanisms of joining and dis-joining resources based on scheduler
plan.

This architecture is designed with consideration of flexibility and
dynamism required in CoT. The optimiser is the heart of the system, requires
minimal changes either by using different utility function or different
optimisation technique. It reduces the time required to find a better
assignment of resource allocation and increases the number of candidate
solutions.

3.2 Problem Statement

Resource allocation in CoT is formulated as an optimisation problem where
different optimisation algorithms are applied including Particle Swarm
Optimisation (PSO) [27], Differential Evolution (DE) [28] and Basin Hopping
(BH) [29]. These algorithms are selected for two reasons. They are
gradient-free and they are well known to solve problems similar to trading
CoT resources in complexity. The optimisation problem in this paper is
considered as a single-objective problem and the implementation is performed
accordingly.

The marketplace M consists of n number of consumers C = c1,...,cd who
request a number of resources R = r1,...,rj from m number of providers P =
p1,...,pm. Providers submit their resources and consumers submit their requests
to the resource request manager of the marketplace where they have to be
filtered to match the marketplace standards. The optimisation tool aims to
find the optimal solution that matches resources to consumers based on a set of
objectives. In CoT environment, many decision variables can be considered for
optimisation. In this section, vocabularies required for trading CoT resources
are defined in table 1. The objectives considered in this paper are described as
follows.

Objective 1: Maximising Provider Profit. The providers always aim to
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Table 1: List of vocabularies
vocabulary Description

M The marketplace

n Number of resource consumers

m Number of resource providers

r Resource

R Set of resources

c Resource consumer

C Set of resource consumers

p Resource provider

P Set of resource providers

bi Bid from consumer i

csj Cost of a resource from provider j

CS Total cost of set of resources

cm commission of the marketplace

ti Lease time of requested resource

rqi Request from consumer i

RQ set of consumer requests

E Energy consumption

Eri Energy required by consumer i

Epj initial power supply of a resource

Etmax Maximum transmission power of resource j

l Location of a resource

Lij Latency between consumer i and provider j

tstart Time of requesting a resource from a provider j

tack Time of receiving acknowledgement from a provider j

tqd Estimated queuing and transmitting delays

Rt Response Time

RLj Requests limit of provider j

sj Sensing range of resource j

Cv Area coverage of a resource

(xiyi) Location requested by consumer i

Mg Profit of the marketplace

Pg Profit of a provider

cpi Capacity requested by consumer i

cpj Total Capacity of provider j
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maximise their profit. A utility is needed to achieve this objective. csj donates
the cost of a resource from provider j and ti donates the requested lease time of
a resource by consumer i. The cost of allocating a resource to a consumer can
be calculated as (csj .ti). The utility for maximising the profit of providers can
be represented as follows:

Maximise Pg =

n∑
i=1

m∑
j=1

csj .ti (1)

The pseudocode of maximising provider profit utility is shown in Algorithm 1.

Algorithm 1 Utility for maximising provider profit

Input: 1) list of consumers with their requests’ attributes, 2) list of providers with
their resources’ attributes.

Output: assignment(consumers, providers) of best optimised profit
Function: Provider Profit Utility Function
1: Initialise cost and capacity counter to zero, assignments to empty
2: Loop over array of initial guess
3: Generate an assignment of (consumers, providers)
4: End Loop
5: Loop over list of generated assignments
6: If length(consumers) = length(assignments) AND capacity Counter < provider

Capacity AND consumer Bid ≤ provider Cost AND energy Requested ≤ energy
Offered

7: Then, calculate Provider Profit
8: Else, set provider Cost to minimum value
9: End Loop

10: increase capacity Counter
11: calculate profit of all participated Providers in the assignment
12: return profit of the assignment to optimizer
END Function

Objective 2: Maximising Resource Coverage. Consumers are
expected to look for resources that provide them with the maximum area
coverage when utilising resources. To achieve this goal, the sensing range of a
resource sj and the maximum transmission power level Etmax can be used to
measure how far a resource can reach (sj .Etmax). The requested location of
resources is equal for all consumers and formulated as A = (xiyi) that
represents rectangular grids of identical dimensions. The objective of
maximising the coverage is introduced as follows:

Maximise Cv =

n∑
i=1

m∑
j=1

sj .Etmax

Ai
+ sj (2)

Algorithm 2 shows the pseudocode of a utility maximising area coverage.
Objective 3: Minimising Response Time. Response time is also

considered one of the very important objectives to minimise in large-scale
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Algorithm 2 Utility for maximising area coverage

Input: 1) list of consumers with their resource requests’ attributes, 2) list of providers
with their resources’ attributes, 3) Area of requested resources

Output: assignment(consumers, providers) of best optimised coverage
Function: Coverage Utility Function
1: Initialise capacity counter to zero, assignments to empty
2: Loop over array of initial guess
3: Generate an assignment of (consumers, providers)
4: End Loop
5: Loop over list of generated assignments
6: If length(consumers) = length(assignments) AND capacity Counter < provider

Capacity AND consumer Bid ≤ provider Cost AND energy Requested ≤ energy
Offered

7: Then, calculate coverage of the requested resource
8: Else, set coverage to minimum value
9: End Loop

10: increase capacity Counter
11: calculate the coverage of all participated resources in the assignment
12: return the coverage of the assignment to optimizer
END Function

distributed systems. The latency between consumer i and provider j is
donated by Lij = tack − tstart which measures the elapsed time from
submitting the request by consumer i to the time of receiving an
acknowledgement from a provider j. Estimated queuing and transmitting
delays tqd are also considered here where they can be formulated as

tqd =
(Lij)
RQi

. The objective to minimise response time Rt is proposed as follows:

Minimise Rt =

n∑
i=1

m∑
j=1

Lij + tqd (3)

The pseudocode of the utility minimising the response time is shown in
Algorithm 3.

Objective 4: Minimising Energy Consumption. Another important
objective is to minimise the power consumption of matched resources while
being utilised by consumers. It can be measured by the difference between
the initial power supply of the resource and the estimated power consumption
requested by the consumer(Epj − Eri). The objective of power consumption
can be presented as follows:

Minimise E =

n∑
i=1

m∑
j=1

(Epj − Eri) (4)

Algorithm 4 presents the pseudocode of the utility minimising the energy
consumption.

Objective 5: Maximising Marketplace Profit. In case the marketplace
is non-volunteering or not a community-based, there will be fees for trading
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Algorithm 3 Utility for minimising response time

Input: 1) list of consumers with their resource requests’ attributes, 2) list of providers
with their resources’ attributes

Output: assignment(consumers, providers) of best optimised response time
Function: Response Time Utility Function
1: Initialise capacity counter to zero, assignments to empty
2: Loop over array of initial guess
3: Generate an assignment of (consumers, providers)
4: End Loop
5: Loop over list of generated assignments
6: If length(consumers) = length(assignments) AND capacity Counter < provider

Capacity AND consumer Bid ≤ provider Cost AND energy Requested ≤ energy
Offered

7: Then, calculate response time of requested resource
8: Else, set response time to maximum value
9: End Loop

10: increase capacity Counter
11: calculate response time of all participated resources in the assignment
12: return the response time of the assignment to optimizer
END Function

Algorithm 4 Utility for minimising energy consumption

Input: 1) list of consumers with their resource requests’ attributes, 2) list of providers
with their resources’ attributes

Output: assignment(consumers, providers) of best optimised energy consumption
Function: Energy Consumption Utility Function
1: Initialise capacity counter to zero, assignments to empty
2: Loop over array of initial guess
3: Generate an assignment of (consumers, providers)
4: End Loop
5: Loop over list of generated assignments
6: If length(consumers) = length(assignments) AND capacity Counter < provider

Capacity AND consumer Bid ≤ provider Cost AND energy Requested ≤ energy
Offered

7: Then, calculate energy consumption of participated resource
8: Else, set energy consumption to maximum value
9: End Loop

10: Increase capacity counter
11: Calculate the total energy consumption of resources in the assignment
12: return The total energy consumption of the assignment to optimizer
END Function
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CoT resources called a marketplace commission that is donated by cm. The
marketplace will aim to maximise its profit at each successful round of resource
allocation. bi is set as a bid of consumer i, csj donates the cost of a resource from
provider j and ti donates the requested lease time of a resource by consumer i.
The commission of the market can be presented as cm = (bi − csj).ti. The cost
of a resource is presented as csj . The objective to maximise the profit of the
marketplace (Mg) can be formulated as follows:

Maximise Mg =

n∑
i=1

m∑
j=1

cmij + csj (5)

The pseudocode of the utility maximising Mg is provided in Algorithm 5.

Algorithm 5 Utility for maximising marketplace profit

Input: 1) list of consumers with their resource requests’ attributes, 2) list of providers
with their resources’ attributes

Output: assignment(consumers, providers) of best optimised marketplace profit
Function: Marketplace Profit Utility Function
1: Initialise capacity counter to zero, assignments to empty
2: Loop over array of initial guess
3: Generate an assignment of (consumers, providers)
4: End Loop
5: Loop over list of generated assignments
6: If length(consumers) = length(assignments) AND capacity Counter < provider

Capacity AND consumer Bid ≤ provider Cost AND energy Requested ≤ energy
Offered

7: Then, calculate marketplace profit
8: Else, set marketplace profit to minimum value
9: End Loop

10: Increase capacity counter
11: Calculate the total marketplace profit from the assignment
12: return The total marketplace profit to optimizer
END Function

Each resource provider has a limited capacity for offering its resources to
consumers. The capacity of the provider has to be greater than or equal to the
total capacity requested from consumers. A capacity constraint is introduced
as follows:

n∑
i=1

cpi ≤ cpj

where j ∈ P

(6)

cpi in constraint (6) donates the capacity required by consumer i while cpj is
set to total capacity of provider j.

Constraint (7) shows the cost of a resource csj and the bid from consumer
bi have to be positive and bi has to be greater than or equal csj .

0 < csj ≤ bi (7)
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Constraint (8) ensures the initial power Epj of a resource and the estimated
power consumption of the consumer Eri are positive values and Eri is less than
Epj . The three constraints are applied together to all utility functions used in
this paper.

0 < Eri ≤ Epj (8)

4 Evaluation

This section presents a proof of concept evaluation of trading CoT resources. A
3-tier marketplace system architecture is proposed to perform set of simulations.
Simulations have the following aims: 1) evaluate the feasibility of using market
mechanisms to efficiently allocate CoT resources, 2) test various utility functions
to propose candidate assignments of consumers/providers or resources/requests,
and 3) evaluate the use of three optimisation techniques in CoT trading setup.

4.1 Simulation Setup

The marketplace is assumed to find the optimal assignment of providers to
consumers based on the five utilities introduced earlier. As mentioned earlier in
section 3.2, this paper considered the problem as a single objective optimisation
problem and the utility functions are optimised individually. The scenario used
in all simulations in this section is presented as follows. A number of 100
providers submit their resources to the marketplace to match them with requests
of 50 consumers.

Three optimisation techniques are used to find the optimal solutions. The
three techniques implemented without modification or improvement using
Python programming language. A maximum number of 200 iterations is
allowed for all techniques and swarm size of PSO is set to 100. Simulations are
performed on a computer with the following hardware specifications:
Processor: 2.6 GHz Intel Core i7, Memory: 16 GB 1600 MHz DDR3.

4.2 Simulation Results

This section is dedicated to discuss the results of simulations performed in this
paper. Results presented in Fig. 3 to Fig. 7 compare optimal solutions found
at the end of certain iterations. Table 2 summarises the utility values in terms
of minimum, average and maximum values at the end of the last iteration.

Fig. 3 shows the provider profit utility. It is clear that DE considerably
outperforms PSO and BH respectively in maximising the profit of the provider.
DE and PSO maintain a steady increase in optimised profit overtime while BH
experiences a sharp increase between iteration 1 and 75 before it maintains
reasonable increases to the last iteration.

Fig. 4 illustrates the utility to minimise response time. It shows a
competition between PSO and BH to minimise the response time while DE is
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Figure 3: Profit of Provider

Figure 4: Response time
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Figure 5: Energy Consumption

Figure 6: Area Coverage

clearly falling behind. BH takes more iterations than PSO to converge but
both algorithms find the same optimal response time.

In Fig. 5, the utility of minimising energy consumption is illustrated. PSO
is notably better than DE and BH. PSO minimises the energy consumption and
converged in a fewer number of iterations than DE and BH. It is also observed
all algorithms experience sharp drops between iteration 1 and iteration 25 before
starting to maintain steady decreases

Fig. 6 shows the utility for maximising the coverage of requested resources.
PSO outperforms the others while differential Evolution falls behind again. The
three algorithms have sharp increases between iteration 1 and iteration 25 before
maintaining steady increases. DE seems to be trapped by a local coverage
optimal value.

The utility for maximising the profit of the marketplace is shown in Fig. 7.
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Figure 7: Profit of marketplace

PSO and BH significantly maximise the profit of the marketplace than DE but
PSO outperforms the others and converged to the optimal marketplace profit.

4.3 Discussion

The problem of resource allocation in CoT is presented as a single-objective
trading optimisation problem. The simulation results show that the approach
used in this study is promising and have several benefits. The results show the
feasibility of using various optimisation algorithms as a market mechanism for
trading CoT resources. Results also show at least one optimisation technique is
able to find an optimum solution in all utilities proposed.

The approach taken in this paper also demonstrates that the proposed
marketplace architecture can decrease the architectural complexity in CoT.
The use of utility functions along with vocabularies proposed shows their
effectiveness in quantifying the value of various CoT resources. This implies
potential higher satisfaction for the requirements of CoT consumers/providers
and higher utilisation of CoT resources.

Implementation issues are summarised as follows. 1) BH algorithm requires
setting more parameters (e.g. temperature, step size, interval) than PSO and
DE. It requires careful tuning of parameters to obtain better results. It is more
complex than other algorithms applied and a bit slower in convergence. 2)
Falling into local optima (minima and maxima) may not be avoidable in some
situations by all optimisation techniques used in this paper.

5 Conclusions and Future Directions

The problem of resource allocation in CoT is investigated. Trading CoT
resources using market mechanism is the approach considered to solve the
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Table 2: Simulation Results Comparison
Algorithm(Utility) Min Avg Max

PSO(Pg) 44.54 100.67 137.42
DE(Pg) 87.72 124.44 158.47
BH(Pg) 81.55 117.12 127.44

PSO(CV ) 77.66 83.17 85.06
DE(CV ) 73.20 77.55 81.76
BH(CV ) 81.24 82.11 84.10
PSO(Rt) 3.27 4.08 20.20
DE(Rt) 18.67 25.86 32.42
BH(Rt) 3.27 4.37 6.49
PSO(E) 25.32 28.92 36.28
DE(E) 26.58 33.55 40.59
BH(E) 26.70 28.79 31.43

PSO(Mg) 21.30 29.18 29.71
DE(Mg) 18.30 21.63 24.41
BH(Mg) 26.41 27.36 29.01

problem. The problem is formulated as a single-objective optimisation
problem. Vocabularies needed for trading CoT resources are introduced to
provide necessary trading notations. Three gradient-free optimisation
algorithms are applied to optimise utility functions including provider profit,
response time, energy consumption, area coverage and profit of the
marketplace. An architecture of CoT marketplace system is proposed and
discussed.

Simulation results confirm the feasibility of trading heterogeneous CoT
resources from multiple providers and consumed by multiple consumers. The
use of utility functions along with the vocabularies proposed enabled
quantifying the value of CoT resources. Results show the out-performance of
PSO algorithm when compared with Differential Evolution and Basin
Hopping.

Planned future work focusses on the following: 1) investigating the
scalability of our approach when optimising larger sets of resources for a larger
number of consumers and providers 2) Optimising more utility functions
including makespan, performance and security 3) Performing further
simulations with different optimisation techniques.
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