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Abstract—3D motion capture data is a specific type of data
arising in the Internet of Things. It is widely used in science and
industry for recording the movements of humans, animals, or
objects over time. In order to facilitate efficient spatio-temporal
access into large 3D motion capture databases collected via
internet-of-things technology, we propose an efficient 2-Phase
Point-based Trajectory Search Algorithm (2PPTSA) which is
built on top of a compact in-memory spatial access method. The
2PPTSA is fundamental to any type of pattern-based investiga-
tion and enables fast and scalable point-based pattern search in
3D motion capture databases. Our empirical evaluation shows
that the 2PPTSA is able to retrieve the most similar trajectories
for a given point-based query pattern in a few milliseconds with
a comparatively low number of I/O accesses.

Keywords-3D motion capture data; spatio-temporal trajecto-
ries; point-based patterns; query processing; spatial indexing

I. INTRODUCTION

3D motion capture data is considered to be a specific type
of data arising in the Internet of Things. It captures and
digitizes the movements of humans, animals, or objects over
time in a three-dimensional Euclidean space. This type of
data is widely used in academia and industry, for instance,
for entertaining purposes, medical applications, film-making,
and video game development. 3D motion capture data has
the advantage of reflecting the aforementioned movements
with the highest possibly degree of accuracy.

The spatio-temporal movements are recorded over time
by means of one or multiple markers which are attached to
the subjects’ relevant parts. Each of these markers thus leads
to a finite sequence of multi-dimensional points, referred to
as trajectory, in the 3D motion capture data space. Besides
individual multi-dimensional points, trajectories are thus
atomic elements within 3D motion capture databases.

When analyzing and investigating 3D motion capture
databases, i.e., when aiming at retrieving and mining tra-
jectories in a top-down or bottom-up manner with respect
to a user-specific information need, the question of how
to formalize and evaluate queries [1], [2], [3] and how to
find the most similar trajectories [4], [5], [6], [7], [8], [9],
[10] efficiently becomes of major importance. In particular,
searching the most similar trajectories with respect to a
specific point-based pattern, which is one of the most
fundamental operations in nearly any retrieval or mining

approach, has to be carried out with the highest possible
degree of efficiency and scalability.

In this paper, we propose the 2-Phase Point-based Tra-
jectory Search Algorithm (2PPTSA), which is a fast query
processing algorithm for determining the most similar tra-
jectories with respect to a given point-based query pattern.
Supported by an in-memory spatial access method, the
2PPTSA first gathers possible candidate trajectories without
any I/O operation and then filters out dissimilar trajectories
by accessing the underlying motion capture database. In
this way, the 2PPTSA minimizes the number of database
accesses and maintains scalability. To sum up, we make the
following contributions:
• We propose the 2-Phase Point-based Trajectory Search

Algorithm (2PPTSA) for fast and scalable query pro-
cessing.

• We investigate the internal parameters of our proposal
on a 3D motion capture benchmark database and em-
pirically show the high efficiency of our approach.

The remainder of this paper is structured as follows:
The problem of point-based trajectory search is introduced
in Section II. Related work is presented in Section III.
While the in-memory spatial index structure is discussed in
Section IV, we propose the 2-Phase Point-based Trajectory
Search Algorithm in Section V. Section VI provides the
results of our performance analysis before we conclude the
present paper with an outlook on future research directions
in Section VII.

II. POINT-BASED TRAJECTORY SEARCH

The problem of point-based trajectory search is charac-
terized by a spatio-temporal query pattern and the task of
determining the most similar trajectories with respect to
that pattern. In this paper, we abstract from complex query
patterns and formalize a point-based query pattern Q over
the three-dimensional Euclidean space R3 as follows:

Q = {qi}mi=1 ⊂ R3 (1)

In addition to a point-based query pattern, a trajectory
t ∈ T of length n is defined as a finite sequence of points in
R3 abstracting from concrete time information as follows:

t : {1, . . . , n} → R3, (2)



where t(i) = (xi, yi, zi) ∈ R3 represents the coordinates of
trajectory t at time i ∈ [1, . . . , n]. The trajectory space T =⋃
k∈N{t|t : {1, . . . , k} → R3} comprises all trajectories and

is a superset of a finite 3D motion capture database db ⊂ T.
Given a point-based query pattern Q and a single tra-

jectory t ∈ db, we model the dissimilarity D(Q, t) :
P(R3) × T → R+ between Q and t by making use of a
ground distance δ : R3×R3 → R as shown in the following
equation:

D(Q, t) =

m∑
i=1

min{δ(qi, tj)|1 ≤ j ≤ n} (3)

Intuitively, each query point qi ∈ Q is matched to the
most similar point tj from trajectory t with respect to
the ground distance δ, and these matching dissimilarities
are linearly combined in order to determine the similarity
relation between Q and t. The closer a trajectory passes the
query points, the higher its similarity value and vice versa.

Based on this similarity model, we can now formally de-
fine the corresponding point-based trajectory search problem
via a k-nearest-neighbor query as the smallest set NNk ⊆ db
with |NNk| ≥ k such that ∀t ∈ NNk,∀t′ ∈ db \ NNk :
D(Q, t) ≤ D(Q, t′). Hence, for a given set of query features
Q, the task is to efficiently determine the k-most query-
like trajectories in a database db such that the dissimilarity
values of all other trajectories are greater than or equal to
the dissimilarity values of the retrieved trajectories.

Before we show how to solve this problem efficiently by
the 2-Phase Point-based Trajectory Search Algorithm, we
briefly outline related work in the following section.

III. RELATED WORK

Spatio-temporal patterns arising in 3D motion capture
data are mainly investigated in terms of gesture recogni-
tion which aims at recognizing meaningful expressions of
human motion including hand, arm, face, head, and body
movements [11]. An extensive overview of the many facets
of gesture recognition can be found for instance in the
following surveys: [12], [13], [14], [15], [11], [16], [17],
[18], [19].

Frequently encountered approaches for recognizing man-
ual gestural patterns are based on Hidden Markov Models
[20], [21], [22], [23] or more generally Dynamic Bayesian
Networks [24]. More recent approaches are for instance
based on Feature Fusion [25], Dynamic Time Warping
[26], [27], Longest Common Subsequences [28], or Neural
Networks [29].

The (dis)similarity between two spatio-temporal trajecto-
ries can be assessed for instance by the Levenshtein Dis-
tance [4], the Minimal Variance Matching [5], the Longest
Common Subsequence [6], [7], the Edit Distance with Real
Penalty [8], the Edit Distance on Real Sequences [9], or the
Mutual Nearest Point Distance [10]. More complex multi-
dimensional spatio-temporal patterns can be compared with

the Gesture Matching Distance [30]. In particular the latter
has been investigated in terms of efficient query processing
[31], [32], [33], [34].

IV. IN-MEMORY SPATIAL INDEX STRUCTURE

In addition to the trajectories stored in the underlying
motion capture database db, a spatial index structure idx
is used in order to aggregate the points of the trajectories
and to prune dissimilar trajectories from the search space as
early as possible.

We propose to index trajectory points individually by an
in-memory spatial index structure. To this end, the trajectory
points are aggregated by means of nodes N = {ni}mi=1

that are endowed with a closure operator cl(ni) such as
a minimum bounding rectangle. Together with the closure
operator, each node ni ∈ N stores the identifiers of the
corresponding trajectory points, which we assume to be
integer-valued keys, i.e., id ∈ N. In this way, each node
compactly abstracts from the concrete trajectory points in
R3 to the corresponding keys in N, and allows for further
compression. Furthermore, each node ni supports the com-
putation of the minimum distance δ−(p, ni) and maximum
distance δ+(p, ni) between a point p ∈ R3 and the node ni
as follows:
• minDist(Point p): This method is used to deter-

mine the minimum distance δ between a point p and
the convex hull of ni derived from the closure operator
cl(ni). It is typically invoked with a query point in
order to lower bound dissimilarities w.r.t. the indexed
points. The result of ni.minDist(p) is defined as:

δ−p = min{δ(p, g) | g ∈ cl(ni)} (4)

• maxDist(Point p): Equivalent to the previous op-
eration, this method determines the maximum distance
δ between a point p and the convex hull of ni de-
rived from the closure operator cl(ni). It is typically
invoked with a query point in order to upper bound
dissimilarities w.r.t. the indexed points. The result of
ni.maxDist(p) is defined as:

δ+p = max{δ(p, g) | g ∈ cl(ni)}. (5)

Based on the aggregation of points into nodes N , any
spatial index structure idx has to provide the following
sorted-access method:
• next(Point p): This method is used to incre-

mentally traverse the index structure and return the
next nearest node ni with respect to the distance
ni.minDist(p). It is typically invoked with a query
point in order to perform sorted access within the
index structure. Repeated calls to this method for the
same point p result in an ordered sequence of nodes
nπ(1), nπ(2), . . . , nπ(m) such that the following holds
for i ≤ j:

nπ(i).minDist(p) ≤ nπ(j).minDist(p) (6)



We implemented the generic methods above on top of a
modified variant of the R*-tree [35], where the nodes only
store the integer-valued keys of the corresponding trajecto-
ries together with their corresponding minimum bounding
rectangles, which can be efficiently encoded by the vec-
tors lower, upper ∈ R3 reflecting the node’s minima and
maxima in each dimension. The method next(Point p)
was implemented by a priority queue as described in [36],
in order to minimize the number of node accesses when
traversing the index structure incrementally.

V. 2-PHASE POINT-BASED TRAJECTORY SEARCH
ALGORITHM

The proposed 2-Phase Point-based Trajectory Search Al-
gorithm (2PPTSA) is a fast query processing algorithm that
utilizes a compact in-memory spatial index structure in order
to efficiently process point-based queries with a miminum
number of I/O cost. Due to the ability of exchanging
the index structure and the stage-wise modularity of the
algorithm, the 2PPTSA epitomizes a highly customizable
and scalable solution for point-based access to large 3D
motion capture databases.

The main concept of the 2PPTSA is to determine the
most similar trajectories with respect to a point-based query
pattern, cf. Section II, by exploiting an efficient consecutive
stage-wise processing of indexed trajectory points. In the
first phase – candidate generation phase – the 2PPTSA
aims to generate candidate trajectories, which potentially
contribute to the retrieval results, and to approximate their
dissimilarities solely based on the in-memory spatial index
structure. To this end, the trajectory points are incrementally
retrieved from the index structure, i.e., the nodes com-
prising identifiers are retrieved, and the dissimilarities are
approximated accordingly by lower and upper bounds. In the
second phase – candidate refinement phase – the 2PPTSA
aims to refine the candidates with the lowest dissimilarity
approximations by computing their exact dissimilarity val-
ues D(Q, ·), cf. Equation 3, by accessing the underlying
motion capture database. To ensure that the number of I/O
operations, i.e., number of database accesses, is minimal, the
candidate trajectories are strictly refined in ascending order
with respect to the dissimilarity approximations.

A. Algorithm

After initializing the variables and data structures [lines
1-6], the algorithm executes the candidate generation phase
[lines 7-25] prior to the candidate refinement phase [lines
26-37]. In doing so, the algorithm maintains the following
variables: the variable matchings contains the ids of the
trajectories that have already been processed during the
candidate generation phase and indicates the query points
to which the minimum distances have been computed. The
variables lb and ub store the lower and upper bound approxi-
mations of the trajectories. These variables are incrementally

Require: 3D motion capture database db, index structure
idx, point-based query pattern Q = {qi}mi=1, nearest
neighbors k, incremental k-NN range ∆k

Ensure: k-nearest-neighbors NNk ⊆ db

1: matchings← Map<BitSet>
2: lb← Map<Double>
3: ub← Map<Double>
4: candidates← List<(id, D̃id)>
5: results← MaxHeap<(t,Did)>
6: δmax ← idx.diameter()
7: repeat
8: θ ← 0
9: for all qi ∈ Q do

10: for j = 0 to ∆k do
11: node← idx.next(qi)
12: δ− ← node.minDist(qi)
13: δ+ ← node.maxDist(qi)
14: for all id ∈ node do
15: if id /∈ matchings then
16: matchings[id]← BitSet(m)
17: ub[id]← m · δmax

18: candidates.add(id, ub[id])
19: if !matchings[id][i] then
20: matchings[id][i]← true
21: lb[id]← lb[id] + δ−

22: ub[id]← ub[id]− δmax + δ+

23: θ ← θ + δ−

24: candidates.sortBy(D̃id)
25: until θ > candidates[k]
26: upperToLower(candidates)
27: while !candidates.isEmpty() do
28: 〈id, D̃id〉 ← candidates.pop()
29: if results.size() = k ∧

results.peek().distance() ≤ D̃id then
30: return results
31: else
32: t← db.getTrajectory(id)
33: Did ← dissimilarity(Q, t)
34: results.push(〈t,Did〉)
35: if results.size() > k then
36: results.pop()
37: return results

adapted. The variable candidates comprises the candidate
trajectory ids together with their dissimilarity approxima-
tions, while the variable results contains the trajectories
with their exact dissimilarity values. The latter is only used
during the candidate refinement phase.

In the candidate generation phase [lines 7-25], the algo-
rithm iterates over all query features qi ∈ Q and retrieves the
next ∆k nodes from the index structure idx, while updating
the variables matchings, candidates, lb, and ub with the
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Figure 1. Performance results of the 2PPTSA by varying the query pattern size between 2 and 10.
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Figure 2. Performance results of the 2PPTSA by varying parameter k of the result size between 1 and 1000.

trajectory ids appropriately. In this way, the candidate tra-
jectories are gathered with increasing radii around the query
points and their lower and upper bound approximations are
refined. The threshold θ is used to indicate the maximum
dissimilarity of completely processed trajectories, i.e., the
exact dissimilarity values of trajectories that have been
completely processed and are below the threshold θ, and to
early terminate the candidate generation phase. This phase
terminates when k candidate trajectories have been found,
whose upper bound approximations are smaller than the
current threshold θ [line 25].

After terminating the candidate generation phase, all up-
per bound approximations are converted to lower bound ap-
proximations [line 26], and the candidate refinement phase is
initialized. The algorithm then iterates over the candidates
in ascending order with respect to the lower bound dissimi-
larity approximations as long as better results can be found
[line 29] and updates the results with trajectories loaded
from the underlying motion capture database db and their
exact dissimilarity values where appropriate [lines 32-36].

It can be shown that the 2PPTSA is correct and that the
algorithm returns the exact k-nearest-neighbors as specified
in Section II. Moreover, based on the information gathered
in the candidate generation phase and the processing of
trajectories in the candidate refinement phase, it can also be
shown that the number of database accesses, i.e., the number
of I/O operations, is minimized by the 2PPTSA. We thus
conclude, that the proposed algorithm provides an efficient

and scalable solution for point-based query processing.

VI. PERFORMANCE ANALYSIS

In this section, we evaluated the performance in terms
of efficiency of the proposed 2PPTSA by utilizing the 3D
Iconic Gesture Dataset1 [37]. This dataset comprises 1,739
iconic gestures from 29 participants depicting entities, ob-
jects, and actions. Based on the provided 3D skeleton motion
capture data, which was recorded via Microsoft Kinect,
we extracted more than 35k trajectories from all available
markers in the three-dimensional Euclidean space R3 which
we additionally normalized to the interval [0, 1]3 ⊂ R3.

The 2PPTSA was implemented in Java and the exper-
iments were conducted on a 2.5 GHz machine equipped
with 16 GB main memory. The default parameters are as
follows: query pattern size |Q| = 6, number of nearest-
neighbors K = 100, incremental k-NN range ∆k = 40, and
a query workload of 100 randomly generated point-based
query patterns.

The performance results of the 2PPTSA with respect to
a varying query pattern size between 2 and 10 are shown
in Figure 1. As can be seen in the figure, by increasing the
size of the query patterns, i.e., the number of points in Q,
from 2 up to 10, the query response times increase from
33ms to 85ms on average. Concomitant with this increase
in time, the number of candidates that are examined in the
candidate generation phase grows from 4,546 up to 12,583

1http://projects.ict.usc.edu/3dig/



on average. The I/O cost, however, approximately stay at an
average value of 1,800 database accesses.

By varying the number K of nearest-neighbors, as shown
in Figure 2, the aforementioned values increase. When the
result size grows by a factor of 10, i.e., from K = 100
to K = 1, 000, the query response time only increases by
a factor of 2.6 from 65ms to 169ms, while the number of
candidates and the I/O cost grow with an even smaller factor.

To sum up, our performance evaluation shows that the
proposed 2PPTSA is able to process point-based queries
efficiently with a minimal amount of I/O cost. In particular
when indexing the utilized 3D motion capture database with
an in-memory spatial index structure, as described in Section
IV, our proposal enables fast point-based pattern search in
the order of milliseconds and is thus a fundamental access
method for further analyzing and mining 3D motion capture
databases.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of point-
based trajectory search in 3D motion capture databases, as
an example for a specific type of data arising in the Internet
of Things. To this end, we have proposed the 2-Phase Point-
based Trajectory Search Algorithm (2PPTSA) for fast and
scalable query processing and shown that our approach is
able to efficiently determine the most similar spatio-temporal
trajectories with respect to point-based query patterns in the
order of milliseconds.

The results reported in this paper are promising and
indicate the performance of the proposed approach for
searching and analyzing not only 3D motion capture data
but also other internet-of-things data. As this approach is
ongoing work, we intend to address the following research
directions in the future: (i) investigation of different spatial,
metric, and ptolemaic access methods [38] as well as SQL
and NoSQL databases for indexing and storing trajectories,
(ii) the investigation of complex query patterns, including the
weighting and ordering of query points, (iii) the development
of trajectory mining approaches on top of the 2PPTSA, and
(iv) an in-depth empirical evaluation based on large-scale
internet-of-things databases.
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and long-term prediction of human motion,” in Computer
Vision Systems, 2008, pp. 23–32.

[5] L. J. Latecki, V. Megalooikonomou, Q. Wang, R. Lakaem-
per, C. A. Ratanamahatana, and E. Keogh, “Elastic partial
matching of time series,” in PKDD, 2005, pp. 577–584.

[6] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh, “Indexing multi-dimensional time-series with sup-
port for multiple distance measures,” in SIGKDD, 2003, pp.
216–225.

[7] M. Vlachos, G. Kollios, and D. Gunopulos, “Elastic trans-
lation invariant matching of trajectories,” Machine Learning,
vol. 58, no. 2-3, pp. 301–334, 2005.

[8] L. Chen and R. Ng, “On the marriage of lp-norms and edit
distance,” in VLDB, 2004, pp. 792–803.
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