
This document is published in:

41st Annual Frontiers in Education Conference: Celebrating 41
Years of Monumental Innovations from Around the World.
Rapid City, South Dakota, October 12-15, 2011 (2011). IEEE,
61-66.
DOI: http://dx.doi.org/10.1109/FIE.2011.6142902

Ins t i tu t ional Repos i tory

© 2011 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

http://dx.doi.org/10.1109/FIE.2011.6142902
http://e-archivo.uc3m.es/

Towards Flexibility on IMS Learning Design
Scripts

Luis de-la-Fuente-Valentín, Derick Leony, Abelardo Pardo, Carlos Delgado Kloos
University Carlos III of Madrid, lfuente@it.uc3m.es, dleony@it.uc3m.es, abel@it.uc3m.es, cdk@it.uc3m.es

Abstract - IMS Learning Design is considered by many
authors the "de facto" standard in educational modeling
languages. The versatility of the framework enables its
use in very different situations. However, such versatile
framework is usually hidden by its complex
management. One handicap identified in practical
experiences is the lack of flexibility of scripted courses
during the enactment phase. The activity sequence and
learning resources are rigidly defined during authoring.
This fact makes difficult to react to unexpected events
that may happen in live courses. Also, this rigidness does
not allow instructors to give "their personal touch" to
courses. This paper presents the improvements made on
GRAIL - an IMS LD compliant player- aimed at the
support of a flexible enactment phase. Two types of
modifications are considered: the modification of the
learning flow and the management of course content
with a wiki engine. Finally, this paper discusses how the
integration of third party services in the activity
sequence relaxes the rigidness of scripted learning flows.
Experiences deployed in real scenarios allowed analyzing
how such integration offered flexibility in practical
situations.

Index Terms - Flexibility, IMS learning design, Scripted
courses, Service integration.

INTRODUCTION

The rapid evolution and adoption of the so called Web 2.0
provides the world of e-Learning with several affordances
that change the way we interact with people through the
Internet. Social applications like blogs, bookmarking tools,
and wikis have impacted learning and teaching methods [1].
However, this increasing number of available resources does
not implicitly produces learning: there is a need for
structuring learning materials according to existing or
emerging pedagogical models so that the interaction with
peers and resources results in the desired knowledge
acquisition. Learning scripts, which have been proved to be
effective in different types of scenarios ([2]-[4]), are a
representation of the learning flow that helps course
participants know what to do at each moment. Thus, scripted
courses allow blending pedagogical models with emerging
computer-based learning resources.

In parallel, course packaging specifications play an
important role in the current market. Shareable Content
Object Reference Model (SCORM), the most widely

accepted framework [5], promotes course reusability and
interoperability as the major factor for its success. However,
SCORM based courses have severe drawbacks in the
orchestration of resources [6] that results in the impossibility
of adapting the course content depending of the scenario
where it is being delivered.

The specification IMS Learning Design (IMS LD) was
built on the basis of reusability and interoperability to allow
complex pedagogical models to be applied [7]. With these
two assumptions, the specification was expected to be
widely adopted by the e-Learning industry but, years after its
publication, these expectations have not been accomplished.
One of the reasons of this low impact on real scenarios is the
lack of the flexibility promoted by the model. Despite it is
not imposed by the specification, current supporting tools
favor the division of the course life-cycle in three isolated
phases. The practical experience with IMS LD reveals that
the result of this division is a lack of flexibility that
negatively affects the adoption of the specification.

This work presents the improvements of GRAIL, the
IMS LD runtime environment for .LRN [8], are oriented
towards achieving a flexible tool that reduces the gap
between the specification and instructors. We present two
major developments: flexible enactment phase and services
integration. The former allows instructors to quickly react to
unexpected situations in a way that the pedagogical model of
the course is not affected by introduced changes. The latter
aims at allowing arbitrary web 2.0 services to be included as
part of a learning experience, including course adaptation
based on third party data.

The rest of this paper is organized as follows. Next
Section introduces the educational modeling languages as a
way to produce learning scripts, and discuss the need of
flexibility of such type of courses. Third Section presents the
functionality developed in GRAIL towards course
flexibility. Section four present examples extracted from
practical experiences were the GRAIL functionality was
used to tackle unexpected situations. Finally, the conclusions
of this work are presented.

FLEXIBILITY IN LEARNING SCRIPTS

Course content delivery can be driven by the so called
learning scripts: a pre-programmed set of activities that is
enacted by the course actors. On one hand, learning scripts
improve the pedagogical expressiveness of courses. On the
other hand, the use of pre-programmed activities reduces the
flexibility of the course flow. This section introduces the

1

concept of learning script and discusses the need of
flexibility.

I. Learning Scripts

There are many well-known situations in which our behavior
usually follows a predictable pattern, for example when we
go to a restaurant, we usually ask for a table, then order the
meal, then eat it, etc. The mental representation of
procedures present in those patterns is what cognitive
science calls scripts [9]. In education, external
representations of procedures are used to structure face-to-
face learning, blended learning and distance education.
Instructional design techniques, understood as the process of
translating pedagogical model's principles of learning into a
structured plan of activities and materials [10], take
advantage of scripted learning to help students and teachers
focus their attention on the relevant parts of the learning
process [2]. In collaborative learning, for example, scripts
are used to produce a desired interaction among course
participants [3]. In general, they serve as a supportive
strategy that encourages students to work on specific aspects
which otherwise would be ignored or neglected.

There exist several manners to present structured
learning flows. Instructors can provide a textual
representation in form of clues or tables, or they can take a
more graphical approach, such as activity diagrams. The
way a script is presented influences the students' perception
of the different course elements [2]. Educational Modeling
Languages (EML) -like IMS Learning Design- provide a
meaningful vocabulary to capture all the elements of a
learning flow. Thus, a course definition usually declares the
interactions among course participants and course material.
A script constructed with this technique is able to be
reproduced in a compliant runtime engine, promoting
reusability of scripts. During course enactment, the runtime
engine analyzes the course state and delivers the
corresponding material at each moment. IMS LD provides a
framework that enables a wide range of pedagogical models
to be expressed. The specification provides a modeling
language whose elements allow the creation of adaptive
material [11] or collaborative tasks [12], among others. A
course written with IMS LD is called a Unit of Learning
(UoL).

The use of Modeling Languages implicitly imposes
three different parts in the life-cycle of the course: authoring,
deployment and enactment. The first stage is devoted to
define the interactions among course elements and the
conditions imposed to the different activities; the
deployment stage takes the generic description of the course
and allocates the resources (course participants, material) to
instantiate this description into an actual course. The last
phase is the enactment, in which the course participants
interact among themselves and with the course material.

II. Definitions of Flexibility

There is no agreement on the meaning of flexibility in the
context of learning. In several works, the term is related to

the possibilities that a platform offers to be used anywhere,
anytime [13]. Thus, a course is said to be flexible if it allows
course participants to interact with peers with no place or
time restrictions. In other cases, course flexibility is used as
a synonym of adaptability [14] a flexible course delivers
different material or activities depending on the user profile
of the course participants. According to Dillenbourg [15],
there is a difference between the interactions expected to
appear in a course (the planned script) and what happens
once the script is deployed and enacted (the actual
interaction pattern). Flexibility is then related with the
options that course participants have to tackle with this
distance. That is, a flexible learning flow will provide
mechanisms to deal with unexpected events that may affect
the proper development of the learning activities by the
students. In this paper, the term flexibility is used with this
latter sense.

III. The Need of Flexibility

Building scripted learning courses over the ideas of
constructivism, as in the case of problem based learning
(PBL) or most collaborative learning patterns, leads to a
conflicting situation ([3],[16]). On one hand, learning flow
descriptions must be precise in order to be delivered in
computer supported environments. Some interactions that
are expected to happen according to the pedagogical model
may not appear without the instructions given by the script.
For example, in problem based learning, students are
expected to investigate techniques to find a solution to the
presented problem. However, it is unlikely that all of the
students reach the best resources on each case without
having the clues provided by the script. On the other hand,
the basis of constructivism is that learners are responsible of
their own learning construction. This assertion implies that
students would require certain degree of freedom to plan
their own strategies. Following the PBL example, students
are expected to make their own findings about the best
problem solving techniques, so that they will better
understand the readings that will lead to the actual solution.
In collaborative schemes, a too rigid approach would spoil
the richness of free interaction.

Considering above arguments, it is unavoidable to
wonder where to set the trade-off between the two opposite
sides. The answer, however, depends on factors such as the
actual scenario in which the course is delivered, the
pedagogical model being applied and the profile of students
taking part in the course. Some of these factors cannot be
anticipated during the authoring phase of a course. For
example, students in higher education tend to be more self-
taught when they are on more advanced courses. In such
sense, the same pedagogical pattern would require a
different degree of coercion for being applied on both
scenarios. Flexibility of course material allows to adjust the
imposed constraints so that they fit to the actual scenario.

In general, during the enactment phase, some degree of
flexibility is needed in order to adjust the course to the actual
scenario parameters. In collaborative learning, for example,

2

the success of an activity usually depends on groups having
the right amount of members and being composed of the
right user profiles. If the number of students does not match
with the required situation, the course should allow the
activity to be substituted by a different one with the same –
or similar, at least – pedagogical objective.

Having the course properly adapted to the actual
scenario, there is still room for unexpected events. First,
statements may lack of clarity or even contain mistakes. In
such case, the tutor would need to make the text more
understandable, so he/she will be required to rewrite the
content. Second, there are several types of events that cannot
be anticipated by the teaching staff. For instance, an activity
may require to be postponed due to illness of the
participants, technological problems in the supporting
system or bad performance of students in a given session.
Therefore, flexibility allows teachers to tackle with such
unpredictable situations that may affect the enactment of the
course.

Despite the course flow requires some degree of
flexibility for a successful enactment, the modifications
should be carefully done. There are some constraints of the
course that are essential to accomplish the original
pedagogical intentions and they should not be overruled.
According to [15], teachers are responsible of changes
performed during the enactment phase. Therefore, they
should be conscious of what can be modified and what
cannot. Similarly, the platform that supports the course
enactment should carefully select the allowed modifications
of the course content.

IMPROVING THE ENACTMENT FLEXIBILITY

The support of flexibility of scripted courses is provided by
the platform in which the courses are enacted. This paper
presents the support of flexibility offered by GRAIL, the
IMS LD runtime environment for the .LRN Learning
Management System. A complete description of GRAIL can
be found at [8].

I. Changes in the Course Content

Content in IMS LD usually takes the form of Web content,
i.e., any content that can be rendered by a Web browser. The
most common used format is HTML, but there is still room
for multimedia content in the shape of flash applications,
Java applets, images, videos, etc. The content is created
during the authoring phase, and delivered to the users during
the enactment. However, it is very likely for the content to
include mistakes or inappropriate material. Such problems
commonly arise during enactment, when the material is no
longer modifiable.

GRAIL provides two different means to update course
material once the package has been imported and the course
is being enacted. It is up to the course administrator to select
which of the allowed methods are preferred. We will refer to
these methods as the file-storage and the XoWiki.

The file-storage method consists in a simple file
substitution. GRAIL handles the UoL resources with a

repository that can be browsed through a folder view.
Whenever the teacher wants to modify the course, content,
he/she can do it by substituting the corresponding file with a
newer version. The file-storage supports content versioning
and the IMS LD player will consider the last version of the
files. The versioning system also allows recovering older
versions of a file.

The other method to edit content is based on XoWiki, the
wiki platform embedded in the .LRN platform. This
functionality can be summarized as follows: during the
package import, the content is translated into a wiki format,
and the wiki tool is in charge of storing and rendering the
material. When the teacher needs to modify some content,
he/she has to access the corresponding activity and click on
the “edit” button. The modifications are done in wiki format,
whose simplicity does not require users to be trained. The
use of the wiki allows performing modifications in the
content without requiring previous knowledge of the UoL
nor advanced computer skills. However, this method
requires the inclusion of a permissions system. An example
that illustrates this requirement is the following: an UoL
with several student roles but no teacher role is loaded into
the platform. Then, when the course has been instantiated
and populated, a flaw in the content is detected. Which role
is allowed to edit the content? For the sake of the
understandability, we have stated that the teacher is enabled
to make changes but, is the teacher the only allowed role?
What if there is no teacher role? There is no unique solution
for the above questions. GRAIL offers a permissions system
where write access is granted for roles and sub-roles of type
teacher by default, while roles and sub-roles of type student
have read permissions. The modification of these settings is
supported, so that the course administrator controls who can
and who cannot modify the content.

II. Changes in the Learning Flow

A compliant player that supports all IMS LD features will
allow enacting ready-to-run scripted courses where teachers
are enabled to track students’ progress, but they are limited
to the tracking features that were explicitly included during
the authoring phase. In IMS LD, tracking facilities are based
on the IMS LD properties: teachers can track students as
long as they can view what their property values are. The
authoring of tracking facilities in a course requires a deep
understanding of the specification.

In GRAIL, the administrative functionality has been
incremented with an interface referred to as the cockpit. This
interface implements tracking facilities and extends this
monitoring service with edition capabilities. The cockpit is
not included during authoring and every course running in
the platform has its corresponding cockpit. The features of
the cockpit are described as follows:

 Management of property values: One of the
basic features is the management of IMS LD properties.
Besides the functionality required by the specification,
the cockpit adds the capability for course administrators
to view and modify any property at any moment in the

3

course. This feature allows, for instance, forcing the
accomplishment of a particular condition that involves
the evaluation of a property.

 User tracking: GRAIL provides the ability to
track students progress, times of access to the activities
and its resources, and the different properties within the
personal context of the learner.

 Learning flow modifications: The cockpit can
also be used by learning supporters to modify the
learning flow. Two types of modifications are allowed:
manage the learning objects associated to an
environment, and modify the activities associated to an
activity structure. These modifications can be performed
during the enactment of an UoL.

 Conditions establishment: As termination
condition for an activity, IMS LD allows to specify a
period of time after which the activity is supposed to be
marked as finished. It is not realistic to expect this
condition to be always applicable. There could be, for
example, a holiday period that forces the activity to take
longer than expected. In this case, the course constraints
require the run time engine to provide certain degree of
flexibility. GRAIL allows modifying the condition of
finalization for any activity so the course can be adapted
to the actual scenario.

As a consequence of the ability of introducing changes

both in the course content and in the course structure, it
appears the need to provide a feature that preserves the
modifications made in the UoL. This is addressed by the
export functionality, which produces a compliant IMS LD
packages that incorporates introduced changes. This feature
enables the re-use of the new UoL with its corrections,
improvements and extensions. The result is an enrichment of
the course life-cycle, depicted in Figure 1.

III. Increasing Flexibility with Third Party Tools

GRAIL supports the Generic Service Integration framework
(GSI) [17]. GSI extends IMS LD, enabling the integration of
third party tools in scripted courses. The supported
integration satisfies the main characteristics of IMS LD:
self-containment, reusability, interoperability, pedagogical
neutrality, collaborative capabilities and adaptability of
course material. The integration of third party tools affects
the complete course life-cycle as follows:

 Authoring: When the course author describes
the course flow he/she also describes how third party
tools participate in the course. That is, the course
description includes what tool is needed, how it will be
used and when it will be accessed.

 Deployment: The description given at the
course authoring is used to select the tool that best
matches the functional requisites of the course flow.
Different instances of the same course could make use
of different third party tools.

 Enactment: The course participants interact
with the course content. The bidirectional exchange of
information between IMS LD and the third party tool
enables the course to be adapted to the activities
performed in such tools.

The third party tools are typically web-based, case-

specific tools whose functionality is focused on the
development of a certain task. The particular circumstances
of the different tools may limit the flexibility of the activities
they support. However, such tools do not suffer the
limitations imposed by the course life-cycle, so their use is
more flexible than the plain use of IMS LD features. In
conclusion, the integration provided by GSI introduces some
degree of flexibility in scripted courses.

Table I summarizes the presented features and how they
provide flexibility to the course. Next Section discusses to
what extent flexibility is provided by these features. The
discussion is supported by examples of practical situations
where the GRAIL's features were used to tackle the
unexpected situations in courses that followed the scripted-
flow approach.

TABLE I

SUMMARY OF THE FEATURES TOWARDS FLEXIBILITY
Wiki Content modifications Solve errata and

update course material

Cockpit Flow track and modification Adjust the flow to the
actual enactment
circumstances

GSI Use of case-specific tools Activities not limited by the
course life-cycle

PRACTICAL USE AND DISCUSSION

The previous sections describe GRAIL as an IMS LD player
embedded in .LRN that provides some features that extend
the life-cycle of scripted courses. GRAIL has been used to
support the enactment of several courses, each of which was
deployed with a different research goal. All of these courses
have in common that they required the management of
unexpected events that arose at their enactment. This section
presents some of these situations as practical examples of the
need of flexibility, and discusses to what extent the offered
features allowed to tackle these situations.

The authoring of IMS LD courses is error-prone and, as
a result, errata usually show up during the enactment of the
activities [18]. Despite the advances in the authoring

FIGURE 1:
LIFE CYCLE OF SCRIPTED COURSES

4

software, the problem is still present. One example of such
difficulty was the deployment of a large-scaled experience
that involved more than 400 students [4]. There, the file-
storage was used to fix the mistakes introduced in the
material and showed the simplicity of the method. However,
such simplicity may be a double-edged sword. On the one
hand, substituting the file with the new version is the only
required action. On the other hand, the creation of the new
version of the content requires the use of an external
authoring tool and poses the teacher to the need of knowing
the file that corresponds to a certain activity. In practice, file
substitution requires to know the complete structure of the
content, which is known by the course author but not
necessarily by the teacher. As a consequence, the method is
appropriate when the author and the teacher are the same
person, but it is not so useful in other cases.

The wiki provides a more practical approach for quick
content edition. Furthermore, an experience held in a
workshop with K-12 educators [17] revealed that, despite it
was not the aim of such development, the introduction of
wiki behavior on the UoL content opens new learning
scenarios that were not possible without this functionality.
For example, a teacher could intentionally include errata in
course material, so the students are expected to find and fix
them. There, the teacher has the opportunity to revise the
wiki history, so he/she can see who made the change.

The content edition feature allows the runtime
environment to behave like a collaborative authoring tool. In
such scenario, the case of use could be described with the
following steps: first, a UoL with no content is created with
the help of an external authoring tool. The created UoL
should contain the skeleton of the final course and should
link to empty files used as resources. Next, the skeleton UoL
is uploaded in GRAIL. The course is then instantiated and
populated by the forthcoming authors, who access the
activities and create the material. Finally, the course can be
either played in GRAIL or exported as a different UoL.

In [19], a scripted course was used to increase the
flexibility of a blended experience. GRAIL was used to
enact a course with high administrative requirements. The
most relevant part of the course flow required the students to
work in groups, promoting a positive interdependency
among groups. The sequence of activities had two major
drawbacks regarding flexibility:

 There was an inter-group collaboration that
was only meaningful if there were five working groups.

 The students were dynamically assigned to a
group depending on the preferences they showed in
previous activities.
Due to its particular characteristics, the course flow was

vulnerable to unexpected events when they were related to
the group formation process. Table II presents some of the
situations that arose during the experience. It can be seen
that the most common problem regarded the collaborative
nature of the activity flow. The absence of team-mates or
even the absence of entire groups were handled by the
cockpit, which was used by teachers to act on behalf of

missing students (by simulating their presence) so that the
groups could complete the activities.

In the same experience, the group formation was
supported by a web based spreadsheet, integrated in the
course flow via GSI. The spreadsheet incorporated the
required formulae to form the groups. However, the simple
delay of students in the development of the activities caused
problems to the group formation process. In those cases, the
teachers manipulated the spreadsheet and manually assigned
the delayed students to their groups and the entire course
flow was not affected. The use of the spreadsheet was
positively considered by the instructors because they were
already familiar to with the user interface and they knew
how to react to the different situations. That is, the use of a
task-specialized third party tool increased the instructors’
perception of the course flow flexibility.

TABLE II

UNEXPECTED EVENTS AND APPLIED SOLUTIONS

issue solution tool

two students finished
an activity after the
deadline

their data was ignored
and they were
manually assigned to a
group

spreadsheet

one student dropped
the course

the user was ignored in
the forthcoming
activities

no action
needed

a course replica was
enacted with only 3
students

the group formation
was forced to create a
single group with all
the participants

spreadsheet

in a course replica,
there were only one
working group

the instructors
simulated the
participation of the
missing groups

cockpit

The tracking and edition facilities offered by the cockpit

were useful in those cases where the course flow
incorporated adaptive characteristics. In particular, the
experience in [4] was provided with a mechanism that
penalized the students who did not reach the expected
homework deadline. Using the tracking interface, the
instructors decided that there were some cases in which the
applied penalization was not fair. Then, the teachers
modified the corresponding property and the penalty was
reverted. Such example highlighted the relevance of the
flexibility when the course contains adaptive learning
material.

CONCLUSIONS

 Learning scripts are a relevant method to structure the
resources and learning activities associated with a course,
and provides them with a pedagogical sense. The life-cycle
of scripted courses (authoring, deployment and enactment)
reduces their flexibility. That is, scripted courses have

5

difficulties on the management of unexpected events that
may occur during the course enactment.
This article presented the functionalities developed in
GRAIL, a player that complies with the IMS LD
specification - one of the most important educational
modeling languages - towards the provision of flexibility
during the course enactment. The implemented
functionalities were grouped in three categories: course
content, course flow, and integration of third-party tools.
Taking examples form diverse practical experiences
supported by GRAIL, this paper showed how the presented
functionality allowed dealing with unexpected events that
otherwise would have prevented the correct execution of the
learning activities.

ACKNOWLEDGMENT

Work partially funded by the project “eMadrid:
Investigación y desarrollo de tecnologías para el elearning
en la Comunidad de Madrid” (S2009/TIC-1650) and the
Spanish project “Learn3: Towards Learning of the Third
Kind” (TIN2008-05163/TSI).

REFERENCES

[1] McLoughlin, C. and Lee, M., J., “Social software and participatory
learning: pedagogical choices with technology affordances in the Web
2.0 era,” 24th Annual Conference of the Australasian Society for
Computers in Learning in Tertiary Education, Centre for Educational
Development, Nanyang Technological University, 2007, pp. 664-675.

[2] Ertl, B., Kopp, B. and Mandl, H., “Supporting learning using external
representations,” Computers & Education, vol. 51, Dec. 2008, pp.
1599-1608

[3] Dillenbourg, P., “Over-scripting CSCL: The risks of blending
collaborative learning with instructional design.,” Three worlds of
CSCL. Can we support CSCL, 2002, pp. 61-91.

[4] de-la-Fuente-Valentín, L., Villena Román, J., Pardo, A. and Delgado
Kloos, C., “A cost-effective, scalable orchestration to promote
continuous work in programming courses” Unpublished.

[5] “Making Sense of Learning Specifications & Standards: A decision
maker’s guide to their adoption” Saratoga Springs NY: e-Learning
CONSORTIUM of The MASIE Center , March (2002) .

[6] Bohl, O., Scheuhase, J., Sengler, R. and Winand, U., “The sharable
content object reference model (SCORM) - a critical review,”
Computers in Education, 2002. Proceedings. International
Conference on, 2002, pp. 950-951 vol.2.

[7] IMS Learning Design Specification, 2003.
http://www.imsglobal.org/learningdesign/

[8] Escobedo del Cid, J., P., de la Fuente Valentín, L., Gutíerrez, S.,
Pardo, A. and Delgado Kloos, C., “Implementation of a Learning
Design Run-Time Environment for the .LRN Learning Management
System,” Journal of Interactive Media in Education (Adaptation and
IMS Learning Design. Special Issue), Sep. 2007.

[9] Schank, R., C. and Abelson, R., P., Scripts, Plans, Goals, and
Understanding: An Inquiry Into Human Knowledge Structures
(Artificial Intelligence), 1st ed. Lawrence Erlbaum, July 1977.

[10] Anglin, G., J., Instructional Technology: Past, Present, and Future.
Second Edition., Libraries Unlimited, Inc., P.O. Box 6633,
Englewood, CO, 80155-6633, 1995

[11] Burgos, D., Tattersall, C. and Koper, R, "How to represent adaptation
in e-learning with IMS Learning Design," Interactive Learning
Environments, vol. 15, no. 2, pp. 161-170, August 2007.

[12] Jurado, F., Redondo, M. and Ortega, M., “Specifying Collaborative
Tasks of a CSCL Environment with IMS-LD,” Cooperative Design,
Visualization, and Engineering, 2006, pp. 311-317.

[13] Arbaugh, J., B., “Managing the on-line classroom: A study of
technological and behavioral characteristics of web-based MBA
courses,” The Journal of High Technology Management Research,
vol. 13, Autumn. 2002, pp. 203-223.

[14] Dimitrova, M., Sadler, C., Hatzipanagos, S. and Murphy, A.,
“Addressing learner diversity by promoting flexibility in e-learning
environments,” Database and Expert Systems Applications, 2003.
Proceedings. 14th International Workshop on, 2003, pp. 287-291

[15] Dillenbourg, P. and Tchounikine, P., “Flexibility in macro-scripts for
computer-supported collaborative learning,” Journal of Computer
Assisted Learning, vol. 23, Feb. 2007, pp. 1-13

[16] Lejeune, A., Ney, M., Weinberger, A., Pedaste, M., Bollen, L.,
Hovardas, T., Hoppe, U. and de Jong, T., “Learning Activity Spaces:
Towards Flexibility in Learning Design?,” Advanced Learning
Technologies, 2009. ICALT 2009. Ninth IEEE International
Conference on, 2009, pp. 433-437

[17] de-la-Fuente-Valentín, L., Pardo, A., and Delgado Kloos, C., “Generic
service integration in adaptive learning experiences using IMS
learning design.” Computers & Education, 2011, 57:1160-1170.

[18] de-la-Fuente-Valentín, L., Pardo, A., Asensio Pérez, J., I., Dimitriadis,
Y. and Delgado Kloos, C., “Collaborative Learning Models on
Distance Scenarios with Learning Design: a Case Study,” ICALT '08:
Proceedings of the eighth IEEE International Conference on
Advanced Learning Technologies, Santander, Spain: 2008, pp. 278-
282.

[19] de-la-Fuente-Valentín, L., Pérez-Sanagustín, M., Santos, P.,
Hernández-Leo, D., Pardo, A., Delgado Kloos, C., Blat, J., “System
orchestration support for a flow of blended collaborative activities,”
2nd International Workshop on Adaptive Systems for Collaborative
Learning. Thessaloniki, Greece.

AUTHOR INFORMATION

Luis de-la-Fuente-Valentín Teaching Assistant, University
Carlos III of Madrid, Department of Telematics Engineering,
lfuente@it.uc3m.es

Derick Leony, PhD Student, University Carlos III of
Madrid, Department of Telematics Engineering,
dleony@it.uc3m.es

Abelardo Pardo, Associate Professor, University Carlos III
of Madrid, Department of Telematics Engineering,
abel@it.uc3m.es

Carlos Delgado Kloos, Full Professor, University Carlos III
of Madrid, Department of Telematics Engineering,
cdk@it.uc3m.es

6

