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ABSTRACT

CATME is a tool that implements a criteria-based team formation approach. The tool

facilitates forming teams based on criteria like demographics, skills, and work styles. This

information is collected from the students via an online survey. The effectiveness of this

genre of tool depends on the practicality of the instructors configuration of the criteria, the

veracity of students responses to the survey, and the soundness of the algorithm. In this

thesis, we investigate potential issues affecting these factors. Our study was conducted by

performing new analysis of data collected from a prior study comparing the performance of

teams formed using CATME or randomly in a user interface design course. The performance

of teams was not statistically different between the two conditions. In examining the students

responses to the team formation survey, we found issues related to Self-Assessment such as

inconsistencies between students ratings of their skills and reporting of their strongest skills,

and potential cases of misreports. Likewise, we found some cases where the tool produced

unexpected results when calculating the homogeneity of the skills of a team. Implications

for instructors and tool designers to mitigate these problems are discussed.
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“You’re braver than you believe,

stronger than you seem,

and smarter than you think”

Cristopher Robin
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CHAPTER 1: INTRODUCTION

Team-based projects represent an important method of learning for students where in

addition to applying learned material and developing required skills, they get to develop

essential teamwork skills such as leadership, communication, and handling conflicts. For

such a method of learning to be effective, teams need to be formed in a way that minimizes

conflicts and maximizes learning. The literature on team composition shows that teams with

balanced gender [1], balanced personality types [2], diverse academic abilities and skills [3] [4]

demonstrate improved performance. However, manually forming teams to satisfy multiple

criteria, especially in large classes, can be extremely difficult. Consequently, instructors

are increasingly leveraging tools that implement a criteria-based approach. One example of

such tools is CATME [5], a representative of the criteria-based formation approach that is

increasingly gaining support [6].

To form teams using CATME, the instructor can select a set of criteria such as schedule,

GPA, or skills, and configure the significance of each criterion and the degree of similarity

between the team members according to that criterion. A survey would then be sent to the

students to gather the needed information related to the chosen criteria. Once the survey is

completed, the teams can be generated by the tool, which would also provide a composition

score for each team indicating how well that team matched the configured criteria.

It is important to realize that the effectiveness of this tool depends on three factors:

the practicality of the instructor selection and configuration of the criteria, the accuracy of

students responses to the survey, and the soundness of the algorithm. In this thesis, we

investigative potential issues affecting these factors, and consequently the validity of the

tools outcomes.

Our investigation was conducted by performing a new analysis on data collected from a

previous study comparing performance of teams formed randomly or with the criteria-based

tool [7]. The study was conducted in an engineering User Interface Design course with team-

based projects (176 students in 37 teams). The team formation approach (criteria-based

vs. random) was the factor, and the project grade was the measure of team performance.

The selected criteria included Gender, Leadership Preference, and Course skills (teamwork,

programming, design, writing, speaking). In teams of (4-5), students worked on a 9-week

design project, delivered in stages, that comprised 40% of the final grade. The results,

contrary to expectations, showed no significant difference in performance between the two

conditions. These expectations were based on the fact that the composition scores given by

the tool for the criteria-based teams, especially in terms of skills, were significantly higher

1



than those of the random teams: (Criteria-based:µ=9.0, Random: µ=4.9 out of 19 maximum

score),(t (35) = 2.42, p = .02).

In the new analysis of the potential issues that may have led to that result, we examined the

project deliverables, the data of the team formation survey and the composition heuristics

used by the tool to form the teams. Several key issues were identified. First, students were

largely distributed into teams based on their reported strongest skills. However,none of the

technical skills analyzed showed a considerable correlation with the grade of the project

deliverables (programming: r= 0.17, writing: r= −0.23, design: r= 0.1). Second, there

were inconsistencies in students responses between determining the possession of a skill and

the level of that skill; Students were asked to rate their writing skill level on a five-point

scale (None to Expert), then in a different question to choose their strongest skills where

writing was one of the choices. About 70% of them indicated a writing level of good (4)

or higher, yet only ∼55% of that percentage selected writing as a one of their strongest

skills. Third, some of the students responses were contrary to expectations. Of those who

did not report having a programming skill (54 students), 25 of them were Computer Science

students in their 3rd or 4th year of undergraduate study or graduate students, mostly of

whom had GPAs higher than 3.0. (on a four-point scale). Finally, the heuristic function

used to score the composition goodness of the course skills question, a type of Choose Many

of, operates on an assumption of commonality; the score of a skill with 1 student response

only is equivalent to the score of a skill with no response, i.e. that skills score is zero. The

reason is there is no commonality between members for that skill. In these situations, the

heuristic for distributing skill does not produce expected scores.

The contributions of this research include the examination of the effectiveness of the

criteria-based team formation approach, the identification of potential problems with that

approach, and the discussion on areas of improvements.
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CHAPTER 2: RELATED WORKS

Self-Assessments can take many forms such as evaluating skills and knowledge or predict-

ing future behaviors and events. Interestingly, the literature on self-assessment shows that

peoples assessments in comparison to objective performance measures shows relatively small

to moderate correlations at best [8]. Similarly, peoples judgments and predictions of future

events or behaviors tend not to prove accurate when the actual situation arrives [8].

2.1 INFLUENCING FACTORS ON SELF-ASSESSMENT

There are several factors that influence peoples assessment of knowledge and skills. Exam-

ples of such factors are: the assessors meta-cognitive abilities, the difficulty of the assessed

skill, the specificity in defining skill competence, and the desirability of the skill. First,

meta-cognition is a term described by Kruger and Dunning [9] as “the ability to know how

well one is performing, when one is likely to be accurate in judgment, and when one is likely

to be in error”. The authors argue that incompetent people lack such meta-cognitive ability.

That is, their incompetence deprives them from the ability to recognize how incompetent

they are. Consequently, when those people are asked to assess their skills, they tend to

grossly overestimate their competence [9].

Second, the difficulty of the assessed skill affects peoples assessment. The easier the skill

is i.e. the threshold of success is low, the more confident people are in their assessments. In

contrast, the more difficult the skill is, i.e. the threshold of success is high, the less confident

they become [10]. This is more evident when people assess themselves in comparison to the

others. Kruger [10] argues that in such cases, people anchor their assessments on their own

level of competence, neglecting the competence level of the comparison group. Consequently,

the easier the skill is (e.g. spoken expression), the more likely people would think they are

Above-average, ignoring that it can be similarly easy to others. In contrast, the more difficult

the skill is (e.g. mechanics), the more likely they would think they are Below-average,

forgetting again that it is most likely as difficult to others.

Third, how well the competence in a skill is defined is an important factor in self-

assessment. When no clear definition is provided, people rely on their own definitions or

interpretations of that skill for assessment [11]. Moreover, the desirability of the assessed

skills when coupled with unconstrained definition of competence has far greater influence.

For instance, Dunning et al [11] show that people are more likely to rate themselves higher

for ambiguous desirable traits such as sensibility or ingenuity, than they would for more con-
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strained traits such as neatness or punctuality. The exact opposite happens with negative

traits. People would rate themselves lower on ambiguous negative traits, such as naivety

or submissiveness, than on more constrained traits such as sarcasm or wordiness. In other

words, social desirability is inherent in peoples assessments. However, constrained definitions

of competence help in producing more accurate assessments.

2.2 INFLUENCING FACTORS ON PREDICTION

In their predictions, people tend to be too optimistic and overconfident [8]. Such optimism

and confidence stem from several factors. For example, people tend to not consider the

unpredictability of future situational details. Also, they tend to forget about how they

behaved in similar past experiences. As for the former, despite the incomplete knowledge

of the future situational details, people make their prediction as if they have the perfect

situational knowledge [12]. Such tendency can be reduced by asking people to describe

alternative situations. That would make them realize that there are potential details that

cannot be anticipated. Consequently, people would provide more realistic predictions [12].

As for the latter, when people make prediction of future behaviors such as completion

of a task, they tend to ignore their past behaviors in similar experiences. That is usually

attributed to what is known as the inside view; people typically focus on the nature of the

task, their abilities and resources when making prediction. Conversely, in an outside view,

people would make their predictions based on the objective facts of their typical behaviors

in past comparable experiences [13]. Although it is in the nature of people to predict based

on the inside view, incorporating the outside view in the prediction helps people provide

more accurate predictions [14].

Relating these works to this tool shows that tools that solely depend on students as-

sessments of their knowledge and abilities are highly prone to the effects of the inherent

flaws of this approach. The questions in the team-formation survey that corresponds to the

selected criteria could be factual (gender), preferential (leadership role), predictive (com-

mitment level), or evaluative (skill level). It is in answering the predictive and evaluative

questions that the flaws of self-assessment may manifest. Therefore, more robust methods

of assessments are needed for such tools to work effectively.
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CHAPTER 3: RESEARCH QUESTIONS

As the effectiveness of this tool depends on the instructors configuration of the criteria,

the accuracy of students responses to the survey, and the soundness of the algorithm, we

posed the following questions to guide our examination of the data:

On the Instructors Configuration of the Criteria:

• RQ1: Did the distribution of the skills specified in the criteria correlate with teams

performance in the projects?

On Students Responses to the Team Formation Survey:

• RQ2: Given that criteria questions could be evaluative, were students able to ade-

quately evaluate their skills?

• RQ3: Which is more effective, asking about the possession of a skill or the mastery of

it?

• RQ4: Were there instances where students intentionally provided inaccurate responses?

On the Algorithm and Heuristic Functions of the Tool:

• RQ5: How is the composition score of a team computed? And is it accurate?
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CHAPTER 4: METHOD

To assess the soundness of the factors influencing the effectiveness of the tool, we examined

the project deliverables, the team formation survey, and the composition scores.

4.1 INSTRUCTORS SELECTION OF THE COURSE SKILLS AND THE PROJECTS
OUTCOMES (RQ1)

The criteria used to form the teams included: Gender, Leadership Preference, Writing

Skill, and Course Skills (teamwork, programming, writing, speaking, design). To see if

the distribution of the course skills had a discernible effect on teams performance in their

projects (RQ1), we examined the project deliverables in relation to each skill. The project

required the design and development of a functional user interface. The deliverables of the

project included: Project Proposal, User Research Report, Low-Fidelity Prototype, User

Evaluations of the Low-Fidelity Prototype, Functional Prototype, and User Evaluations of

the Functional Prototype.

The examination included conducting Single-Linear Regression analysis for each of the

following hard-skills: programming, writing, and design. The teamwork and communication

(speaking) skills were not considered as their effects are implicit and cannot be directly

measured from the project deliverables. In each regression analysis, the independent variable

was the number of students reporting the examined skill in each team. Those numbers were

obtained from students responses to the Course Skills question. The dependent variable was

the team performance, measured by grade, in the project deliverables specific to that skill.

Explicitly, grade was calculated by taking the average of the unweighted original grades of

the specified deliverables.

As for Programming, the project deliverable considered was the functional prototype as it

was the only deliverable involving actual implementation and development. However, as this

skill is not as visible as the other skills, we included a second measurement of performance

in addition to the grade of that deliverable. We used a code analysis tool, Code::Stats [15],

to measure the productivity in the projects, i.e. the number of lines of code excluding spaces

and comments. It is important to note that there were some projects that were not included

in the examination for the following reasons: There were teams that submitted their projects

in APK format only, in which the original code cannot be retrieved, hence hindering the

possibility of analysis. In addition, some teams used a variety of technologies, to build

web pages for instance, instead of the recommended Android Studio for the development.
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That made the analysis across different platforms difficult. Therefore, only 18 projects were

included in the examination.

For Writing, we considered only the project components delivered in the form of reports:

User Research Report, User Evaluations of the Low-Fidelity Prototype, and User Evaluation

of the Functional Prototype. Project proposal was not included as it was delivered in the

form of a presentation. For Design, we considered only the Low-Fidelity Prototype and the

Functional Prototype. An additional analysis was conducted for each of these skills to see

if there was a difference in performance between the randomly formed teams or the criteria-

based teams. The rational is that performance of teams in the prior study was measured

with the project grade, a cumulative grade of weighted scores of the deliverables. Since the

holistic performance between conditions did not differ significantly, we wanted to examine

teams performance based on skill.

4.2 STUDENTS RESPONSES TO THE TEAM FORMATION SURVEY (RQS 2,3,4)

In contrast to gender and leadership preference, factual and preferences questions, we

focused on examining the responses to the evaluative questions (Course Skills and Writing

Skill) to see if students self-assessments were accurate. The Course Skills question was

phrased as: What is your strongest skill(s) as it relates to a design project in the course?,

and the Writing Skill question was phrased as Rate your writing skill.

4.2.1 Adequacy of Students Self-Assessments

To see if students were able to evaluate their skills adequately (RQ2), we examined their

responses to two skills: writing and teamwork. Those two skill, unlike the rest of skills, were

assessed more than once. As for the writing skill, since it was in both evaluative questions,

we compared students answers for the skill level question with the skill possession question.

As for the teamwork skill, we used CATMEs peer-assessment that was collected after the

completion of projects. In this assessment, students rate themselves and their peers in five

categories (Contribution, Interaction, Keep on Track, Expect Quality, Knowledge/skills).

Each rating is on a 5-pt scale, where 1 is Poor, 3 is Satisfactory and 5 is Outstanding

[16]. Using this assessment, we evaluated the performance of those who reported teamwork

skill. Performance was measured by aggregating the averaged peer ratings in those five

categories; lowest score is 5 (Poor), middle score is 15 (Satisfactory), and highest score is 25

(Outstanding). Additionally, we examined the agreement level between students rating of

themselves and their peers.

7



4.2.2 Skill Possession vs Skill Mastery

To see which of the two evaluative question is more effective (skill possession or skill

mastery) (RQ3), we conducted another Single-Linear Regression analysis for the Writing

Skill question. We then compared its result with the previous regression analysis for the

writing skill that was based on the Course Skills question.

4.2.3 Potential Misreports

Since the course is a Computer Science course, we examined the demographics of the

students who did not report having a programing skill (RQ4).

4.3 THE TOOLS HEURISTIC FUNCTIONS AND THE COMPOSITION SCORES
(RQ5)

Each formed team is assigned a score indicating the goodness of the composition based on

the configured criteria. This score is a combination of the heuristic scores for the responses

to each question in the survey. The tool uses a number of specialized heuristic functions for

questions such as gender and race -to insure the minorities are not isolated in teams. Also, it

uses more general heuristics for questions like Choose One of or Choose Many of. The skills

questions in the team formation survey are of the later types (general heuristics). Therefore,

we examined the composition scores of these two questions (RQ5).
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CHAPTER 5: RESULTS

Tables 5.1 and 5.2, and Figure 5.1 provide an overview analysis of students responses to

the Course Skills question: “What is your strongest skill(s) as it relates to a design project in

the course?”. Teamwork was the most reported skill (72.16%), and in most selections of two

or more skills. Programming, second most selected skill (69.32%), was the most reported

among those reporting only one skill. Following teamwork skill and programming, there is

an interesting drop in numbers (∼28%) for the rest of reported skills. Writing, speaking

and design are close in numbers. Yet, between those three, writing and speaking were more

closely related.

Table 5.1: Skills ordered by the number of students reporting them
Teamwork Programming Writing Speaking Design

127 122 74 66 63
72.16% 69.32% 42.04% 37.5% 35.8%

Figure 5.1: Number of skills reported by students

Table 5.2: Most reported skill choices

Skills Reported Top Three Skill Choices No. of Students

Programming 9/17

1 Team Skills 3/17

Speaking 2/17
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Table 5.2: Most reported skill choices

Skills Reported Top Three Skill Choices No. of Students

(Teamwork, Programming) 16/53

2 (Teamwork, Writing) 9/53

(Programming, Design) 8/53

(Teamwork, Programming, Writing) 13/64

3 (Teamwork, Programming, Design) 11/64

(Teamwork, Writing, Speaking) 9/64

(Teamwork, Programming, Writing, Speaking) 12/31

4 (Teamwork, Programming, Design, Speaking) 4/31

(Teamwork, Programming, Writing, Design) 4/31

5.1 CORRELATIONS BETWEEN SKILL DISTRIBUTION AND TEAM
PERFORMANCE (RQ1)

The results of the regression analyses between the number of students with a certain

skill per team and their performance in project deliverables related to that skill showed the

following:

5.1.1 Programming Skill

Since programming is a skill not as visible as the other skills, we had two measurements

of performance: the grade of the functional prototype, and the number of lines of the code

(productivity). Figure 5.2 shows the regression analysis between the number or programmers

per team and the grade of the functional prototype. The number of programmers per team

was determined by students reporting programming in the Course Skill question.

The result showed small correlation (r = +0.17), showing an increase in grade by (0.26)

for each addition of a programmer to the team. However, no significant regression equation

was found (F (1,16) =0.47, p=.0.51).
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Figure 5.2: Regression analysis between grade and the number of programmers per team as

determined from the course skill question

Figure 5.3 shows the regression analysis between the number or programmers per team

and the code productivity, i.e. the number of lines of code excluding spaces and comments.

These numbers were obtained from Code::Stats [15], a code analysis tool. The result showed

a stronger correlation (r =+0.31), with an increase in productivity by 250 lines for each

addition of a programmer to the team. Yet, no significant regression equation was found

(F (1,16) =1.64, p=.22).

Figure 5.3: Regression analysis between the lines of code and the number of programmers

per team as determined from the course skill question

We conducted an additional regression analysis to see how the number of code lines cor-

relate with grade, see Figure 5.4. Interestingly, the correlation was strong (r = +0.51), and
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significant regression equation was found (F (1,16) =5.72, p=.0.029). However, for each

additional 1000 lines, grade increased by 1 only.

Figure 5.4: Regression analysis between grade and the lines of code in each teams project

5.1.2 Writing Skill

Figure 5.5 shows the regression analysis between the number of writers per team and the

grade of the written deliverables. The result showed negative small correlation (r = −0.23).

With each addition of a writer, the grade decreases by (−1.3). No significant regression

equation was found ((F (1,35) =1.98, p=0.17).

Figure 5.5: Regression analysis between grade and the number of writers per team as deter-
mined from the course skill question

12



5.1.3 Design Skill

The number of designers per team and grade barely correlated (r = +0.1), see Figure 5.6.

Grade increases by 0.4 for each addition of a designer. No significant regression equation

was found too, (F (1,35) =0.36, p=0.56).

Figure 5.6: Regression analysis between grade and the number of designers per team as
determined from the course skills question

5.1.4 Performance of Random Teams and Criteria-based Teams in terms of Skills

We analyzed teams performance between the conditions based on each skill. The results,

seen in Table 5.3, were similar to the previous study; No significant difference in performance

between the conditions for any of the skills was found.

Table 5.3: Team performance between conditions based on skills as measured from the
project deliverables

Skill Performance Measure Test Value P

Programming
Lines of Code U(7,11) 41 0.860

Grade U(18,19) 183.5 0.707
Design Grade U(18,19) 184.5 0.685
Writing Grade U(18,19) 167.5 0.916
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5.2 STUDENTS ASSESSMENTS OF THEIR SKILLS (RQ2)

5.2.1 Teamwork Skill Students Assessments and Peers Assessment

Figure 5.7 shows students reporting of the teamwork skill and their performance level

in their teams as assessed by their peers via CATME. For those who reported teamwork

skill, Figure 5.8 shows the agreement level between their assessments of their teamwork

performance and their peers assessment of them.

Figure 5.7: Teamwork skill reports in the course skill question and Peer-Assessment of

teamwork performance

From Figures 5.7, we see that (∼14%) of students whose performance level is above sat-

isfactory did not consider teamwork skill to be one of their strongest skills. Nevertheless,

the majority of those who reported teamwork skill have a satisfactory performance or bet-

ter. Moreover, for those who reported teamwork skill, Figure 5.8 shows that almost all

students assessments of their performance matched their peers assessment of them. Those

with mismatching assessments are shown in Table 5.4. The cause of disagreement, provided

in CATME, is that those with performance level below satisfactory overrated themselves. In

contrast, those with a performance level above satisfactory underrated themselves.

The figures and the table give one more information; of those with a performance level

below satisfactory, five of them reported teamwork skill, and their assessments of themselves

matched their peers. To elaborate, those students in the beginning of the semester reported

teamwork skill to be one of their strongest skills. Yet, when they completed CATMEs
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peer assessment near the end of the semester, they assessed their performance as below

satisfactory.

Figure 5.8: Agreement level between self-assessment and peer-assessment of teamwork per-

formance for those who reported teamwork skill

Table 5.4: Performance level of the students whose self-assessment differed from their peers’
Disagreement Cause Performance Level No. of Student

Over-confidence
Poor 1

Below 2

Under-confidence
Above 3

Outstanding 1

5.2.2 Writing Skill Students Assessments of Skill Possession and Skill Mastery

The results of comparing the students responses between the Writing Level question and

the Course Skills question is shown in Figure 5.9. We see that students report having the

skill if they assess their level to be at least Average. Interestingly, of those with a writing

level of Good or Expert, 45.08% of them did not report writing to be one of their strongest

skills.
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Figure 5.9: Students responses about their writing skill to the Writing Level and Course

Skills questions

5.3 SKILL POSSESSION VS SKILL MASTERY (RQ3)

Motivated by the results of RQ2, we conducted an additional single-linear regression anal-

ysis for the Writing Level question to know which is more effective to ask about, skill

possession or skill level. We then compared its results with the previous regression analysis

where writing skill was reported in the Course Skill question.

In the previous analysis (skill possession), the number of writers was determined by those

reporting writing as one of their strongest skills. In this analysis (skill mastery), the number

of writers was determined by those indicating a writing level of Good (4) or Expert (5) on a

scale of 5 in the writing level question, Figure 5.10. The reason for counting only the good

and expert writers is to see the actual effect of their distribution in teams since only about

half of them considered writing as one of their strongest skill.

The results for the mastery question showed stronger correlation (r = −0.34) than the

results of the possession question (r = −0.23). Furthermore, unlike with the possession

question analysis, a significant regression equation was found (F (1, 35) =4.56, p=0.04), R2

of 0.12. That is, the number of good and expert writers in a team can predict their grades in

the written components of their projects. Noteworthy the grade deceased in both analyses

for each addition of a writer to the team; decrease by (− 1.13) in the skill possession analysis,

and by (− 1.62) in the skill mastery analysis.
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Figure 5.10: Regression analysis between grade and the number of good and expert writers
per team as determined from the skill level question

5.4 POTENTIAL MISREPORTS: COMPUTER SCIENCE STUDENTS &
PROGRAMMING SKILL (RQ4)

About 70% of students reported Programming as one of their strongest skills. In examining

the demographics of those who did not choose that skill (54 students), we found that 25 of

them were Computer Science students in their 3rd or 4th year of undergraduate study or

graduate students, whom are expected to master that skill, see Figure 5.11. Moreover, 10

of them had GPAs above 3.5 (on a four-point scale) indicating high academic performance,

Table 5.5.

Figure 5.11: Computer Science students who did not report programming skill
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Table 5.5: Year and GPAs of the CS students who did not report programming skill
Graduate Senior Junior Sophomore

GPA ≥ 3.5 2 5 3 -
3.5> GPA ≥ 3.0 - 4 6 -

GPA <3 - 2 1 1

5.5 COMPOSITION SCORES (RQ5)

While analyzing the teams compositions, we noticed cases where teams having all skills

reported were scored lower than teams with similar compositions yet lacking a skill or two.

Figure 5.12 shows the compositions of two teams in the course. Despite that Team-22 had

students with all the required skills, its composition was scored (-1.88), which is lower than

Team-34 that lacked two skills (1.25).

Figure 5.12: Composition scores for two teams in the course. Team-34, lacking two skills is
scored higher than Team-22 that had all the skills

Returning to CATMEs Help Page to understand how the compositions were scored, we

found that the heuristic function for that question operates on an assumption of Common-

ality. To elaborate, the Course Skills question was of type Choose Many of. Its heuristic

function measures the homogeneity of one option at a time where 1 means all students

selected that option and 0 means none selected it. The individual values are normalized,

then summed, and finally multiplied by the weight. In in our case, the weight was set to
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(−5), indicating the heaviest weight in the formation process for dissimilar distribution of

skills. The issue here is a key assumption in the function that an option having 1 response

only is equivalent to 0 responses as there is no commonality between members for that op-

tion. In CATMEs help page, this assumption of commonality is justified and explained with

an example of choosing mutual sports interests as a formation criterion; cases showing no

commonalities, i.e. only one member selecting a certain sport, need not to be considered.
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CHAPTER 6: DISCUSSION AND FUTURE WORK

The factors influencing the effectiveness of the criteria-based team formation tool are: the

instructors selection and configuration of the criteria, the accuracy of students responses to

the survey, and the soundness of the algorithm. The results of our analysis give insights into

potential issues with these factors.

6.1 ON THE INSTRUCTORS CONFIGURATION OF THE CRITERIA

When the team formation criteria are configured, the team formation survey is con-

structed, and each criterion is associated with a suitable question to elicit the needed infor-

mation from students. The criteria could be either selected from the criteria list supported

by CATME or added manually by the instructor. CATMEs criteria comes with pre-defined

questions, whereas new criteria need its questions to be defined by the instructor. In the ex-

amined team formation survey, the instructor used both types of criteria (existing and new).

For demographics and work styles, existing criteria in CATME were used. For the course

skills, the instructor defined a new question that was phrased as “What is your strongest

skill(s) as it relates to a design project in the course?”. The answers reflected the following

skills: teamwork, programming, writing, speaking, and design. To have skill diversity in

teams, students were grouped dissimilarly based on that criterion.

The results of RQ1 gives insights into how skill distribution correlated with teams per-

formance in their projects. First, none of the analyzed skills (programming, writing, and

design) showed a considerable or significant correlation with the grade of the project deliv-

erables (programming: r= +0.17, writing: r= −0.23, design: r= +0.1). This suggest that

skill distribution based on students assessment of their strongest skills is not a significant

predictor of their project grades.

Second, besides grade, programming skill was assessed by a second performance measure

(code productivity). This measure showed a moderate correlation (r= +0.31) with the num-

ber of programmers per team. Interestingly, the correlation between the two performance

measures showed a significantly stronger correlation (r= +0.51, p< 0.05). This indicates

that higher coding productivity is not necessarily due to the increase of programmers in a

team. Rather, it is the productivity of a few strong contributors in the team.

Third, some of the correlations of the skills were positive (programming and design) while

others were negative (writing). At the surface level, this might cause confusion as to how to

distribute skills. However, considering the regression equations and the beta values of all the
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analyzed skills gives a clearer picture. In the positive correlations, each addition of a student

with a specific skill had a negligible effect on grade; it increased by (0.26) for each additional

programmer and by (0.4) for each additional designer. In the negative correlation, however,

we see a larger decrease in grade (−1.3) for each additional writer in the team. This suggests

that balancing the number of students with a skill in team is better, and the desired increase

in grade can be achieved by improving the performance of those within the teams already.

6.2 ON THE ACCURACY OF STUDENTS SELF-ASSESSMENT

The results of RQ2 gives insights about students assessment of their skills. In the exam-

ination of the writing and teamwork skills, we noticed a pattern; in each skill, there was a

number of high performers who did not consider that skill to be one of their strongest skills.

In the writing skill, about 70% of students indicated a writing level of good (4) or higher

on a 5-pt scale. However, about 45% of that percentage did not report writing as a one of

their strongest skills. Similarly, in the teamwork skill, ∼59% of students had a teamwork

performance level above satisfactory (4 on a 5-pt scale). Yet, about 24% of that percentage

did not report teamwork as one of their strongest skills. These results show that students

self-assessments are influenced by the phrasing of evaluative questions; they may be com-

petent in a skill, but they may not necessarily view that skill to be one of their strongest

skills.

In addition, the literature on Self-Assessment shows that the difficulty of the assessed skill

influences peoples assessment; the more difficult the skill is, the more likely people think of

themselves as below-average [10]. This explains the contrasting difference in the numbers of

reporters and non-reporters in each of the levels of “Average” and above between the writing

skill and the teamwork skill, see Figures 7 and 9. Students with a skill level of average and

above showed greater confidence in reporting the teamwork skill compared to reporting the

writing skill.

The results of RQ3 shows which evaluative question, skill possession or skill mastery, cor-

relates more with grades. The results showed that skill level questions show more correlation

with performance than skill possession questions. The correlation between the number of

writers per team, determined by the skill level question, and the grade of the written com-

ponents of the project was higher in magnitude and more significant (r= −0.34, p<0.05)

compared to the number of writers per team as determined by the course skill question (r=

−0.23, p>0.05), which was not significant.

These findings suggest that when the instructors select the formation criteria and design

the formation survey, it is better, when asking about skills, to use skill level questions such
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as “Rate your level of Skill X”. It is also strongly recommended to provide a clear description

to each level of the skill to reduce the effect of subjective assessment [11].

As for the results of RQ4, which investigated if students intentionally misreported their

skills, we provide a couple of explanations as to why students did not report having skills

they are expected to have. Again, the phrasing of the course skills question as choosing

their strongest skills may have affected their assessment of their skills. Consequently, they

may have been discouraged from reporting programming as one of their skills. However, it

is possible that some student may have intentionally misreported their expected skills. To

clarify, when students were asked in a final survey about their experiences with CATME and

its weaknesses, student ‘S7’ said:

“As a strong performer, I think I was much more likely to have a [bad] team

in which I had to do a lot of work. I wish I would have undersold my strengths

to be matched with qualified partners. When there is a skill mismatch, tasks are

less likely to be shared evenly, I’d think.”

Another student ‘S176’ stated that:

“Obviously, students can enter false or misleading information to try and

game the system to end up on a team that might not fit in with the instructor’s

goals.”

These statements suggest that some students may misreport their skills out of the fear of

handling or performing larger shares of workload in their projects. It also highlights that

some students may try to game the system to satisfy personal goals.

6.3 ON THE SOUNDNESS OF THE HEURISTIC FUNCTIONS OF THE TOOL

The findings of RQ5 shows that the heuristic function of the Choose Many of, which the

course skills question was based on, gives unexpected scores when the goal of the question is

to have diverse skills within a team. The reason for such unexpected scores is the assumption

of commonality between team members that the heuristic function works with. Figure

12 shows how the function can favor a team lacking a skill over a team having a similar

composition yet have only one student reporting possession of that skill. Consequently, as

this heuristic function cannot satisfy the goal of diversity, it would lead the tool to generating

teams with less preferred compositions.
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This finding strengthens the previous suggestion that instructors should avoid evaluative

questions of the type of Choose Many of as it is ineffective on both the students assessment

level and the heuristic computation level.

6.4 IMPLICATIONS FOR TOOL DESIGNERS

The main concern regarding the effectiveness of this tool is its sole dependency on students

self-reports. In answering the predictive and evaluative questions such as commitment level

or skill level., the flaws of self-assessment manifest. Research shows that peoples assessments

of their knowledge and skills in correlation to objective performance measures tend to be

relatively small, moderate at best [17] [18]. In addition, people tend to be overconfident in

their judgments and predictions of future events or behaviors, which do not always prove to

be accurate when the actual situation arrives [8]. Furthermore, there are potential cases of

inaccurate reports regardless of the reason behind such behaviors.

It would be of immense value to test the generalizability of our findings by analyzing similar

dataset from different courses. Nevertheless, this thesis sufficiently motivates revising the

tool in accordance with the insights obtained from analyzing the data. Specifically, more

effective means of skill assessment in the tool are need. For instance, peer-assessments could

be used instead of self-assessment. Peers-evaluations generally show more reliability and

correlation to instructors evaluations than self-reports [19] [20]. Equally important, the

tool needs to be more resistant to any attempts of gaming the system or manipulating the

outcomes of the team formation process.
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CHAPTER 7: CONCLUSION

In this thesis, we report the results of an examination of the effectiveness of CATME, a

criteria-based Team formation tool. Looking for potential factors affecting the validity of the

tool, we identified several issues. First, the technical skills analyzed showed no considerable

correlation with the grade of the project deliverables. Second, there were inconsistencies

between students ratings of their skills and reporting of their strongest skills. Also, there are

potential cases of students misreporting their skills. Finally, we found some cases where the

tool produced unexpected results when calculating the homogeneity of the skills of a team.

We hope this thesis leads to the design of team formation tools that are more effective for

the instructors and the students.
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