
Personalizing Computer Science Education by
Leveraging Multimodal Learning Analytics

David Azcona
Insight Centre for Data Analytics

Dublin City University
Dublin, Ireland

David.Azcona@insight-centre.org

I-Han Hsiao
School of Computing, Informatics
& Decision Systems Engineering

Arizona State University
Tempe, Arizona, USA
Sharon.Hsiao@asu.edu

Alan F. Smeaton
Insight Centre for Data Analytics

Dublin City University
Dublin, Ireland

Alan.Smeaton@insight-centre.org

Abstract—This Research Full Paper implements a framework
that harness sources of programming learning analytics on three
computer programming courses a Higher Education Institution.
The platform, called PredictCS, automatically detects lower-
performing or “at-risk” students in programming courses and
automatically and adaptively sends them feedback. This system
has been progressively adopted at the classroom level to improve
personalized learning. A visual analytics dashboard is developed
and accessible to Faculty. This contains information about the
models deployed and insights extracted from student’s data. By
leveraging historical student data we built predictive models
using student characteristics, prior academic history, logged
interactions between students and online resources, and students’
progress in programming laboratory work. Predictions were
generated every week during the semester’s classes. In addition,
during the second half of the semester, students who opted-in
received pseudo real-time personalised feedback. Notifications
were personalised based on students’ predicted performance on
the course and included a programming suggestion from a top-
student in the class if any programs submitted had failed to
meet the specified criteria. As a result, this helped students who
corrected their programs to learn more and reduced the gap
between lower and higher-performing students.

Index Terms—Computer Science Education, Learning Ana-
lytics, Predictive Modelling, Peer Learning, Machine Learning,
Educational Data Mining

I. INTRODUCTION

PredictCS is a Predictive Analytics platform for Computer
Science courses that notifies students based on their perfor-
mance using past student data and recommends most suitable
resources for students to consult [1]. The first implementation
of this framework was on an introductory computer program-
ming course in 2017 [2]. This implementation trained a model
of student performance using one year of groundtruth with
data features including engagement and programming effort.
Pseudo real-time predictions were run on a new cohort of stu-
dents while “at-risk” students were targeted during laboratory
sessions.

The framework has since been updated by the implemen-
tation of a new multimodal predictive analytics system that
aggregates sources of student digital footprints from blended
classroom settings [3]. Advanced data mining techniques are
adopted to engineer models to provide realtime prediction
and dynamic feedback. Preliminary results on a programming

course show the potential of this solution. In this work, the
system is implemented in three more computer programming
courses. The models add further features, namely static student
information along with more engagement features. In short, the
system uses machine learning techniques and predicts student
performance in three programming courses at first and second-
year undergraduate level.

A retrospective analysis was carried out to verify the vi-
ability of the models, pseudo real-time predictions were run
weekly during the teaching period on new cohorts of students,
and automatic feedback was sent to students who opted in
during the second half of the semester. This feedback was built
using our performance predictions and code suggestions from
top-ranked students in the class. We propose the following
research questions:

RQ1: How accurate are the proposed predictive models with
generic static and dynamic student data features identifying
students in need in programming courses across a variety of
first and second-year programming courses?

RQ2: What are the effects of timely automatic adaptive
support and peer-programming feedback on students perfor-
mances across these courses and what are the differences
among them?

RQ3: What are the students and teachers perspectives and
experiences on these courses?

II. RELATED WORK

In CSEd research, based on the programming events’
granularity (type and frequency), different models have been
developed for modelling student programming learning be-
haviour. Researchers have leveraged key strokes, program
edits, compilations, executions and submissions [4]. In our
university’s automated grading system for the teaching of
computer programming we collect programming submissions
and web logs. We have a fine-grained footprint about each
submission but we are limited by the frequency of the students
submitting their solutions and we miss the programming
actions in-between.
Feedback is an important research avenue for the teaching
of programming and an effective way to motivate novice
programmers. Recently, researchers have been working on



augmenting the IDE or programming environment by crowd-
sourcing code solutions. Students are suggested error cor-
rections or solutions that peers have applied before. Java
has been the programming language targeted the most with
solutions such as BlueFix [5] or HelpMeOut [6]. This latter
social recommender system was also applied to Arduino. In
addition, Crowd::Debug [7] was presented as a similar solution
for Ruby, a test-driven development language. In terms of
notifying students how they are progressing throughout a
semester, Purdue University’s Course Signals [8] sends a
personalised mail and posts a traffic signal as an indicator of
their performance while Dublin City University’s PredictED
[9] project notifies students how they are doing and where they
are within their own class. Both systems yielded impressive
improvement in first-year retention rates. Our programming
grading system also provides real-time feedback on each
submission by running a suite of test cases but provides no
code suggestions or personalised help for errors.

Researches have focused on generating models which ac-
curately predict student performance and identifying which
factors carry more predictive power. However, after identifying
those “at-risk” students, we should intervene and help those
students. Targeting these weak students during laboratory
sessions can aid some students [2], but lecturers usually do
not have the time or resources to support many students in
large classes or to spend as much time identifying what the
student knows and does not know. Automatic interventions
for programming classes are having great success in other
institutions and environments and we are eager to develop our
own strategies using our platforms and resources.

III. DATA COLLECTION

Dublin City University’s academic year is divided in two
semesters with a week of inter-semester break in between.
Semesters are comprised of a 12-week teaching or classes
period, 2-week study period and 2-week exam period. Lab-
oratory sessions and computer-based examinations are carried
out during the teaching period. Our previous study [2] was
done on Computer Programming I, CS1, that introduces first-
year students to computer programming and the fundamentals
of computational problem solving during their first semester.
We work with the following courses that are taught in the
second semester (Fall):

• Computer Programming II, CS2: This course intro-
duces first-year students to more advanced programming
concepts, particularly object-oriented programming, pro-
gramming libraries, data structures and file handling.
Students are expected to engage extensively in hands-on
programming with the Python programming language. A
previous version of CS2 was taught using Java before it
was redesigned. The current version with Python has been
taught for two academic years, 2015/2016 and 2016/2017.
The course is a continuation of Computer Programming
I, an introductory programming course.

• Managing Enterprise Computer Systems, SH1: This
course equips first-year students with the basic skills nec-

essary to administer modern enterprise operating systems
and shows students how to manage Unix and Unix-like
systems. Specifically, they study the Unix shell and work
shell scripting programming exercises using tools like
test, find or grep and concepts like loops, pipes or file
handling. This course has been taught for the past seven
academic years since 2010/2011. Students work with the
Bash Unix shell and the command language.

• Programming Fundamentals III, PF3: This course
teaches second-year students fundamental data structures
and algorithms in computational problem solving. The
material includes linked lists, stacks, queues or binary-
search trees; and other techniques, like recursion. This
is a new course that has been taught for the first time
this academic year 2016/2017 and the language chosen
is Python. PF3 is a continuing course of Programming
Fundamentals II, PF2, that was taught to second-year
EC students for the first time on the first semester. Even,
Programming Fundamentals I, PF1, was taught to first-
year students for the first time this year but second-
year students could not take it last year as it didn’t
exist. In PF2, students learn to design simple algorithms
using structured data types like lists and dictionaries,
and write and debug computer programs requiring these
data structures in Python. This course is also taught in
Python. PF3 uses the Python language. It emerged along
with PF1 and PF2 for a need for enterprise computing
students to have deeper computer programming skills in
the workplace.

In all courses, students are assessed by taking two laboratory
computer-based programming exams, a mid-semester and an
end-of-semester assessment, during the teaching period. In
PF3, instead of an end-of-semester lab exam, students demo a
project. Each laboratory exam or demo contributes equally to
their continuous assessment mark; 15% in CS2, 25% in SH1
and 20% in PF3. Students are not required to submit their
laboratory work for SH1 or PF2. In contrast, laboratory work
count towards their final grade of the course for CS2 and PF3,
both 10% of the overall grade for the course. The CS1 Lecturer
developed a custom Virtual Learning Environment (VLE)
for the teaching of computer programming. This automated
grading platform is currently used in a variety of programming
courses across CS; including CS1, CS2, SH1, PF2 and PF3.
Students can browse course material, submit and verify their
laboratory work. This platform has been used for the past
two academic years and that is the data we are using for our
analysis.

In terms of numbers, 134 students registered for CS2 during
2015/2016 and 140 students in 2016/2017. For SH1, 70 and
81 students enrolled respectively for the past two academic
years. For PF3, 60 students registered in 2016/2017 as that
has been the only version of the course. Enrolment numbers
from previous years are shown in Figure 1. CS1 and PF2 are
taught in the first semester of the academic year. CS2, SH1
and PF3, the main subject of this study, are taught during the



2010 2011 2012 2013 2014 2015 2016 2017

25

50

75

100

125

150

CS1

CS2

SH1

PF3

Fig. 1. Enrolment numbers on the courses studied

second.

IV. PREDICTIVE MODELLING

Predictive Analytics models were developed to automati-
cally classify students having issues with programming mate-
rial. For each of the courses introduced a distinctive predictive
model was built, one per course. These models use the
student’s digital footprints to predict their performance in
computer-based laboratory programming assessments.

A. Student’s Digital Footprint

For each student, we build a digital footprint by leveraging
the data modalities available and modelling student interaction,
engagement and effort in programming courses. The data
sources are the following:

• Student Characteristics
• Prior Academic history
• Programming submissions
• Behavioural logs

Features are handcrafted using those data sources. In our
previous work [10], we analysed 950 first-year Computer
Science (CS) entrants across a seven year period and showed
the significant relationship between their entry points or math
skills and how they perform in their first year and in program-
ming courses at our university.

B. Training predictive models

A classification model was built for each course to distin-
guish “at-risk” students. CS2 and SH1’s models were trained
with historical student data from 2015/2016. In contrast, we
did not have any student training data for PF3 as 2016/2017
was the first academic year that course had being taught.
As a workaround, we trained a model using Programming
Fundamentals II (PF2)’s 2016/2017 student data which was
taught during the first semester. The target was to predict
whether each student would pass or fail their next laboratory
exam. These programming courses are quite dynamic and
programming laboratory exercises vary considerably from year
to year. However, concepts and knowledge being taught should
remain the same.

TABLE I
COURSE PASS RATES ON GROUNDTRUTH DATA

Course Year Semester # Students 1-Exam 2-Exam
CS2 2015/16 2 149 44.30% 46.98%
SH1 2015/16 2 73 32.88% 69.33%
PF2 2016/17 1 60 51.67% 36.67%

After deriving the features, a model for each course was
trained to predict a student’s likelihood of passing or fail-
ing the next computer-based laboratory exam. We developed
classifiers for each week of the semester. In 2015/2016, there
was a mid-semester exam and an end-of-semester exam for
the courses we are building our groundtruth with: CS2, SH1,
PF2. To clarify, classifiers from week 1 to 6 were trained to
predict the mid-semester’s laboratory exam’s outcome (pass or
fail for each student) and from 7 to 12 the end-of-semester’s
laboratory exam’s outcome.
The Empirical Error Minimization (EMR) approach has been
employed to determine the learning algorithm with the fewest
empirical errors from a bag of classifiers C [11, 2]. On these
models, instead of taking the learning algorithm with the
lowest empirical risk or the highest metric (namely accuracy
or F1-score), we looked at these metrics per class (pass
or fail). Generally, the results on the next laboratory exam,
our target variable, are quite imbalanced as in some courses
there might many more students that pass rather than fail an
exam. The resulting accuracy of a learning algorithm could
be misinterpreted if we weight the predictions based on the
numbers per class. Our goal is to identify weak students as
we prefer to classify students “on the edge” as likely to fail
rather than not flagging them at all and miss the opportunity to
intervene and help. See the training data pass rates in Table I.

C. Retrospective Analysis

Following a customized EMR approach, we selected a
classifier for each course that minimized the empirical risk
on average for the 12 weeks looking at the fail class and had
a good balance between both classes. The learning algorithms
and their corresponding metric values on our training data
are shown in Table II. For instance, in CS2, we selected a
K-Neighbors classifier which gave us a high F1-metric on
average and the highest on weeks 5 and 6. Those weeks are
key to identify who is struggling before their first assessment.
Figure 2 shows the performance of the bag of classifiers for
each week on average of the Cross-Validation folds. Figure 3
only shows the likely-to-fail class. Following this approach,
in CS2, we selected a K-Neighbors classifier which was the
second-highest on average for the F1-metric looking at both
classes. The highest was a Random Forest which was giving
the values 75.39% and 62.25% for the F1-score metric for
the fail and pass classes respectively. However, two classifiers
on week 5 and 6 were getting slightly better results by the
K-Neighbors classifier and those weeks are key to identify
who is struggling. We decided to choose the K-Neighbors then
so we could better identify them before their first laboratory



Fig. 2. CS2 F1 Classifiers Performance

1 2 3 4 5 6 7 8 9 10 11 12

Week

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Logistic Regression

SVC linear kernel

SVC rbf kernel

Random Forest

Decision Tree

K Neighbors

Fig. 3. Performance of the bag of classifiers using the F1-metric for course
CS2 looking at the fail class

examination on week 6. In SH1, Random Forest looked like
the most promising classifier with the highest fail class F1-
score, 74.26% but a very low value for the pass class: 32.20%.
The pass class values were particularly very low the first few
weeks of the semester as it was classifying most of the students
as failing the next laboratory exam which does not help us
that much. We went for an SVM with linear kernel with the
values shown in Table II. See Figures 4 and 5. We can see
how the SVM with Gaussian kernel fails to learn and predicts
all students to fail. It gets good accuracy some weeks of the
semester but we are aiming for a good balance for both classes
with an emphasis on the failing class. Lastly, for PF2, we
picked up the Decision Tree classifier as it gave us the highest
F1-score for the fail class and one of the highest for the pass
class. Recall, PF3’s model is based on PF2’s training data. See
Figures 6 and 7.

In addition we ran a statistical significance for the classifiers
selected with respect to the others in the bag of classifiers. The
predictions were only statistically significant compared to to
the SVM with Gaussian kernel which failed to learn properly.
This indicates the predictions are very similar as we only have
groundtruth data for one academic year so far and we do not
have enough information to determine the selected classifiers’
predictions were statistically independent.

Fig. 4. SH1 F1 Classifiers Performance

1 2 3 4 5 6 7 8 9 10 11 12

Week

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

Logistic Regression

SVC linear kernel

SVC rbf kernel

Random Forest

Decision Tree

K Neighbors

Fig. 5. SH1 F1 Fail class Classifiers Performance

Fig. 6. PF2 F1 Classifiers Performance

TABLE II
LEARNING ALGORITHM SELECTED FOR EACH COURSE

Course Algorithm Class F1-score Precision Recall

CS2 K-Neighbors Fail 74.50% 71.41% 81.03%
Pass 59.81% 68.80% 58.74%

SH1 Linear SVM Fail 67.77% 71.46% 69.54%
Pass 41.61% 45.53% 42.82%

PF2 Decision Tree Fail 66.73% 68.58% 72.14%
Pass 55.00% 58.62% 59.64%



1 2 3 4 5 6 7 8 9 10 11 12

Week

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F
1

Logistic Regression

SVC linear kernel

SVC rbf kernel

Random Forest

Decision Tree

K Neighbors

Fig. 7. PF2 F1 Classifiers Performance for the likely-to-fail class

TABLE III
CORRELATION BETWEEN THE FEATURE VALUES AND THE TARGET

PERFORMANCE GRADES TO BE PREDICTED

Course Feature description Pearson Spearman
CS2 CS1 Exam-2 2015/2016 35%* 40%*

CS2 Programming Week 6 73%* 73%*

SH1 Years on this course -31%* -26%
SH1 Week(end) rate Week 10 36%* 35%*

SH1 Programming Week 12 51%* 51%*

PF2 Hours Spent Week 8 48%* 45%*

* p− value < 0.01

We measured the predictive power of our features by
calculating the correlation between the students’ grades and
our target, the next laboratory exam results, using the linear
(Pearson) and non-linear (Spearman) correlation coefficients.
Table III shows examples of previous academic performance,
static characteristics, interaction and programming features.
This analysis confirms the power of our features and the
programming weekly and cumulative progress features in-
creasingly gain importance throughout the semester as students
put more effort into the courses.

In a similar manner, we built a trees classifier for each
course and per week that fits a number of randomized decision
trees. By building this type of forest, we were able to compute
the importance for each feature. Based on this forest of impor-
tances, we selected the top 10 features every week to avoid
over-fitting. A similar comparative analysis to the classifier
analysis was run to verify this approach for feature selection
improved our metric values, see Figure 8 and Figure 9 for CS2
and SH1 respectively [12]. In addition, Figure 10 shows the
top features for a particular week for CS2.

This retrospective analysis shows us we can successfully
gather student data about their learning progress in those
programming courses leveraging students’ digital footprints.

V. STUDENT FEEDBACK

Students that decided to opt-in received weekly customized
notifications via email. After their first laboratory exam in
week 6, a feature was enabled in the grading platform platform

Fig. 8. CS2 ROC AUC Features Analysis

1 2 3 4 5 6 7 8 9 10 11 12

Week

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1

In-course features + Demographics + Leaving Cert

In course features (Web + lab)

Web events features

Laboratory Work features

Top features

Fig. 9. Fail class Feature Analysis using the F1-metric for course SH1 looking
at the fail class

for the teaching of computing programming where students
could freely opt-in or out from these notifications and read
about the project. After it was enabled, students were not able
to submit any programs before they either opted-in or out.
Table IV shows the number of people who replied to the opt-
in option. Most students opted-in on each course and they
received weekly notifications from that moment onwards.

The customized notifications were personalized by leverag-
ing our weekly predictions. Based on the associated probability

Fig. 10. CS2 Top Features Week 2



TABLE IV
STUDENT OPT-INS AND OPT-OUTS TO INTERVENTIONS

Course Replied Opt-ins Opt-outs No-reply
CS2 (140) 122 (87.14%) 111 (90.98%) 11 (9.02%) 18 (12.86%)
SH1 (81) 70 (86.42%) 63 (90.00%) 7 (10.00%) 11 (13.58%)
PF3 (60) 51 (85%) 42 (82.35%) 9 (17.65%) 9 (15.00%)

of failing the next laboratory exam, we ranked students,
and divided them in deciles. Hence, there were 10 custom
messages we sent based on their performance. In addition, for
each notification, we included one programming suggestion
if the student had submitted a program that failed any of
the testcases and had been considered incorrect. We utilized
a matching algorithm to suggest the closest program from a
correct solution developed by a top-performer in the class that
week. The top students are the 10% highest ranked in that
class from our predictions each week. We recommended the
closest submission by text similarity between the programs
after removing the comments. At the end of the note, students
could be redirected to read the Terms or unsubscribe from
these notifications if desired. Nobody unsubscribed from these
notifications throughout the semester. See Figure 11 for a
sample of the notifications.

VI. RESULTS

Predictions are run on data from 2016/2017’s incoming
student cohorts. We analyse the results obtained by running
predictions along with the feedback sent to them and what
this means for the research questions proposed.

A. RQ1: Predictions

Predictions were run on a pseudo real-time basis every
week for students who registered for the three courses during
the second semester of 2016/2017 using the models trained
with our groundtruth data. Individual reports were emailed
to the lecturers every week and posted on our analytics
web application accessible to them at any time. In order to
evaluate how our predictions performed, we compared the
corresponding weeks’ predictions with the actual results of
the two laboratory exams that took place in weeks 6 and
12 in 2016/2017 for each course. Table V contains details
of the accuracy of our predictions. Overall, these worked
quite well. As the semester progressed, our early alert system
gathered more information about students’ progression and our
classifiers were able to learn more as shown by the increased
accuracy and F1-score measures and the decreasing number of
students flagged as “at-risk”. In short, we could automatically
distinguish in a better way of who is going to pass or fail the
next laboratory exam.

B. RQ2: Interventions

Notifications were sent to opt-in students for the second half
of the semester classes as shown in Table VI. For instance,
in CS2, 438 notifications were sent to students, 181 of these

contained a programming suggestion and the remaining did
not have any program to suggest to the student. 21 of those
programs suggested were corrected by the students after the
recommendation was sent.

We extracted and created two groups from the students, the
ones that corrected any of the programs suggested to them with
the solution outlined or another solution, and the ones who
were suggested one or more programming suggestions but did
not correct any. This can be found in Table VII. In SH1, there
were 16 students who corrected some of their failing programs
as suggested and 35 that were suggested but they did not. For
the ones that did, their average grade on the second exam
was more than 2 points below but for the ones that did not,
their’s was more than 11 points. A lesser learning improvement
is observed for CS2 and PF3. Based on only year of data,
students seem more motivated to learn from the programs that
are offered to them as advice for failed submissions.

Instead, students can also be grouped into higher and lower-
performing groups based on their results in the first assessment
in order to measure the impact of our notifications and the
gap between them and these results are shown in Table VIII.
Students who failed CS2 and SH1’s first laboratory exam
improved almost 2 and almost 5 more points on average re-
spectively on 2016/17 when the predictions were run, students
were ranked, programs were suggested and notifications were
sent to students. There is no basis for a similar analysis of PF2
and PF3 as those are different courses from the same academic
year and the student cohort was the same.

In both scenarios, students who learned from the programs
suggested and lower-performing students, showed a learning
improvement over the two other groups.

C. RQ3: Students have their say

In any student intervention, it is important to get students’
opinions about the feedback introduced to them, understand
how it affects their behaviour within the courses and if it
encourages them to try new solutions or to revise material.
Thus, we gathered their opinions about our system and the
notifications via a written questionnaire. The questions on the
form were the following:
Q1: Did you opt-in? Yes / No
Q2: If you opted-out, could you tell us why?
Q3: How useful did you find the weekly notifications . . . 1 to
5 rating
Q4: Did you run any of the suggested working programs? Yes
/ No / I was never suggested any
Q5: Would you recommend the system to a student taking this
same course next year? Yes / No
Q6: Would you like to see weekly the system notifications for
other courses? Yes / No
Q7: How could we improve the system for next year? Any
other comments.

In CS2 and SH1, the questionnaire was filled the second-
last day of the semester classes during an evaluation for
another course where all CA and EC first-year students should
have attended. That allowed us to gathered a good amount of



Fig. 11. Personalized notification sent to a student in SH1

TABLE V
COURSE INFORMATION, PASS RATES, AT-RISK PREDICTION RATES, PREDICTION METRIC RESULTS AND CORRELATIONS PER COURSE

Course Year Sem. Students Exam Passing At-risk Accuracy Precision Recall F1-score Pearson Spearman

CS2 2016/17 2 133 W6 58.57% 74.29% 64.29% 94.44% 41.46% 57.63% 0.62 (0.0000) 0.60 (0.0000)
W12 42.86% 44.29% 77.14% 67.95% 88.33% 76.81% 0.65 (0.0000) 0.70 (0.0000)

SH1 2016/17 2 81 W6 70.37% 80.25% 46.91% 93.75% 26.32% 41.10% 0.41 (0.0001) 0.40 (0.0002)
W12 69.14% 48.15% 67.90% 85.71% 64.29% 73.47% 0.41 (0.0002) 0.42 (0.0001)

PF3 2016/17 2 60 W6 88.33% 48.33% 56.67% 93.55% 54.72% 69.05% 0.42 (0.0008) 0.45 (0.0004)
W12 90.00% 65.00% 45.00% 100% 38.89% 56.00% 0.43 (0.0006) 0.45 (0.0003)

TABLE VI
INTERVENTIONS

Course Notifications Suggestions # Corrected % Corrected
CS2 438 181 21 11.60%
SH1 238 134 25 18.66%
PF3 165 80 8 10.00%

responses for both courses. See the first column on the table
which is the response rate. In PF3, the questionnaire was filled

TABLE VII
LEARNING IMPROVEMENT

Course Class Num 1-Exam 2-Exam Impr. Diff.

CS2 Yes 16 32.81% 27.62% -5.19% +5.85%No 53 45.28% 34.24% -11.04%

SH1 Yes 16 60.94% 58.75% -2.18% +8.96%No 35 58.57% 47.43% -11.14%

PF3 Yes 7 53.57% 73% +19.43% +3.74%No 28 58.25% 73.92% +15.68%



TABLE VIII
IMPROVEMENT BETWEEN HIGHER AND LOWER-PERFORMING STUDENTS OVER THE TWO ACADEMIC YEARS

Course Year Cohort 1-Exam 2-Exam Improvement. Differential Learning differential

CS2
2015/16 Passed 1st Exam 75.23% 55.06% -20.17% +29.87%

+1.89%Failed 1st Exam 14.70% 24.40% +9.70%

2016/17 Passed 1st Exam 76.22% 47.85% -28.37% +31.76%Failed 1st Exam 8.62% 12.02% +3.40%

SH1
2015/16 Passed 1st Exam 64.17% 64.17% +0.00% +35.29%

+4.89%Failed 1st Exam 5.88% 41.18% +35.29%

2016/17 Passed 1st Exam 72.81% 55.44% -17.37% +40.18%Failed 1st Exam 17.19% 40.00% +22.81%

TABLE IX
SURVEY RESPONSES FROM STUDENTS ABOUT THE PROJECT

Course Response Q1 Q3 Q4 Q5 Q6
CS2 75.71% 93.40% 3.49 ? 33.70% 85.15% 83%
SH1 80.25% 84.60% 3.82 ? 40.40% 91.33% 91.38%
PF3 53.33% 87.50% 3.45 ? 21.88% 100% 90.00%

during the laboratory session in week 11.
Overall, feedback was very positive and responses can be
found in Table IX. Most students would recommend this sys-
tem to students attending the same course next year or would
like to see this system included in other courses as shown in
questions 5 and 6 respectively. In terms of the last question
to improve the system, students who were doing well or very
well, were getting an increasingly similar response each week
and were demanding a more personalised notification and
some other additional learning resources.

VII. DISCUSSION

Predictions worked relatively well with one year of training
data for the three courses. Next year we will be able to
generalise far better by having two different student cohorts
from which to extract our usage patterns. We should note
again, CS2 and SH1’s models were based on 2015/16’s
previous student data and PF3’s was based on PF2’s student
data from the first semester of the academic year. We could
not expect it to work as well as the other models as the
courseware is not the same, the concepts taught are similar but
more advanced and utilizing PF2’s patterns has surprisingly
resulted in good outcomes. Hence, we are aplying now models
for new courses based on our whole student dataset from
all courses available. The more data is usually the better
and even though the material and programming exercises are
different, we might be able to identify at-risk students using
general engagement, progress and static patterns. In addition,
we believe CS2’s actual results were more correlated with
our predictions than SH1’s as CS2 is an advanced course that
requires more studying time from students. Both are hands-
on programming courses but CS2 is designed for prospective
Software Engineers in CA and the concepts taught are harder
programming wise. The progression and effort students need
to invest in seems higher and, hence, our predictors work

better in identifying who is at-risk in CS2. In terms of the
notifications, after enabling the feature to opt-in or out on
the courses’ courses, students had to log in to the submission
platform to select either option. Most of the students that
replied did that in the first or second week, specially on the
laboratory sessions where the use the platform to verify their
work. A few ”tardy” students did it later and did not receive
their previous notifications even if they had opted-in after.
Others were completely disengaged and never got to reply. The
approach we chose for the programming recommendations
was to pick the closest text program from top-ranked students
in the class that year. This could be further advanced by identi-
fying variables and choosing the closest program syntactically
and semantically. Other approaches we tested before were
Collaborative Filtering as recommender systems use today by
looking at the closest person to you in the class or within the
top-students, and to recommend one of their programs. Netflix
recommends movies or Amazon recommends products from
people with the same tastes assuming they are constant, we
could assume programming design is constant and recommend
the students program from the closest person. We were more
interested in the students being able to identify what’s wrong
with their problems and the closest solution from a top-student
worked very well, especially for shorter programs like the
ones suggested in SH1. We could also use crowdsourcing and
recommend the program uploaded the most by using previous
and current year solutions. Even lecturers were also providing
some sample solution and explanatory code after seeing the
students’ reactions to the notifications in those three courses.

VIII. CONCLUSION & FUTURE WORK

We are extending the implementation of this framework to
more programming courses. In addition, we are being more
vocal about the project so more students can benefit from
this research methodologies. The following years, we will
generalize and model the students’ behaviour on these courses
better as we will be able to train the models with several
historical student cohorts. We are excited to personalized,
enhace and motivate our learners by providing them with more
detailed programming recommendations, suitable resources
and other actions to fill the knowledge programming holes
they may have while learning CS programming design at our
university.



ACKNOWLEDGEMENTS

This research was supported by the Irish Research Council
in association with the National Forum for the Enhancement
of Teaching and Learning in Ireland under project number
GOIPG/2015/3497, by Science Foundation Ireland under grant
number 12/RC/2289, and by Fulbright Ireland.

REFERENCES

[1] David Azcona, I-Han Hsiao, and Alan Smeaton. “Pre-
dictCS: Personalizing Programming learning by lever-
aging learning analytics”. In: (2018).

[2] David Azcona and Alan F Smeaton. “Targeting At-risk
Students Using Engagement and Effort Predictors in an
Introductory Computer Programming Course”. In: Eu-
ropean Conference on Technology Enhanced Learning.
Springer. 2017, pp. 361–366.

[3] David Azcona, I-Han Hsiao, and Alan Smeaton. “De-
tecting Students-In-Need in Programming Classes with
Multimodal Learning Analytics”.

[4] Petri Ihantola et al. “Educational data mining and
learning analytics in programming: Literature review
and case studies”. In: Proceedings of the 2015 ITiCSE
on Working Group Reports. NY, USA: ACM, 2015,
pp. 41–63.

[5] Christopher Watson, Frederick WB Li, and Jamie L
Godwin. “Bluefix: Using crowd-sourced feedback to
support programming students in error diagnosis and
repair”. In: International Conference on Web-Based
Learning. Washington, USA: Springer, 2012, pp. 228–
239.

[6] Bjorn Hartmann et al. “What would other program-
mers do: suggesting solutions to error messages”. In:
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. NY, USA: ACM, 2010,
pp. 1019–1028.

[7] Dhawal Mujumdar et al. “Crowdsourcing suggestions to
programming problems for dynamic web development
languages”. In: CHI’11 Extended Abstracts on Human
Factors in Computing Systems. NY, USA: ACM, 2011,
pp. 1525–1530.

[8] Kimberly E Arnold and Matthew D Pistilli. “Course
signals at Purdue: Using learning analytics to increase
student success”. In: Proceedings of the 2nd interna-
tional conference on learning analytics and knowledge.
NY, USA: ACM, 2012, pp. 267–270.

[9] Owen Corrigan et al. “Using Educational Analytics to
Improve Test Performance”. In: Design for Teaching
and Learning in a Networked World. Washington, USA:
Springer, 2015, pp. 42–55.

[10] “Innovative learning analytics research at a data-driven
HEI”. In: (2017).

[11] L Gyorfi, L Devroye, and G Lugosi. A probabilistic
theory of pattern recognition. Washington, USA, 1996.

[12] James A Hanley and Barbara J McNeil. “The meaning
and use of the area under a receiver operating char-
acteristic (ROC) curve.” In: Radiology 143.1 (1982),
pp. 29–36.


