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Abstract—This full research paper focuses on skill acquisition
in Hardware Reverse Engineering (HRE) – an important field of
cyber security. HRE is a prevalent technique routinely employed
by security engineers (i) to detect malicious hardware manipu-
lations, (ii) to conduct VLSI failure analysis, (iii) to identify IP
infringements, and (iv) to perform competitive analyses. Even
though the scientific community and industry have a high
demand for HRE experts, there is a lack of educational courses.
We developed a university-level HRE course based on general
cognitive psychological research on skill acquisition, as research
on the acquisition of HRE skills is lacking thus far. To investigate
how novices acquire HRE skills in our course, we conducted two
studies with students on different levels of prior knowledge. Our
results show that cognitive factors (e.g., working memory), and
prior experiences (e.g., in symmetric cryptography) influence the
acquisition of HRE skills. We conclude by discussing implications
for future HRE courses and by outlining ideas for future research
that would lead to a more comprehensive understanding of skill
acquisition in this important field of cyber security.

Index Terms—skill acquisition in cyber security, hardware
reverse engineering

I. INTRODUCTION

In an increasingly digital world, individuals, industry, and
governments wrestle with major cyber-security challenges
posed by numerous and increasingly frequent cyber attacks at
the hardware, software, and network level. Hardware compo-
nents serve as the basis of trust in virtually any computing
system by ensuring its security, integrity, and reliability. Due
to the globalized fabrication processes through which they are
produced, however, Integrated Circuits (ICs) are vulnerable
to attacks such as malicious manipulations or the insertion of
hardware Trojans [1], [2]. The deployment of manipulated
hardware chips in critical infrastructure such as cellular
networks and power grids or in sensitive applications (e.g.,
aerospace or military) is a major concern for a wide array of
stakeholders [3], [4].

A common method to detect such malicious manipulations
in ICs is called Hardware Reverse Engineering (HRE). Reverse
engineering can be described as the process of retrieving
information from anything man-made to understand its inner
structures and workings [5]. HRE is a multi-layered process
which facilitates the security inspection of an (unknown)
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hardware design [6]. Specifically, HRE is employed for the
purpose of Very-Large-Scale Integration (VLSI) failure analysis,
detecting counterfeits, identifying IP violations, and searching
for potentially implanted backdoors and hardware Trojans [7].
At the same time, malign actors can utilize HRE for illegitimate
purposes such as IP fraud or the insertion of backdoors or
hardware Trojans.

The continuous evolution of a digital society shaped by a
rapidly expanding Internet of Things (IoT) and the proliferation
of cyber-physical systems have created a high demand for
security experts with a solid background in HRE. Nevertheless,
there is an almost complete lack of educational courses in
the HRE field and HRE training happens almost entirely on
the job [8]. We developed an HRE course based on cognitive
psychological research on skill acquisition, as research on the
acquisition of HRE skills is lacking thus far. The course was
first offered at a German university during the 17/18 winter
term. The second iteration of the course was introduced at one
German and one North American university during the 18/19
winter term. In order to evaluate if our course actually enables
HRE skill acquisition, we conducted two studies with students
on different levels of prior knowledge in relevant topics. We
argue that research on HRE skill acquisition and how to best
foster it through educational courses is essential for enhancing
the development of future university-level programs and for
addressing the high and unmet demand of HRE experts.

We aim to observe if students of our course are able to
acquire HRE skills by taking a first step towards closing the
research gap of understanding how HRE skills are acquired.
Our research will help to define future goals for teaching and
learning in this specific field of cyber security.
In summary, our contributions are to:

• Illustrate the current lack of research on how skills in this
important field of cyber security are acquired.

• Provide an overview of prior research from cognitive
psychology on the acquisition of skills.

• Develop a course based on the findings from cognitive
psychology to enhance skill acquisition in HRE.

• Observe and evaluate if our course enables students to
acquire HRE skills. Therefore, we present our two studies
by formulating research questions, expound upon our
study design and methods, and present the results of our
examination.
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• Discuss the findings of our research on HRE skill acqui-
sition by evaluating our course design and by providing
recommendations for future courses and research studies.

II. BACKGROUND

A. Hardware Reverse Engineering

The term reverse engineering refers to the processes of
extracting knowledge or design information from anything
man-made in order to comprehend its inner structure [5].
In the context of hardware security [9], security engineers
(as well as malicious actors) are forced to employ different
techniques to extract a gate-level netlist from a given IC or
Field Programmable Gate Array (FPGA). The analysis of the
gate-level netlist marks the crucial step of HRE enabling human
reverse engineers to make sense of an unknown hardware design
(e.g., to identify security vulnerabilities or security-circuitry
for Trojan insertion [10]) [6]. In the following we define the
term gate-level netlist reverse engineering as an important
cyber security skill. Additionally, we outline the current lack
of research on HRE skill acquisition.

1) Gate-level Netlist Reverse Engineering: During the
hardware design process, synthesis tools convert Register
Transfer Level (RTL) descriptions of hardware designs into
representations of the (Boolean) logic gates of the target gate
library and their connectivity [11]. Such representations are
called gate-level netlists.

During the different synthesis steps, valuable high-level
information such as (1) meaningful descriptive information
(e.g., names and comments), (2) boundaries of implemented
modules, and (3) module hierarchies is lost. In practice, this
loss of information highly complicates the reverse engineering
process [12].

In real-world settings, analysts can obtain gate-level netlists
in several scenarios: (1) through chip-level reverse engineering
in the case of a given IC (involving steps such as (i) decapsu-
lation, (ii) delayering, (iii) image acquisition, and (iv) image
processing) [7]; (2) through bitstream reverse engineering in
the case of FPGAs (involving steps such as (i) bitstream
extraction or interception, (ii) bitstream file format reversing,
and (iii) bitstream conversion) [13]; or (3) by direct access at
a foundry or through bribery or theft.

Human analysts conducting gate-level netlist reverse engi-
neering are often supported by semi-automatable tools that
enable algorithmic graph-based and machine learning methods
as well as allow for detailed visual inspection for the purpose
of structural and functional analyses [12], [14]. Since no fully
automated tools for HRE exist, human engineers are always
involved in the process of gate-level netlist reversing.

2) Lack of Research on HRE Skill Acquisition: HRE
specialists need to draw upon knowledge from various domains
including chip design and manufacturing, image processing and
machine learning techniques, Boolean algebra, graph theory,
custom tooling, programming languages, Hardware Description
Languages (HDLs), computer architectures, cryptography, and
cryptanalysis. There are currently very few trained HRE
specialists, and due to the lack of educational courses in

the field, most have acquired their skills through on-the-job-
training or even through their free time pursuits as hobbyists.
This ad-hoc training situation is unsatisfactory since there is
growing demand in industry and government agencies for HRE
specialists, which should be met by structured university-level
courses. Therefore, we developed an HRE course which is
based on cognitive psychology, since research on the acquisition
of HRE skills is missing. In the following, we first address
relevant aspects of psychological research on skill acquisition.
Second, we apply the psychological research findings in order
to develop and present the HRE course design.

B. Psychological Background

Even though industry and the scientific community have a
high demand for engineers with HRE expertise, there is a lack
of systematic research on the acquisition of HRE skills. We are
aware of one relevant prior work on human factors in reverse
engineering [15]. The authors focused on exploring human
problem-solving processes in reverse engineering of simple
Boolean systems in an artificial laboratory setting. Thus, this
prior work does not compare to HRE practice. Additionally, the
authors did not include research on skill acquisition processes.
In the following sections, we present relevant psychological
literature on skill acquisition which build the foundation of
our HRE course design.

1) Skill Acquisition: According to the Adaptive Control
of Thought-Rational (ACT-R) [16], knowledge is represented
in two ways [17]: Declarative knowledge which consists of
facts (e.g., the control path is operationalized as a Finite State
Machine (FSM)), and procedural knowledge which consists of
mappings of stages to actions (e.g., if the goal is to find an FSM,
then search for strongly connected components in the netlist).
ACT-R includes assumptions about transferring declarative
knowledge (knowing that) into procedural knowledge (knowing
how): knowledge is first acquired declaratively, and afterwards
transformed into a procedural form [18].

The acquisition of declarative (verbal) and procedural
(non-verbal) knowledge is supported by various learning
processes [19]. These in turn can be reinforced through specific
forms of instruction and course structure [19], which we
incorporated into the design of our HRE tasks (see Section III).
In the following, we briefly describe the learning processes for
declarative and procedural knowledge.

First, understanding and sense-making processes involve
verbally-mediated and explicit processes in which students
attempt to understand and reason. Understanding and sense-
making processes are more deliberate, since students need to
actively engage in understanding and reasoning [19]. Second,
memory and fluency-building processes are defined as non-
verbal learning processes which involve strengthening memory
and compiling knowledge [19]. Fluency building enables
solving tasks and problems more efficiently, since knowledge is
more strongly composed and automatically accessible [20] [21].
Prior research has shown that people speed up with prac-
tice [17]. In this context, the psychological construct behind
“speeding up” is called fluency which is defined as the ability to



quickly and accurately solve a problem [22]. Prior findings have
shown that students with high scores in fluency maintain their
skills over time [20] and perform better on more complex tasks
than students with lower fluency [21]. Third, induction and
refinement processes are non-verbal processes and improve the
accuracy of knowledge through generalization, categorization,
discrimination, or causal induction [19].

Additionally, individual differences and abilities (e.g., intel-
ligence) play an important role in the development of broad
and complex skills [23]. Furthermore, motivation is often
described as a central driver of devoting years to deliberate
practice and learning [24]. A high level of motivation leads
to more cognitive engagement, more learning, and higher
levels of achievement [25], and is therefore relevant to the
development of a course on HRE which supports students’
learning processes.

In the following section, we use concepts described in
existing literature on skill and knowledge acquisition and
instructional principles which support these learning pro-
cesses [19] to describe the design of our course in HRE.

2) Psychological Research as the Foundation for HRE
Course Design: With the goal of designing the course to
enhance the acquisition of HRE skills, we acknowledged
the distinction between declarative and procedural knowledge
acquisition by assuming that knowledge is first acquired
declaratively, and is then transformed into a procedural
form [16] [18]. Practically, we divided the course into a
lecture phase (acquisition of declarative knowledge) and a
practical phase (transformation into procedural knowledge). We
developed the learning materials for and instructional principles
behind the two phases based on verbally-mediated and non-
verbal learning processes as proposed in [19]. Additionally,
we considered potential influences upon student motivation as
described in the following section.

3) Lecture Phase: During the first six weeks of the course,
students acquire declarative knowledge. This phase focuses
on the acquisition of verbally-mediated facts, theories, and
concepts related to the relevant fields of electrical engineering,
Boolean algebra, and graph theory through two 90-minute
lectures and one homework assignment per week. We apply the
instructional principles of Prompted Self-Explanation [19] and
Accountable Talks [26] [19] to support the learning processes
of understanding and sense making (Section II-B1). We achieve
robust learning of declarative knowledge through the integration
of verbally-mediated exercises which encourage students to
explain the steps of Worked Examples of HRE to themselves
and to share their solutions with other students in accountable
discussions in tutorial sessions.

4) Practical Phase: Following the lecture phase, students
participate in an eight-week practical study consisting of four
HRE problems (detailed descriptions in Section III). Our
decision to organize the course in two phases reflects our
assumption that the declarative knowledge imparted during the
lecture phase is transformed into practical knowledge through
the non-verbal learning processes of the practical phase. To
support non-verbal memory and fluency-building processes

(Section II-B1), we leverage the instructional principle of
Spacing and Testing [27] [19] by directing students to practice
recalling target task material over longer time intervals (two
weeks per project) to enhance their long-term retention and
improve their fluency in solving HRE problems.

Additionally, we include non-verbal processes that are
associated with the induction and refinement processes (Sec-
tion II-B1), through the incorporation of Worked Exam-
ples [28] [19] into the curriculum as students learn more
robustly from tasks which are interleaved with problem solving
practice [19].

In summary, we designed the HRE course based on general
cognitive psychological research on skill acquisition, which is
supported by certain types of instructions and assignments as
described. Since motivation is a central factor, we also took
intentional steps to bolster student motivation in our course
design as described in the following.

5) Supporting Students’ Motivation in HRE Course: Since
motivation is a key element in learning (Section II-B1), we
employed the following design principles in our course to
enhance students’ motivation. In cases where higher levels of
motivation are associated with greater cognitive engagement
and learning [25] [24], tasks and materials must cater to both
personal and situational interest. The HRE tasks we present
in the practical phase are stimulating and engaging exercises
which are both novel and touch upon a variety of real-world
challenges encountered in HRE practice (e.g., finding control
logic, retrieving a cryptographic key, etc.). The integration
of the HRE software HAL into the course helps students
learn HRE processes through the use of realistic graphical
representations [8] which should in turn lead to growing interest
and involvement. By providing authentic HRE tasks and making
connections to students’ intended profession, the course design
supports an increase in the perceived value of the learning
experience which again leads to enhanced motivation [29].
Students who believe they are able to solve a task are more
highly motivated in terms of effort and persistence [25]. Thus, it
is important to include tasks which are on an appropriate level
of difficulty and allow students to use their prior knowledge and
skills. We consequently designed the tasks within the project
phase to fall within the range of competence achieved by the
conclusion of the lecture phase.

In summary, HRE is important in the field of cyber security
and specialists with HRE skills are in great demand. In addition
to the lack of HRE experts, there is also a lack of educational
university-level HRE programs. Thus, we developed a HRE
course by referring to prior cognitive psychological research,
since research on the acquisition of HRE skills cannot be
found. In order to evaluate the effects of our course design
on HRE skill acquisition, we run two studies with participants
on different levels of prior knowlegde. In the following, we
present our research methods and materials.



III. METHODS

A. Research Questions

To observe participants’ skill acquisition as well as correla-
tions with motivational and cognitive factors, we formulated
the following research questions:

1) Does students’ performance in solving HRE tasks im-
prove with increasing experience?

a) Does increasing experience result in students need-
ing less time to solve HRE tasks?

b) Do students exhibit a higher probability of solving
HRE tasks as their experience grows?

2) Are there differences between students with different lev-
els of expertise (undergraduate and graduates) regarding
the hypothesized improvements?

3) Do the hypothesized improvements relate to particular
aspects of intelligence and related cognitive abilities (e.g.,
processing speed), or prior experiences in relevant topics?

B. Participants

The first study was conducted at a North American university
with 20 students (mean age M = 23.5, SD = 2.3; 9
undergraduates) who were enrolled in programs in electrical
engineering or computer science. The ethics board approved the
study. The second study was conducted at a German university
with 18 participants (mean age M = 23.1, SD = 1.8;
9 undergraduates) who studied cyber security or electrical
engineering. The institutions were chosen based on their strong
programs in cyber security, and computer engineering. Five
participants were excluded because they did not complete
all the tasks and the amount of data was not sufficient for
analyses. Both studies were conducted in winter term of 18/19.
In both studies, participants provided written informed consent
and received monetary compensation for spending time on
answering study related surveys and tests. We ensured privacy
by randomly assigning pseudonyms to the participants of both
studies. These pseudonyms were consistently used throughout
all materials and procedures regarding the two studies.

C. Materials

1) Educational Environment: The HRE framework HAL
[30], [31] served as the underlying educational environment
for the projects of the practical phase. HAL assists users in
the reverse engineering of complex gate-level netlists and its
extensibility allows for the development of custom plugins.
In particular, HAL employs an interactive Graphical User
Interface (GUI) to provide both textual and graph-based
representation of the netlist under inspection. While the graph-
based representation allows for detailed manual inspection and
highlighting of the netlist and its components, an integrated
Python shell provides an efficient approach to further interact
with and process the netlist via aforementioned plugins.

2) HRE Projects: The practical phase consisted of four
projects, of which each contained the following subtasks: (1) the
reading of relevant scientific papers, (2) pen & paper exercises,
and (3) practical reverse engineering tasks.

In the following, we describe the projects with special
emphasis on the practical tasks which had to be solved with
HAL. All practical HRE tasks were based on flat FPGA
netlists without any high-level information such as variable and
signal names, comments, hierarchies, or module boundaries.
The netlists were available in VHDL and synthetized for the
Xilinx Spartan-6 architecture [32]. They were composed of
global input and output buffers, Look-Up Tables (LUTs) and
Multiplexers for combinational logic, Flip-Flops (FFs) for
sequential logic – hereafter all of them simply referred to
as gates – and their interconnections.

Project 1 – Introduction to Gate-level Netlist Reverse
Engineering: This project introduced the HAL environment and
its basic features to the students. In the practical task, students
had to analyze the data path of an unknown substitution-
permutation-network called ToyCipher: they had to determine
the block and key sizes of the cipher, to decide if the
implementation was round-based or unrolled, and to identify the
SBoxes. Due to the relatively low complexity of the design (131
gates) and the straightforwardness of the tasks, this assignment
could be solved mostly through manual inspection of the netlist
in HAL.

Project 2 – Control Logic Reverse Engineering: In this
project, students were directed to reverse engineer the control
logic from a slightly modified variant of the ToyCipher from
project 1. Therefore, students identified the logic gates of which
the FSM implementing the control logic was composed via
graph-based analysis and manual inspection of the candidates.
While the basic functionality as well as the complexity (138
gates) of the underlying netlist was similar to the previous
one, this assignment focused on the understanding and im-
plementation of the methods used for semi-automated FSM
extraction.

Project 3 – Reverse Engineering of Obfuscated Control
Logic: The underlying 128-gate netlist for this project was
a second variant of the ToyCipher utilizing the control flow
obfuscation method Harpoon [33]. Obfuscation in this context
is a transformation which obstructs high-level information
without changing functionality [34]. The goal of obfuscation is
to impede the reverse engineering processes. Students had to
extract the gates implementing the control logic and analyze the
obfuscation method by differentiating the obfuscated and the
original parts. In the second step, they disabled the obfuscation
through initial state patching and verified their result through
dynamic analysis of the netlist. While the basic functionality
as well as the complexity of the underlying netlist was similar
to the previous one, this assignment focused on building
understanding of obfuscated control logic as well as practicing
dynamic analysis of netlists.

Project 4 – Advanced Encryption Standard (AES) Key
Extraction: In the last project, students had to extract a hard-
coded key from a netlist implementing a real-world AES
design. AES is the most widely used encryption algorithm.
The first task was to derive high-level information such as the
functionality (encryption or decryption), the presence of the
key schedule, the key length, and the hardware architecture



(round-based or unrolled) from this substantially more complex
netlist (2176 gates). Secondly, they had to write a script to
identify the Sbox logic, since the Sboxes served as a potential
anchor for attacks on the hard-coded key. Finally, the hard-
coded key had to be extracted through manipulation and
dynamic analysis of the underlying circuit. For this project,
already learned HRE techniques such as the derivation of high-
level information, identification of functional blocks through
scripting, and dynamic netlist analysis had to be applied in a
significantly larger environment than before.

D. Measures & Instruments

1) Solution Time and Solution Probability: In the studies,
we focused on observing changes to and influences on two
dependent variables which are traditional measures in cognitive
psychology: time on task (solution time), and accuracy in the
task (solution probability). In the following, we present how
we measured them. HAL automatically tracked participants’
behavior through the creation of log files with time stamps
for every interaction within HAL (please note that no personal
information was recorded). After providing informed consent,
participants uploaded their pseudonymized log files. We cal-
culated the solution time per project per student based on
these log files. To calculate the solution time accurately, we
set an inactivity threshold of t = 1 hour and subtract periods
longer than t from the total duration between start and finish
of the projects. Analyses for solution time were conducted
with data of 20 participants, since the data of the remaining
participants was not continously available. Every participant
received a grading for the four HRE projects, because the
projects were embedded in an academic course. The resulting
scores were the basis from which we calculated the per-project
solution probabilities. The scores from every project were
standardized as percentage to enable comparison. The analyses
for solution probability were computed with the whole sample
of 38 participants.

2) Control Variables: A self-developed questionnaire on
socio-demographics asked participants to provide information
about their age, major, and target degree. Additionally, students
were requested to describe their prior experiences in relevant
topics (e.g., Boolean algebra, FSMs, symmetric cryptography,
Python programming, etc.) on a 5-point Likert-Scale, ranging
from 1 (very low) to 5 (very high). Item scores were summed
for analyses.

3) Further Variables of Interest: The Wechsler Adult Intel-
ligence Scale (WAIS-IV) [35] was used to assess the students’
cognitive abilities. It consisted of ten tests to measure four
sub scores: Verbal Comprehension (VC), Perceptual Reasoning
(PR), Working Memory (WM), and Processing Speed (PS). VC
quantified abstract verbal reasoning and verbal expression abili-
ties. It was assessed by the three tests: Similarities (participants
were asked to describe how two words are similar), vocabulary
(participants defined words), and information (participants
answered questions about general knowledge). It should be
noted, that students who were not native speakers of German
did not complete tests on VC. PR measured the ability to

accurately interpret and work with visual information. It
consisted of three tests: Block design (participants rearranged
3-dimensional blocks to match patterns), matrix reasoning
(participants completed 2-dimensional series of figures), and
visual puzzles (participants chose three figures from which
to build a 2-dimensional geometric shape). WM reflected
the ability to memorize information and to perform mental
operations using that information. It consisted of two tests: Digit
span (participants recalled a series of numbers in a given order),
and arithmetic (participants solved arithmetical problems). PS
quantified the participants’ ability to process visual information
quickly and efficiently. It consisted of two tests: Symbol
search (participants were asked to search symbols rapidly and
accurately), and coding (participants needed to transcribe a
unique geometric symbol with its corresponding Arabic number
rapidly and accurately). The analyses of the WAIS-IV provided
a Full Scale IQ (FSIQ) based on the combined sub scores of
VC, PR, WM, and PS.

To investigate the students’ level of motivation, we employed
the Questionnaire on Current Motivation (QCM) [36] during
each of the four projects. The QCM consisted of 18 items which
measured the following four motivational factors on a five-point
Likert scale from 1 (strongly disagree) to 5 (strongly agree):
expected challenge of a task (“This task is a real challenge for
me”), probability of success (“I think I am up to the difficulty
of this task”), participants’ interest (“I would work on this task
even in my free time”), and anxiety of failure (“I’m afraid I
will make a fool out of myself”). Students answered the QCM
via the online survey provider Soscisurvey. After inverting
items that were pooled differently, we computed means of the
four sub factors.

As is commonly practiced in current research on Cogni-
tive Load [37], we integrated the Perceived Task Difficulty
Scale [38], and the Mental Effort Scale [39]. The Cognitive
Load Scales were used to determine if participants recognized
the increasing complexity of the HRE projects. Participants
were asked to rate their Perceived Task Difficulty on a 7-point
Likert Scale, ranging from 1 (very very easy) to 7 (very very
difficult). Additionally, students rated their invested amount of
mental effort on a 7-point Likert Scale, ranging from 1 (very
very low) to 7 (very very high) via the online survey provider
Soscisurvey. We computed the means of each scale.

E. Study Procedure

We conducted the quasi-experimental studies with a within-
subject design during the winter term 2018/2019 at one German
and one North American university. The studies were integrated
into the practical phase of the HRE course (Section II-B2).
After students signed informed written consent documents and
received a randomly-assigned pseudonym, the studies started
with online questionnaires on socio-demographics, and prior
experiences in relevant topics. Over the course of the semester,
the WAIS-IV was administered once in a 90-120 minute face-
to-face session with each student. Overall, we used a similar
procedure to collect data at four different points in time (four
HRE projects) as described in the following. After reading the



assignment of the current HRE project, participants were asked
to rate their level of current motivation (QCM) regarding the
imminent HRE task. After finishing the task, students uploaded
their log files of the current HRE project to the SFTP server
and subsequently answered the two Cognitive Load Scales on
Mental Effort and Perceived Task Difficulty.

IV. RESULTS

To answer research questions 1a and 1b, we conducted a
repeated-measures ANOVA of solution times and probabilities
which is a common method for comparing changes over time
in psychological research (Fig. 1). Since, we did not find any
group differences between students from both universities, we
were able to merge the two samples in our analyses. The results
showed significant differences across the four times of measure,
with F (3, 17) = 5.66, p = .03, η2 = .50 (Fig. 1a). The post-hoc
analysis revealed that the solution time differed significantly
between all projects, except for solution time between projects
1 and 3, and projects 2 and 4.

The repeated-measures ANOVA for comparing the mean of
solution probabilities across the four HRE projects (Fig. 1b) re-
vealed that students’ solution probability decreased significantly
in the most complex HRE project 4, F (3,35) =7.09, p=.00,
η2 = .38. It should be noted, however, that the mean solution
probability (M=77.2, SD=31.4) was still at a satisfactory level.
We found no significant correlation between solution time and
solution probability across the four projects.

(a)

(b)

Fig. 1. Means (M) and Standard Deviations (SD) of solution time (a) and
solution probability (b) in the format M (SD).

To test, if students perceived the increasing complexity of the
single projects, we conducted a repeated-measures ANOVA for

the two Cognitive Load scales. The results showed that students
reported a significant higher mental effort in project 4 (M=4.26,
SD=1.59) compared to project 1 (M=3.45, SD=1.43) with, F (3,
35) = 3.56, p = .024, η2 = .23. The repeated measures ANOVA
for the Perceived Task Difficulty scale showed significant results
between the means of project 2 (M=3.61, SD=1.29) compared
to project 3 (M=5.39, SD=1.26), and compared to project 4
(M=5.24, SD=1.71), with F(3, 35) = 18.77, p = .000, η2 =
.62. These results showed that students perceived the growing
complexity of the projects.

To test if our course design (Section II-B2) supported
continuous motivation across the practical phase, we computed
the repeated-measure ANOVA of the Questionnaire on Current
Motivation (QCM). The analysis revealed no significant dif-
ferences between the students’ levels of motivation across the
four times of measure. The descriptive analyses showed above-
average levels of motivation over all projects, with Interest
(M=3.9, SD=0.38), Challenge (M=3.9, SD=0.46), Anxiety
(M=1.59, SD=0.34), and Probability of Success (M=3.65,
SD=0.24).

To answer research question 2, we computed the following
analyses. To assess differences in the effect of the level of
expertise on solution probability we calculated a repeated-
measures ANOVA. The analysis revealed no significant effect
of expertise on solution probability with (F (3, 34) = 0.17, p
= .92,η2 = .02), nor on solution time with (F (3, 17) = .94, p
= .44, η2 = .15).

We conducted bivariate correlations between Full Scale IQ
(FSIQ), IQ sub factors and prior experiences in the light of
research question 3. Table I shows the results, which indicate
significant correlations between the sub factors Working Mem-
ory (WM), and Processing Speed (PS), and prior experiences
in FSMs, symmetric cryptography, and students’ performances.

Table I
PEARSON CORRELATION WITH CORRELATION COEFFICIENTS AND

SIGNIFICANCES.

Solution Probability Solution Time
P1 P2 P3 P4 P1 P2 P3 P4

IQ and sub factors
FSIQ† .15 .17 .12 .18 .19 .40 .32 .38
WM† .47 .10 .56 .72∗ .01 .19 .43∗ .07
PS† .10 .15 .16 .69∗ .03 .02 .59∗ .17
PR† .03 .14 .20 .31 .18 .46 .56 .88

Prior Experiences
HRE .10 .18 .20 .19 .09 .19 .25 .01
Bool. Algeb. .01 .06 .08 .13 .04 .21 .10 .06
FPGAs .25 .07 .21 .01 .25 .29 .01 .03
FSMs .01 .06 .14 .01 .18 .19 .42∗ .15
Sym. Crypto .35 .17 .16 .08 .41∗ .13 .14 .53∗
∗Correlation is significant at the 0.05 level.
†Full Scale IQ (FSIQ), Working Memory (WM), Processing Speed (PS),
Perceptual Reasoning (PR).

As no factor correlated significantly with time and probabil-
ities across all four projects, the computation of ANCOVAS
was not feasible. To explore potential differences between
students with different levels of expertise, prior experiences, and



cognitive abilities, we calculated repeated-measures ANOVAS.
Each independent variable was transformed by a median split
to conduct the calculations. In the following, we only report
the calculations with independent variables which showed
significant correlations (Table 1).

The repeated-measures ANOVA revealed significant differ-
ences between students with higher and lower Working Memory
(WM) scores on solution time (F (3, 17) = 1.27, p = .04, η2

= .19). Students with higher WM scores were significantly
faster in solving project 2 (p = .03), 3 (p = .04), and 4 (p =
.05). Additionally, the results revealed significant differences
between a higher and lower WM related to solution probability,
with (F (3, 34) = 5.85, p = .05, η2 = .34). Students with higher
WM scores were significantly better at solving project 4.

To assess the effects of Processing Speed (PS), we calculated
a repeated-measures ANOVAs for solution time and probability.
The results revealed significant differences between higher and
lower PS scores regarding solution probability (F (3, 34) =
9.43, p = .041, η2 = .45). Students with higher PS scores
had a significant higher solution probability in project 4 (p =
.04) than students with lower PS scores. Repeated-measures
ANOVA for PS and solution time revealed a significant effect
(F (3, 17) = 1.3, p = .04, η2 = .19). Students with higher
scores in PS solved project 3 faster than students with lower
PS scores.

Additionally, the calculation for prior experiences showed
significant effects. The repeated-measures ANOVA revealed
significant differences between students with high and low
levels of experiences in symmetric cryptography regarding
solution time (F (3, 17) = 4.41, p = .02, η2 = .45). Students with
more experience in symmetric cryptography solved projects 1
and 4 significantly faster than students with less experiences
in symmetric cryptography.

The repeated-measures ANOVA did not reveal significant
effects of higher and lower experiences in FSMs on solution
time (F (3, 17) = 1.8, p = .19, η2 = .25), nor on solution
probability (F (3, 34) = 0.9, p = .43, η2 = .07)

V. DISCUSSION

In the light of research question 1a, our data showed that
students needed significantly more time for solving project 2
than for solving project 1. This is not a surprise, since students
were asked to create automated solutions for the first time which
might have been challenging and time consuming in comparison
to project 1. Interestingly, our data showed that students were
able to complete project 3 more quickly than project 2, despite
project 3 being the more complex task. We here assume that
memory and fluency-building are involved in the development
of declarative and procedural HRE knowledge [19]. Students
enrolled in our course were able to use their knowledge gained
in project 2, for solving project 3 faster, thus demonstrating that
they had acquired HRE skills which enabled them to become
more fluent. Overall, we observed a significant increase of
solution time between projects 1 and 4, and an observable
but not significant increase between projects 3 and 4, which

account to the growing complexity of the underlying gate-level
netlists.

Referring to research question 2, the analyses revealed no
significant differences between students with different levels of
expertise in regard to solution time and solution probability. It
would have been expected, that graduate students had acquired
more relevant prior knowledge in important topics which might
have resulted in shorter time on task and higher solution
probabilities. Nevertheless, our results showed no differences
between students on different levels of expertise. We conclude,
that graduate students did not acquire more relevant knowledge
for solving HRE tasks in previous university courses than
undergraduates did. Our results show, that our course taught
a sufficient amount of relevant knowledge during the lecture
phase which equally enabled both undergraduate and graduate
students to solve the HRE projects.

In the light of research question 3 we conducted several
computations to observe which cognitive factors or prior
knowledge had a significant effect upon solution probability
and solution time. Working Memory (WM) is one important
cognitive factor in acquiring HRE skills. Our data showed that
higher WM scores led to faster solutions in projects 2, 3, 4,
and higher solution probability in project 4. Referring to the
key characteristics of WM helps to illustrate how a good WM
is important to the successful completion of HRE projects.
WM is defined as a system for storing and manipulating
information in the context of complex tasks such as learning
and problem solving [40]. It enables the retrieval of learned
information from long term memory [41], and keeps both
relevant old and novel facts in memory during the activity of
problem solving while at the same time ignoring irrelevant
information [42]. By taking this into account, we can explain
why students with higher WM scores solved the HRE projects
more quickly – namely because they were better able to
combine novel and stored information and ignore irrelevant
information, thereby increasing the speed with which they
reached solutions in the individual projects. A good WM also
supported students in reaching higher solution probabilities
in project 4. Briefly revisiting the specific requirement of
that project makes it rather obvious why that was the case:
to successfully complete the project, students had to recall
knowledge, work flows, and problem-solving strategies that
they had learned during projects 1-3. For example, during
project 4, students had to recall the derivation of high-level
information and Sbox identification skills taught in project 1,
as well as the dynamic netlist analysis competencies fostered
during project 3. Students with a good WM were supported in
recalling relevant information that they learned earlier in the
course, leading them to achieve higher solution probabilities
and shorter solution times.

Processing Speed (PS) is another relevant cognitive factor
in the context of acquiring HRE skills as demonstrated by
the observation that students with higher PS scores had a
significantly higher solution probability in project 4 and solved
project 3 significantly faster than did students with lower PS
scores. PS is defined as the ability to process visual information



quickly and efficiently, and research on PS has shown that it
can be a good predictor of how quickly and accurately students
can perform a task [43]. Higher PS scores therefore contributed
to solving project 4 more accurately and project 3 more quickly.

In the context of research question 3, our analysis established
the significant effects that prior experience with FSMs and
symmetric cryptography had upon student outcomes, with
students who had more experience in both areas performing
better than students with less experience. Our data showed a
significant correlation between prior experiences in FSMs and
solution time in project 3. The twofold challenge of project 3
consisted of first detecting an FSM and second breaking the
FSM obfuscation. A higher prior knowledge in FSMs might
have been helpful to solve the first challenge more quickly, since
students did not need to acquire knowledge on FSMs during
their work on project 3. Additionally, our analyses showed that
prior knowledge in symmetric cryptography enabled students
to solve projects 1 and 4 more quickly. Prior knowledge on the
inner workings of symmetric ciphers is advantageous regarding
the contents of projects 1 and 4, e. g. data path analysis, the
detection of Sboxes, or general attack strategies on such ciphers.

A. Implications for Future HRE Course Designs

The integration of Spacing and Testing [19], [27] throughout
the four HRE projects supported students’ development of
memory and fluency, and the inclusion of Worked Examples
[19], [28] enabled students to acquire HRE skills from
tasks with problem solving practice. These two instructional
principles should be part of future HRE courses. We also
assume that the integration of stimulating and realistic exercises
of an appropriate difficulty level as well as the integration of
HAL led to the above-average levels of student motivation
we observed during the course and should be included in
future HRE courses. We found significant differences between
students on different levels of prior knowledge. To compensate
these differences, future HRE courses should include special
programs for students with lower levels of prior knowledge in
relevant topics, e.g., basic knowledge lectures and exercises
regarding symmetric cryptography or tutorials for practicing
Python programming, since HRE is automatable in HAL via
Python. Our results revealed significant differences between
students with higher and lower scores in Working Memory
(WM). Due to time factors, a course on HRE cannot not include
training to improve WM performance. Nevertheless, we could
structure the HRE course in a way, which supports students
with lower scores in WM. By referring to the fact that the
capacity of WM is limited, we can design our assignments
and projects by supportive knowledge, students already learned
in earlier stages of the course. This could be a possible way
to support students with lower scores in WM to focus on the
current task instead of struggling in recalling information from
prior lectures and projects.

B. Limitations and Implications for Future Research

This presented work has limitations that should be investi-
gated. In the future, studies on human processes in HRE with

a larger sample size would be preferable to produce results
with a higher impact and significance. Since this study is a
first investigation to fill the research gap of skill acquisition in
HRE, the generalizability to other areas is limited. Our research
prompted us to make several observations about potential
future research on skill acquisition in the field of HRE. It
would be preferable to further analyze problems, errors, or
difficulties of human reverse engineers (e.g., process modelling
of applied problem solving strategies). Doing so would allow
us to offer specific support via instructions, exercises, or
training. If Working Memory (WM) and Processing Speed
(PS) are relevant factors in predicting expertise development,
a differential examination of the central executive [44] might
shed more light on the role of cognitive factors in acquiring
HRE skills. Since our data led us to assume that declarative
knowledge had been transformed into procedural knowledge,
a closer examination of the types of knowledge presented in
the two phases of the course might prove interesting. Finally,
the integration of a second complex task into a future study
would help reveal more individual differences between students
as well as help ascertain whether differences in solution time
and solution probability are stable over a longer time horizon
consisting of multiple complex projects.

VI. CONCLUSION

HRE is important in the field of cyber security and therefore
HRE skills are in high demand across industries and around
the world. Despite the clear and unmet worldwide demand
for HRE experts, there is a surprising lack of educational
HRE courses, and research on the acquisition of HRE skills
is lacking thus far. Against this background, we developed a
HRE course based on psychological cognitive research and
augmented through the integration of specific instructional
methods which are known to support the development of
declarative and procedural knowledge. Through the conduction
of two quasi-experimental studies, we demonstrated that
our course supported the acquisition of HRE skills. Our
students demonstrated increased fluency in HRE skills by
solving increasingly complex tasks in successively shorter time
intervals. Statistical analyses established that differences in
individual student outcomes were a function of differences in
Working Memory (WM), Processing Speed (PS), and prior
knowledge in relevant topics. Finally, we derived ideas for
future course designs and research aimed at achieving a deeper
understanding of the underlying psychological factors behind
the acquisition of HRE skills, such as observing the central
executive of the WM or by observing the impact that the
integration of further complex tasks has upon solution time
and solution probability.
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