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Abstract—This Research Full Paper investigates the 
relationship between code writing tasks and other tasks like 
program comprehension and completion. In the context of 
exams, it is interesting to know whether auto-gradable 
comprehension and completion tasks can to some extent replace 
harder-to-grade code writing tasks and still test the same 
learning outcomes. This paper reports on the post mortem 
analysis of the 2019 e-exam in a university level programming 
course. Questions were analyzed for difficulty level, correlation, 
and discrimination. Program puzzles were found to correlate 
well with code writing, which is in line with previous findings by 
others. On average, code writing questions had higher difficulty, 
discrimination, and correlation with the total score than the 
other question formats – but not uniformly so. A more fine 
granular analysis of performance on individual interaction 
items sheds light on reasons why some questions worked better 
than others, with implications for future question design. 

Keywords—programming, e-exam, question types, item 
analysis 

I. INTRODUCTION 
There has been much research on the 

relationship between code writing tasks and other 
tasks like program comprehension and completion 
e.g., [1,2,3,4]. Code writing tends to be the 
dominant exam question type in Introductory 
courses in computer science (often called “CS1”) 
[5], and perceived as more authentic vs. work-life 
tasks. However, they may be tedious to grade 
reliably, and often require students to master 
several concepts at once [6]. Comprehension and 
completion tasks may better allow for items testing 
the understanding of single concepts [7]. 

This paper reports on the post mortem analysis 
of the Autumn 2019 e-exam in a university level 
course in Programming and Numerical Analysis, 
taken by near 250 students. The programming part 
was introductory Python. Manually graded code 
writing tasks made up for only 30% of the exam 
weight. The rest utilized various question formats 
that could be auto-graded in the e-exam tool used at 
the university, such as multiple choice questions 
(MCQs), pair matching, and various program 
completion puzzles, using formats like inline 
choice, fill-in-blank, and drag and drop. The latter 

are often called  Parsons’ problems [8] in 
computing education.  

There are many different aspects of this exam 
that could be interesting to investigate. The research 
in this paper focuses on the relationship between 
code completion tasks and code writing tasks, our 
research questions (RQ) being as follows: 

RQ1: Do code completion and code writing 
tasks have equal difficulty, item-rest correlation, 
discrimination, and time spent relative to grading 
weight? 

RQ2: What is the correlation between code 
completion and code writing tasks?  

RQ3: What guidelines for task improvement can 
be elicited from analysis of the interaction items 
within code completion tasks? 

The rest of this paper is structured as follows: 
Section II explains the research method. Section III 
describes how the exam was designed. Section IV 
then presents the results, and section V provides a 
discussion and some concluding remarks. 

II. RESEARCH METHOD 
The exam itself was not designed primarily for 

the purpose of research, but for assessing whether 
the students had achieved the learning outcomes, 
and to give valid and reliable grades. With a pure 
research focus, we might have designed the test in 
a more sophisticated way, such as having two or 
more groups of students getting different variations 
of the same task (e.g., some getting Task 4 as code 
writing, others getting it as code completion, and 
then opposite for Task 5). This was considered 
infeasible here, both for technical reasons and risks 
to exam fairness, should one version of the test turn 
out to be more difficult than the other.  

Hence, the research reported in this paper is a 
post hoc study of results from a test designed for 
another purpose, which must be acknowledged as a 
weakness. However, the exam did have a mixture 
of various question genres that allows analysis 
related to the RQs stated above. Also, whereas an The research for this paper was done at the Excited Centre for 
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ungraded controlled experiment would allow 
increased freedom of test design, an exam has some 
advantages, too: There is no challenge in recruiting 
participants, and most have a strong (albeit 
extrinsic) motivation to do their best, which is not 
necessarily the case for ungraded experiments. 
Previous research has also indicated that analysis of 
exam results can give interesting findings [4,9,10]. 

After grading was finished, answer data were 
extracted from the e-exam system as a JSON-file, 
anonymized by removing anything that could link 
back to students, and flattened into a spreadsheet for 
further analysis. Since the statistical analyses were 
fairly simple, Excel was used (Office 365 Excel for 
Mac, v16.35), rather than a more sophisticated 
statistics tool. The following analyses were 
performed: 

• Simple descriptive statistics for scores and 
time spent, i.e. means, standard deviations. 

• Reliability of the exam as a whole, 
Cronbach’s Alpha [11]. 

• Correlations between scores on items and the 
sum of all other items, i.e., the item-rest 
correlation [12], and correlation between 
task genres, using Pearson correlation [13]. 

• Discrimination of tasks, i.e., how well they 
separate between strong and weak students. 
Here, we used the metric by Kelley [14], 
comparing p-values for the top 27% and 
bottom 27% of the students. 

For code writing tasks, which were manually 
graded, scores, correlations, and discrimination 
were calculated only for the task as a whole. For 
auto-graded tasks, with several interaction items 
within the task, analyses could be made both for the 
task as a whole, and for each single interaction item. 

III. DESIGN OF THE EXAM 
Our university uses the e-exam system Inspera 

Assessment (henceforth IA), supporting question 
authoring, exam execution, and the subsequent 
grading process. It offers 18 different question 
types, whereof 8 were used in our exam, as shown 
in Table I. The column Qno is the question label 
(order of appearance in the exam set), and W% 
indicates percentage weight towards the total grade. 
The column #it gives the number of interaction 
items within each question. For code writing 
questions (pink) this was just 1, for others several. 
For instance, Q8 had 10 different fill-in fields, each 
of which could be filled correctly or incorrectly, and 

Q14 had 10 different MCQs. The exam had a 68/32 
split between general programming and numerical 
analysis, and a 70/30 split between tasks that were 
auto-scored and manually scored (code writing). 

TABLE I.  TASKS IN THE EXAM, IN ORDER OF APPEARANCE 

 
 
The column Qtype gives the question type used 

in IA, and color indicates the genre: Pink for code 
writing, purple for code completion, blue for code 
tracing and error identification, and green for 
theoretical knowledge. Finally, Topic indicates 
curricular coverage, though not exhaustively, as 
most questions include many basic programming 
constructs. In the following, we focus mainly on the 
tasks with code writing (pink) and code completion 
(purple), as these are the most relevant for our 
research questions.  

Table II shows the teacher’s model solutions to 
the code writing tasks, made available to students 
and graders after the exam. The task is briefly 
explained under each code fragment, the 
explanation in the exam set was somewhat more 
thorough. For Q4, students were allowed to use a 
function developed in Q3, and similarly for Q5 the 
function made in Q4. In all such cases, functions 
can be used and assumed to work even if the student 
failed at the previous task, thus avoiding any 
follow-on errors. At the same time, this enables us 
to test if students are able to use one function in 
another function, so that the exam does not just 
become a long tirade of small, unrelated functions. 



TABLE II.  SOLUTIONS TO CODE WRITING TASKS 

 
Q4. In: a tuple (int, int), both int > 0. Return: string exponential 
expression, e.g., (5,3) → "53". But, (5,1) → "5", exponent not to 
be included if 1. 

 
Q5. In: list of tuples [(int,int), (int,int), …], all int > 0. Return: a 
string for a product of factors, , e.g., [(2,2), (3,1), (5,3)] → 
"22·3·53". Return empty string for empty list. 

 
Q10. In: filename (string). Return: a list of lists with the data in 
the file, converted to numbers where appropriate, or empty list 
if exceptions occur.  

 
Q13. Given a matrix (list of lists) of int, return a list of lists where 
included entries [I,j] all of those for which the sum of row i 
equals the sum of column j. 

 
Q18. Calculate the integral of function f(x) from a to b using the 
Simpson 3/8 rule (math formula shown in task description) 

 
All problems were previously unseen by the 

students, but would to some extent resemble 

problems from exercises and lecture examples. Q4 
needed only 5 code lines for a solution, one if-
sentence, no loops, thus assumed to be the clearly 
easiest. Q10 needed the longest code (21 lines). 
Since students often struggle with files and 
exceptions, this was assumed to be a difficult task, 
but maybe not the most difficult. After all, it follows 
a typical scheme: open file, read line by line, split 
the line, convert strings to numbers, append to list 
of lists, return result – plus handle exceptions. Q13, 
though shorter, was believed to be more difficult,  
with deeper nesting and an intricate algorithm with 
less similarity to previously seen problems.  

Table III shows the three 2D Parsons problems 
in the exam set. In the graphical user interface of 
IA, students saw a 2D grid, code lines jumbled on 
the side to be dragged in place in the correct vertical 
order and with appropriate indent. The GUI of IA is 
rather spacious, so rather than screenshots we 
present the task more compactly by resulting 
solution code. The explanatory texts are also much 
shorter than the ones used in the exam set. 

TABLE III.  SOLUTIONS TO 2D PARSONS PROBLEMS 

 
Q4. In: a string st. Return: a dictionary where characters of the 
string are keys, and the value is a list of indices where the 
character is found. E.g., ‘EGGS’  → {‘E’: [0], ‘G’: [1,2], ‘S’: [3] } 

 
Q9. str_shuffle() in: a string. Return: string w/same characters 
randomly shuffled. start_seq() in: string. Return: a randomly 
shuffled string which passes the is_ok() test. Two distractors: 
while lst == random.shuffle(lst): and return str(list) . 

 
Q16. Make a function which solves and ODE on the form  
ẏ = f(y) using  the Forward Euler method, which is 
yk+1 = yn + Δt f(yk) 

 



Table IV shows the tasks of the types Inline Gap 
Match, Inline Choice, and Fill in Blanks. Common 
for all these, full code skeletons were presented, but 
with several gaps inside.  

TABLE IV.  SOLUTIONS TO GAP FILLING TASKS 

 
Q3 (left) num2exp() receives an int >= 0, returns a string with 
the same number as superscript, e.g. num2exp(12) -> ‘12’. The 
question also had 3 distractors, not shown here. 
Q6 (right) factors() receives an int >= 2, returns a list of tuples 
containing the prime factorization of the number, e.g., 
factors(60)  → [(2,2), (3,1), (5,1)]  because 60 = 22⋅31⋅51 

 
Q8. is_ok() receives a string of 8 characters, whereof two B, 
two N, two R, one K, one Q. It shall return True if the K is 
somewhere between the R’s, one B is at an odd index and one 
at an even index. Otherwise False.  

 
Q11. list2dic() receives a list of lists, returns a dictionary w/ 
first elements of inner lists as keys, values as lists of lists with 
the remaining elements. 

 
Q12. seq_in_tab() receives a list S and a matrix M which both 
contain ints. Returns True if M contains the number sequence 
in S, otherwise False. If the optional parameter wrap is True, 
the sequence can wrap across several lines in M. 
Q15. Solve f(x) = 0 using the Secant method. 

Differences between these three question types 
are as follows: Inline Gap Match (Q3) shows 
candidate fillers for the gaps beside the code, to be 
dragged in place. Inline Choice (Q6, Q12, Q15) 
gives a dropdown menu of options when clicking a 
gap. In our case with 3 options, one correct. Fill in 
Blanks (Q8, Q11) requires the student to type in the 
missing content, no options given.  

All of these were set up to give some score per 
correctly filled gap, e.g. for Q8, each correctly filled 
gap would score 0.5 points, so all correct would add 
up to the total 5 point weight of the question. For 
Inline Choice questions, which had three options 
per gap, proportional negative penalty was given 
for wrong answers, e.g., for Q12, each correct 
would give +0.5, each wrong -0.25, hence 
completely random guessing would have an 
expected outcome of 0. Negative points only 
applied locally within the task. 

IV. RESULTS 
Of 232 students showing up for the exam, 13 

withdrew without delivering, and another 5 
delivered blank or almost blank answers. Grading 
was according to a letter scale,. Excluding 
withdrawn and blank-on-purpose, 214 students are 
included in our analysis. The grades for these were 
21 A (9,6%), 43 B (19,6%), 46 C (21,0%), 52 D 
(23,7%), 18,7 E (19,2%), and F (failure, 5,1%). 
These grades may appear poor, but the scale used 
has similarities with the European ECTS scale, 
where C is considered the normal, average grade, so 
the grades in this course were somewhat – but not 
much – below average.   

The Cronbach Alpha for the exam, taking the 19 
tasks as separate items, was 0.90, which is 
considered a very good value [15]. Table V shows 
results broken down on the 19 questions, here 
sorted by p-value, which in exam item analysis 
means students’ average score on each task, 
adjusted for weight so that all end up in a 0-1 
interval [16]. As can be seen, the easiest was Q7 
with an average score of 86%, and the hardest Q12 
with just 37%. The other columns are σ: standard 
deviation of the student scores, C: the item-rest 
correlation, and D: discrimination values (as 
explained in the Methods section). T+/- gives the 
percentage point difference between fraction of 
time spent on a task and fraction of weight that it 
had in the exam set. E.g., -2.0 in the first row of 
Table V says that while Q7 had a weight of 5%, 
students spent on average just 3% of their logged 
exam time on this question. A positive number 



would instead mean that students spent more time 
than the weight would suggest. Finally, Tσ gives 
the standard deviation for the T+/- time difference. 

TABLE V.  EXAM TASKS, EASIEST TO HARDEST 

 
Our main interest according to the research 

questions lie in the code completion tasks (purple) 
vs the code writing tasks (pink). Hence, more 
detailed results will be presented for these. 
A. Difficulty and Time Spent 

According to [17], most questions on a full-
range test should be within 30%-80% difficulty. All 
but Q7 and Q15 fell within this range. Completion 
tasks inhabit the entire spectrum from easiest to 
hardest, while our code writing tasks went from 
medium difficulty to hard. For completion, the 
mean score was 30,4 of 46, i.e., 66%. For code 
writing, only 16,5 of 30, i.e., 55%. Q4 was meant to 
be the easiest of the code writing questions, but 
turned out to be harder than intended, with a lower 
p-value than the presumably more difficult Q5. Of 
completion tasks, especially the 2D Parsons tasks 
leaned towards the easier end, while the other 
question types were of more mixed difficulty. 

The total exam time was 4 hours. For the T+/- 
column we compare how many percentage of the 
total exam time was spent on a task vs. the task’s 
grade weight. The most overspending task was Q2 
(Matching), taking 11,2% of the time while 
weighing only 4% (hence 7,2% percentage point 
difference). Most underspending was Q14 (MCQ) 
with 10% weight, only 4,3% spent. For the types of 
tasks most relevant to our research questions, some 
of the easier code completion tasks (Q7, Q15, Q16) 

required relatively less time, while some tasks 
towards the more difficult end of the spectrum took 
more time, but not systematically so. 
B. Item-Rest Correlation and Discrimination 

Values for the item-rest correlation and 
discrimination of each question are shown in the C 
and D columns of Table V. Color is used to give a 
snapshot view of whether values were good. For 
correlation, these thresholds are used: >0.6: very 
good, 0.5-0.6: good, 0.4-0.5: fair, 0.0-0.4: poor. For 
discrimination: >0.4: very good, 0.3-0.4: 
reasonably good, 0.2-0.3: marginal, 0.0-0.2: poor 
[18]. For both C and D, negative values would be 
considered even worse, but this did not happen for 
any of the questions. The code writing tasks had 
green values for C and D, and so had all code 
completion tasks except the two easiest ones. Easy 
tasks ending up with lowish C and D values is not 
surprising. For these, many weaker students will 
also have scored well, hence they do not 
discriminate so much. The highest C-value was 
achieved by Q11 (Fill in Blanks) followed by code 
writing tasks Q5 and Q10. The highest D-value was 
achieved by Q18, followed by Q5 (both code 
writing) and then Q12 (Inline Choice).  
C. Correlation, code completion vs code writing 

The correlation between the scores on code 
completion tasks (purple in Table V, solutions in 
Table III and IV) and code writing tasks (pink in 
Table V, solutions in Table II) was 0.80. Also 
significant, though smaller, correlations were found 
with the code comprehension tasks (blue), at 0.44 
and 0.49 with code writing and code completion, 
respectively. Table VI gives a more detailed view 
of the correlation between these two genres. 
Columns p and C are the p-value and overall item-
rest correlation as before. Then, SGC is the Same 
Genre Correlation, e.g., for code completion task 
Q7, how well does it correlate with other code 
completion tasks, and for code writing task Q13, 
how well does it correlate with other code writing 
tasks. Contrarily, OGC is the Other Genre 
Correlation, e.g. how does code completion task Q7 
correlate with code writing tasks, or how does code 
writing task Q13 correlate with code completion 
tasks. The rightmost column in Table V shows the 
difference between these two correlations. Most 
differences are close to zero, and there is no 
systematic tendency that tasks correlate better with 
other tasks of the same genre than with tasks of the 
other genre. Q7 and Q9 are perhaps the exception. 
These were rather easy, and might thus correlate 
better with other completion tasks in the easier half 



of the spectrum, than with code writing tasks that 
were in the middle to difficult range. 

TABLE VI.  CODE COMPLETION VS CODE WRITING 

 
In spite of the fact that most code completion and 

code writing tasks correlated well, there was some 
variation in student performance across these two 
main question genres. Fig. 1 shows the scatterplot 
of code completion (y) vs code writing (x). The blue 
line is the diagonal (student doing equally well with 
both these genres),  while the dotted red is the trend 
line. As can be seen, some students are above the 
blue line, doing better at code writing than code 
completion – but more are below, and some way 
below, doing considerably worse at coding. Some 
few were almost blank at coding, yet had fair scores 
on completion tasks. These would typically have 
too low total scores to pass, anyway. The R² value 
was 0.6388, indicating that 64% of the code writing 
performance could be predicted by completion 
tasks in this exam. 

 
Fig. 1. Scatter of scores on code completion (x) vs code writing (y). 
Dotted red line is the trend line. Blue line is the diagonal, where students 
do equally well with both genres. 

 

D. Analysis of individual tasks 
For space reasons, we can only show detailed 

results for some of the tasks. The interested reader 
is referred to the technical report [19] for more 
details and results on other tasks. Table VII shows 
the p, C, and D values for the each code line to be 
dragged in Q3 (Inline Gap Match). The 6 rows are 
the correct code gap fillers, in order. A1-A6 indicate 
these, while the three distractors were A7: result + 
p ; A8: expo[num] ; A9: num = 0.  

TABLE VII.  DETAILED RESULTS FOR Q3 

 
As indicated by Table VII, the first gap was very 

easy, almost all got it correct. This was one of the 
few tasks that had a negative D-value (-0.02) – 
among the very few students who did not place 
num==0 in this gap, there happened to be 4 in the 
top 27%, just 3 in the bottom 27%. The reason for 
this is hard to know – it could be pure coincidence, 
or maybe the better students were over-confident 
that the task was easy and quickly picked the num 
= 0 distractor, while weaker students for whom 
everything appears difficult were more careful and 
noticed there was one with = and one with ==. 
Anyway, the occurrence of this one sub-item with a 
slightly negative D did not hurt the task overall, 
which came out with decent C=0.64, D=0.46. 

 Table VIII shows the 2D Parsons Problem Q7, 
which turned out to be the easiest question in the 
exam. Almost all students (96% upwards) placed 
the first 3 lines correctly, and most (90%) also the 
return statement (for those who did not, the problem 
was typically wrong indentation).  

TABLE VIII.  DETAILED RESULTS FOR Q7 

 
Q7 did not use any distractors and most code 

lines may have been easy to place, thus many 
scored well on this question. The only lines that 



caused notable problems were the 5th and 7th, which 
even some better students swapped. These two sub-
items thus had good D values, but this was not 
enough to yield good values for the entire Q7. 

Table IX shows the results for items within the 
task Q11 (Fill in blanks). Solution has the same 
code fragments as shown in Table IV, while Alt 
gives other fill-ins that would also be correct. 

TABLE IX.  DETAILED RESULTS FOR Q11 

 
Also for Q11 the first couple of fill-ins were 

easy, with poor D-values. However, a majority of 
items were difficult, all in all giving the question C 
and D values among the highest in the exam set. 

Table X shows the results for Q12 (Inline 
Choice), the most difficult task in the exam set. 
Especially the three last fill-ins (#8-10) turned out 
to be hard, as the fraction of correct answers for 
these were just slightly above the random guessing 
percentage (33, as there were 3 options for each 
choice). Still, the difficult items got good D-values 
here, as students in the top 27% also had a high 
tendency of getting these items right, while others 
largely failed. Negative penalties that weaker 
students got for failing these will also have 
contributed to the high C and D values of the task 
as a whole. Four values in the W1, W2 columns in 
Table X are below 0.05, so-called “non-functional 
distractors” [19], used by less than 5% of the 
students. This only happened to 4 of 20 distractors 
(marked in purple), and for all items except the 
easiest one, there was at least one functional 
distractor. 

TABLE X.  DETAILED RESULTS FOR Q12 

 

V. DISCUSSION AND CONCLUSION 
A. Answers to Research Questions 

RQ1: Do code completion tasks have the same 
difficulty, item-rest correlation, discrimination, and 
time spent as code writing tasks? Except for a 
couple of code completion questions at the easy end 
of the spectrum (Q7, Q9, Q15) which had poorer 
discrimination and item-rest correlations, the purple 
code completion tasks ended up with values in the 
green range, just like code writing tasks, cf. Table 
V. There was no systematic tendency for code 
completion tasks to take less time. In one way, one 
might have thought they should take less time. 
However, it must be remembered that the code 
completion tasks consisted of several sub-items. 
E.g., for Q6, Q8 the student is actually answering 
10 questions within each of them, namely what 
shall be placed in the 10 different gaps in the code. 
When the code is highly perforated with gaps, it can 
be quite challenging to understand what solution 
approach the code skeleton is aiming at. 

RQ2: What is the correlation between code 
completion and code writing tasks? Do the same 
students excel at both, or struggle with both, or are 
there differences? Again, apart from the easiest 
completion tasks, the correlation between the two 
genres was good, cf. Table VI. A tempting question, 
then: Could code-writing tasks have been removed, 
to achieve an exam that was 100% auto-corrected? 
Many students would have ended up with the same 
grade, anyway, but as Fig. 1 indicates, some few 
would have lost a little in such a situation (those 
who scored very well for code writing, but made 
some mistakes in the completion tasks), and some 
more would have benefitted, cf. the many students 
considerably below the blue line in Fig. 1.  

RQ3: Can any guidelines for task improvement 
be elicited from analysis of the interaction items 
within code completion tasks? There are two 
primary causes why completion tasks had much 
better average score than code writing tasks: (i) 
some completion tasks, especially the 2D Parsons 
problems, turned out to be easier than perhaps 
intended. The first code lines of a function (e.g., def 
statement, initialization of a local variable), and the 
last (return) are often trivial to place, giving away 
some points almost for free. This could have been 
avoided by having these lines as fixed in the code 
already, so that scorable code lines were only the 
more intricate ones in the middle of the functions. 
However, even if easy tasks necessarily get poorer 
C and D values, it does make sense to have some of 



these in an exam,  too – so that weak students are 
able to show that they do know something. In our 
case, the exam would have turned out way too 
difficult, with much higher failure rates, were it not 
for the presence of some easy tasks. (ii) There were 
no code writing tasks towards the easy end of the 
spectrum. Q4 was meant to be easy, expecting a 
mean in the range 70-80%, but turned out 
unexpectedly hard for the students. One reason for 
this is that many appeared to have problems 
accessing the two integer values from the tuple 
parameter. While tuples had been covered in the 
textbook and lecture series (as being the same as 
lists, only immutable), the coverage was rather 
limited compared to lists, and many students 
seemed not to remember. In retrospect, it would 
have been better to let the parameter be a list of two 
values – or even better just two separate parameters, 
one for the mantissa and another for the exponent. 

Another observation is that auto-scored tasks 
with many items within (e.g.,  Fill in Blanks Q8 and 
Q11, or Inline Choice Q6, Q12 – each with 10 gaps 
in the code) did better in terms of C and D values 
than tasks with fewer items (e.g., Inline Choice Q15 
with 4 gaps, or the error finding tasks Q17 and Q19, 
with 2 MCQs each). This is not surprising. With 
few sub-items, tasks become more vulnerable to 
coincidental student slips or lucky guessing, while 
with many items, this will tend to even out. Having 
as much as 10 gaps within relatively short 
functions, so that the code was quite perforated with 
missing fragments, did not appear to be a problem 
– the tasks with 10 gaps all had good C and D 
values. Three advice for question design are thus: 
1. If possible, have many gaps within completion 

tasks, rather than just a few.  
2. Unless a task is meant to be very easy, avoid 

free giveaways. Rather have the easiest code 
lines as part of context shown up front. 

3. For code writing tasks meant to be easy, be 
very careful to avoid unintended intricacies. 

B. Related Work 
Substantial early research in code completion vs. 

code writing was done by [1], then mainly as an 
instruction strategy, rather than for summative 
assessment. Completion tasks were found to have 
less cognitive load than code writing, thus giving 
better learning vs. spent time. Garner [18] also 
found that students needed less time and less help 
with completion tasks than with code writing tasks. 

In recent years, there has been especially much 
research on Parsons problems [8], cf. the review 

[19]. An early report about usage in exams was [9], 
finding good correlation between these tasks and 
code writing. The concept of 2D Parsons problems 
was suggested by [20], specifically suitable for 
Python, where indents have semantic significance, 
and a comparison by [21] compared 2D Parsons 
problems with code writing tasks, finding better 
learning efficiency for the Parsons problems. Cheng 
and Harrington [22] proposed so-called “code 
mangler” tasks, which resemble Parsons problems 
in that students are faced with a coding task they 
should complete, and with a list of jumbled 
candidate code lines on the side. This study also 
found good correlation between such tasks and code 
writing tasks. They also ran experiments with TAs  
to compare marking speed and reliability of the 
Code Mangler tasks with similar code writing tasks.  

In our study, comparison of marking speed was 
of little relevance, since all the code completion 
tasks were auto-scored, hence with close to zero 
human labor. However, our findings of a strong 
correlation between code completion and code 
writing tasks is similar to previous studies and thus 
no surprise. A difference, though, is that our exam 
had a mixture of different types of code completion 
tasks, not just Parsons problems. In our case, other 
question types, such as Inline Gap Match, Inline 
Choice and Fill in Blanks, did better than the 
Parsons problems in terms of item-rest correlation 
and discrimination values. This, however, is likely 
not an inherent weakness of Parsons problems but 
related to the particular task selection and scoring 
approach in this exam. 
C. Conclusions and Future Work 

As stated early on, a weakness of this research is 
that it is a post hoc analysis of an exam made for 
assessment rather than answering the research 
questions. An interesting idea for future work 
would be to run controlled experiments with a large 
number of students, comparing different question 
types based on the same solution code. This might 
give a more detailed view into advantages and 
disadvantages with various question genres.  
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