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Abstract—We describe a general approach for defining new
temporal specification languages, and adopting existing lan-
guages, for SystemC. We define the concept of “underlying trace”
describing the execution of a SystemC model, and then define a
set of important primitive assertions about the states in the trace.
Our framework not only provides additional expressive power for
making atomic assertions, but also provides very fine control over
the temporal resolution of the language. Using the primitives
defined here as clock expression allows sampling at different
levels, from transaction-level to the level of individual statements.
The advantage of our approach is that it defines important
SystemC properties that have been overlooked previously, and
also provides a uniform mechanism for specifying the sampling
rate of temporal languages.

I. INTRODUCTION

The increasing complexity of current hardware designs and
the need for efficient development of systems-on-chip has mo-
tivated a gradual migration away from RTL design and toward
more abstract approaches. SystemC1 has become a successful
modeling language partly because it allows designers to model
systems at several abstraction levels, from the most concrete
(gate level) through the most abstract (system level) [16], as
well as to interconnect components from different abstraction
levels. In addition to being a modeling language, SystemC is
also a simulation environment, driven by a simulation kernel.
The kernel schedules processes and updates the values of
signals and channels in a fashion that mimics concurrent
execution, even though in reality the processes are run se-
quentially. This makes SystemC a particularly useful platform
for prototyping and testing hardware and hybrid systems early
in the design process [8].

SystemC is built as a library extending C++. The core
language provides macros for modeling the fundamental com-
ponents of the system, for example, modules and channels.
The object-oriented encapsulation of C++ and its inheritance
capabilities help make designs modular, which, in turn. fa-
cilitates reuse and makes IP transfer possible [6]. Various
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libraries provide further functionality. For example, a popular
library called TLM (short for Transaction-Level Modeling)
defines channels, interfaces, and protocols that streamline and
standardize the development of high-level models in which
complex communication and protocols are reduced to a single
“transaction”. These factors have helped propel SystemC as a
de facto industry-wide standard modeling language, less than
a decade after its first release.

The growing popularity of SystemC has motivated an
explosion of research efforts aimed at the verification of
SystemC models. Most verification efforts for SystemC so
far have been focused on dynamic verification (also called
testing and simulation). This approach involves executing the
model under verification (MUV) in some environment, while
running checkers in parallel with the model. The checkers
typically monitor the inputs to the MUV and ensure that the
behavior or the output is consistent with the expected behavior
or output. The complementary approach of formal verification
either produces a mathematical proof that the MUV correctly
implements a specified property, or returns a counterexample,
which is a trace that violates the property. Formal verification
approaches have received less attention [30], mostly because
they are currently applicable only to rather small designs [22],
[24], [25] or simple gate-level models [11], [15].

Assertion-based verification (ABV) has recently been gain-
ing acceptance as an essential method for validation of hard-
ware and hybrid models [10]. With ABV, the designer writes
properties that capture the design intent in a formal language,
e.g., PSL2 [14] or SVA3 [31]. The design then can be verified
against the properties using dynamic or formal verification
techniques. A successful ABV solution requires two compo-
nents: a formal declarative language for expressing properties,
and a mechanism for transforming the specifications into
monitors [10]. Many approaches to SystemC specification are
limited to simple invariance assertions (using, for example,
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C++’s assert) [16], but the industry has recently recognized
the need for temporal languages that can express properties
related to ongoing behavior, such as p must hold until q is
true [3].

There have been a few attempts to adapt temporal languages
to SystemC. Ecker et al. [13] describe an implementation of
a SystemC Assertion Library inspired by Accellera’s Open
Verification Library. The library defines 11 properties, most of
which are invariance properties and a few are simple temporal
templates. The library does not provide a mechanism for defin-
ing new temporal templates. Große and Drechsler [11], [15]
use a C++ representation of bounded LTL formulas, which
are then compiled together with the SystemC model. Their
approach is limited to gate-level models. Traulsen et al. [29]
translate SystemC models into Promela models, which enables
them to use the model checker Spin to verify LTL properties.
Habibi, Gawanmeh, and Tahar advocate using PSL [17] and
SVA [18] for SystemC, but do not propose an adaptation.

Karlsson et al. [20] use Petri-nets [26] to create a formal
representation of the SystemC model at the statement level
(i.e., each statement is represented by one place and one
transition). Ecker et al. [12] propose an extension of PSL and
SVA to express properties of sc_events. A disadvantage for
both of these two approaches is that the formal model has one
level of abstraction. Pierre and Ferro’s framework [27] samples
at the statement level, and then only considers those states
which are relevant to the property, thus providing a somewhat
more flexible temporal resolution. This approach shares the
same drawback as all existing approaches: the state of the
library code and the state of the simulation kernel are not
taken into consideration.

The 1850 PSL Working Group proposed adding a “SystemC
flavor” to PSL [2]. Most of the changes in this flavor of
PSL are cosmetic; the only significant addition is allowing
SystemC’s event expressions to be used as clock expressions in
PSL. A more serious industrial effort for developing temporal
languages for SystemC is by Jeda Technologies [21]. They
describe two languages for SystemC inspired by SVA. NSCa
is an adaptation of SVA and is aimed at cycle-level verification.
NSCv is a variant aimed at transaction-level verification.

In our opinion, current works on temporal languages for
SystemC are lacking in three major respects. First, none of
these works addresses the most fundamental issue for temporal
languages, which is a precise definition of a trace. The notion
of a trace is a key notion in any discussion of temporal
semantics. Hardware-oriented languages such as PSL or SVA
assume an underlying notion of a clock-cycle-level trace, but
for higher-level languages such as SystemC the notion of a
clock- cycle-level trace may not be appropriate. Second, a
temporal language should be adaptable to different levels of
abstraction in the design of the model. One of the strengths
of SystemC is modeling at different levels of abstraction;
during the design process the model typically gets refined,
evolving from a system-level model to a gate-level model.
Jeda Technologies’ solution of different languages for different
levels of abstractions is simply not flexible enough. Third,

the existing specification languages are approaching the issue
mostly from a hardware perspective and are ignoring the fact
that a SystemC model is, fundamentally, a C++ program.
There is a large body of work on specification and model
checking of Java, C++ and C code (e.g., [4], [5], [7], [9], [19])
and the specification primitives used there should be adapted
for SystemC.

In this paper we describe a new approach to defining tem-
poral languages for SystemC. Our starting point is a precise
definition of a SystemC trace. Intuitively, a trace is a sequence
of states in the execution of the model. Defining this notion
precisely for SystemC is quite nontrivial. First, we abstract
the simulation kernel and define its state with respect to this
abstraction. Second, we recognize that one needs to distinguish
between the SystemC model developed by the designer and
the set of SystemC libraries used by this model. While the
state of the model is fully detailed, the libraries are modeled
only at the level of their exposed interfaces. Finally, we define
the notion of a trace with respect to these abstractions of the
kernel and the libraries.

We then argue that SVA and the SystemC flavor of PSL
fail to identify important Boolean properties relevant to the
execution of SystemC models. We propose enriching the
Boolean layer with a new set of atomic properties, thereby
making the specification language more expressive. First, we
extend PSL and SVA with a set of atomic propositions that
are adequate for expressing properties of C++ programs. For
example, we add propositions that enable us to express pre-
and post-conditions for functions. Second, we extend PSL
and SVA with propositions that enable us to refer to the
current phase of the simulation execution, corresponding to
our abstraction of the simulation kernel. Finally, we observe
that the clock-sampling mechanism available in PSL and SVA
offers us a way to express temporal properties at different
levels of abstractions. A fine sampling would correspond, say,
to subcycle-level abstraction, while coarser sampling would
correspond, say, to transaction-level abstraction. Since in PSL
and SVA any Boolean expression can be used as a clock
expression, the additions to the Boolean layer that we propose
here also provide us a much finer control over the temporal
resolution. We show that this approach enables us to tailor
temporal languages to SystemC in a uniform way; all that is
needed is to adapt the underlying syntax for state assertions.
The main feature of the resulting framework is the ease
with which properties can be expressed at different levels of
abstractions, without having to use different languages.

II. SEMANTICS OF SYSTEMC SIMULATION

SystemC was originally developed for the specification
of circuit models that could be compiled using a regular
C++ compiler and simulated efficiently [22]. As the language
evolved it changed its primary goal to enable system-level
modeling, that is, modeling of systems that might be im-
plemented in software, hardware, or a combination of the
two (e.g., system-on-a-chip). One of the strengths of Sys-
temC is that it can handle different models of computation



and communication, levels of abstraction, and system design
methodologies. This is achieved by a layered approach where
high-level constructs share an efficient simulation engine [16].

At the base layer SystemC provides an event-driven sim-
ulation kernel. Modules and ports represent structural infor-
mation, and interfaces and channels abstract communication.
The behavior of a module is specified by defining one or more
processes. Each process can declare a sensitivity list: a number
of events that trigger its execution. A waiting process becomes
runnable when one or more of the events on its sensitivity
list has been notified. If there are several processes that are
runnable, the kernel arbitrarily selects one of them and gives
it execution control. The simulation semantics imposes non-
preemptive execution of processes, that is, once the kernel
gives a process execution control the kernel cannot take it back
until the process finishes executing or explicitly suspends itself
by calling wait().

Like VHDL and Verilog, the SystemC kernel supports the
notion of a delta-cycle. The simulation clock does not advance
during a delta-cycle, and as a result all processes that execute
during the delta-cycle appear to be executing simultaneously.
In order to maintain the appearance of parallel execution it
is also necessary to postpone the effect of all channel and
signal updates and event notifications. To that end, during
a delta-cycle the kernel switches from evaluation phase to
update phase to delta-notification phase. During the evaluation
phase any values written to a channel or a signal are not
immediately available, and the value of the channel or signal is
not updated until there are no more runnable processes and the
kernel enters the update phase. Likewise, during the evaluation
phase an event might be notified but the processes sensitive to
that event will not become runnable until the delta notification
phase. An exception to this rule are immediate notifications,
which cause dependent processes to be added to the pool of
runnable processes during the evaluation phase, rather than
waiting until the delta notification phase.

The simulation semantics of SystemC, which is defined
in [1], is presented in pseudo code in Figure 1.

The execution of a SystemC application starts with the
Elaboration phase, during which all modules are instantiated
and channels are bound to ports, and some channels may reg-
ister a request_update() (line 7). Then the kernel enters
the Initialization phase (lines 8–20). During the Initialization
phase all channels with pending updates are updated (lines
8–10), all initializable SC_THREADs and SC_METHODs are
made runnable (lines 11–15), and pending delta notifications
cause their dependent processes to become runnable (lines 16–
20). Next the kernel starts a delta-cycle and runs all runnable
processes one at a time (Evaluation phase, lines 23–26). Dur-
ing this phase pending channel updates are collected in U , and
pending event notifications are collected in D. The evaluation
phase is followed by an update phase (lines 27–29) where
all collected channel update requests are executed and writes
to signals take effect. After that the kernel enters the delta-
notification phase (lines 30–34) where notified events trigger
their dependent processes. Note that immediate notifications

1: PC ← all primitive channels
2: P ← all processes
3: R← ∅ /* Set of runnable processes */
4: D ← ∅ /* Set of pending delta notifications */
5: U ← ∅ /* Set of update requests */
6: T ← ∅ /* Set of pending timed notifications */
7: /* Start elaboration; collect all update requests in U */
8: for all chan ∈ U do
9: run chan.update()

10: end for
11: for all p ∈ P do
12: if p is initializable and p is not clocked thread then
13: R← R ∪ p /* Make p runnable */
14: end if
15: end for
16: for all p ∈ P do
17: if p is triggered by an event in D then
18: R← R ∪ p /* Make p runnable */
19: end if
20: end for /* End of Initialization phase */
21: repeat
22: while R 6= ∅ do /* New delta-cycle begins */
23: for all r ∈ R do /* Evaluation phase */
24: R← R \ r

25: run r until it invokes wait() or returns
26: end for
27: for all chan ∈ U do /* Update phase */
28: run chan.update()
29: end for
30: for all p ∈ P do /* Delta notification phase */
31: if p is triggered by an event in D then
32: R← R ∪ p /* p is now runnable */
33: end if
34: end for /* End of delta-cycle */
35: end while
36: if T 6= ∅ then
37: Advance the clock to the earliest timed delay t.
38: T ← T \ t

39: for all p ∈ P do /* Timed notification phase */
40: if t triggers p then
41: R← R ∪ p /* p is now runnable */
42: end if
43: end for
44: end if
45: until end of simulation

Fig. 1. Simulation Semantics of SystemC

may make new processes runnable during the execution of
lines 22-26.

If at this point there are runnable processes the kernel loops
back to line 22 and starts another evaluation phase and a
new delta-cycle. Alternatively, if there are no more runnable
processes, the kernel advances the simulation clock to the
earliest timed-delay notification (essentially, a notification that



is explicitly set to be notified after some delay). All processes
sensitive to this event are triggered (lines 39–43) and the kernel
loops back to line 21 and starts a new delta-cycle. This process
is repeated indefinitely, unless the designer has specified a
fixed simulation time or all processes have terminated.

III. DEFINITION OF EXECUTION TRACE

All (linear) temporal languages are interpreted over execu-
tion traces, therefore before we can define the semantics of
temporal properties for SystemC we need a precise definition
of an execution trace. Traditionally, a trace has been defined
as a sequence of states in the execution of the model, but there
has been remarkably little discussion in the literature about the
definition of SystemC traces.

Some existing approaches adopt a clock-cycle-level tem-
poral resolution, so implicitly a state is a valuation of all
variables at the boundaries of clock cycles, and the trace
consists of the sequence of such valuations [21]. We believe
that such an approach is inadequate for SystemC, because
it fails to take into account the unique simulation semantics
of SystemC, which allows for a much finer grained temporal
resolution. For example, algorithmic-level SystemC models are
often timeless, with the simulation being completely driven
by events and the simulation clock making no progress during
the whole simulation [16], [24]. In fact, the whole simulation
can consist of a single delta cycle, if the simulation is driven
solely by immediate event notifications. Thus, clock-cycle-
level temporal resolution is clearly inappropriate for such
models. In this section we give a more refined definition
of SystemC traces that accounts for SystemC’s simulation
semantics. Our definition starts with a precise definition of
a system state, which encompasses the state of the kernel, the
state of the user model, and the state of the external libraries.

A. Kernel State

1) Kernel Phases: It is not immediately clear why the state
of the kernel needs to be included in the execution trace.
For example, in the work of Kroening and Sharygina [22]
the kernel is abstracted away completely. Each process is
modeled as a labeled transition system, and the global system
is defined as a product of these local transition systems.
The transitions of the global system are defined according
to the simulation semantics, which requires that “components
must synchronize on shared actions and proceed independently
on local actions” [22]. Under this model synchronization
occurs when a process encounters a wait() or a notify()
instruction. The observable behavior of their abstraction of
execution matches well the execution of a SystemC model.
Thus, on the surface, it may seem that taking into account the
state of the kernel would only complicate the semantics.

Similar philosophy has been adopted by Karlsson et al. [20],
Ecker et al. [12], and Pierre and Ferro [27], which likewise
do not model the kernel.

This may sound reasonable at first, but one soon realizes that
many important properties require some knowledge of the state
of the kernel. A consistency property may be required to hold
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Fig. 2. Kernel states proposed by Moy et al.

all the times, at the evaluation-phase boundary, at the delta-
cycle boundary, or at a timed-cycle boundary. If the kernel is
abstracted away completely, then there is no way to make these
distinctions and specify the consistency requirement properly.
We conclude, therefore, that the state of the kernel must be
exposed to a certain extent, in order to enable the user to
specify properties at different levels of abstraction. (We do not
discuss in detail here how such exposure is to be implemented;
that may depend on the context. For example, in the context
of dynamic verification such exposure can be implemented by
extending the kernel with an API for querying the state of the
kernel.)

This approach of exposing the state of the kernel to some ex-
tent was taken by Moy et al. [24], [25]. Their work formalizes
SystemC models in terms of communicating state machines,
where the kernel is modeled as a particular state machine
(Figure 2). Thus, the state of the kernel is exposed at an
abstraction level corresponding to this specific state machine.

Once one accepts the principle of exposing the kernel
state, the question remains at what abstraction level to expose
the kernel. Moy et al. offer a specific abstraction, but their
choice is open to criticism. Their formalism is somewhat less
detailed than the simulation semantics in SystemC’s Language
Reference Manual (LRM) [1]. One could offer other abstrac-
tions of the kernel, but without some guiding principle such
abstractions are also open to criticism. Our guiding principle
is that the abstraction should abstract away the kernel imple-
mentation, but expose fully SystemC’s simulation semantics,
as described in [1] and Figure 1. A coarse abstraction might
hide details that may be of importance to some users. Thus,
an abstraction at the level of the simulation semantics is as
generic as possible, enabling further abstraction if required by
specific applications.

We therefore abstract the simulation semantics, as described
in Figure 1, by the state machine described in Figure 3.
Our abstraction may seem, at first sight, to be somewhat
too detailed. A simpler abstraction of the kernel would con-
sider each phase (Initialization, Evaluation, Update, Delta
notification, Timed notification) as a separate state in a state
machine. Why does our model have more states? The answer
is that the simpler model does not expose the start and the
finish of individual processes (all processes are run while
the kernel is in the Evaluation phase, and similarly for the
Update phase). Our abstraction exposes the transfer of control
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between the kernel and the processes by splitting the Update
end Evaluation phases into two subphases. Since SystemC
uses the interleaving approach to concurrency, we believe that
exposing transfer of control is important. Our abstraction of
the kernel is more detailed than Moy et al.’s, therefore giving
us more expressive power.

One might argue that keeping track of all phases of the sim-
ulation semantics is unnecessary because very few properties
relate to those specific phases. We decided to take a generic
approach and model all phases of the kernel that are described
by the simulation semantics rather than try to pass judgment
on which ones are the most important. As we show in the
sequel, our approach enables users to use coarser abstractions
if needed. Since we need to anticipate all possible uses of
SystemC, exposing the semantic fully is the most justifiable
approach.

2) SystemC Events: SystemC events are objects derived
from the pre-defined class sc_event. A particular “waiting”
process does not becomes “runnable” until the event on which
the process is waiting is notified. For example, if a TLM
channel is full, a thread that wishes to write to the channel
may suspend itself by calling wait(ok_to_put). As soon
as there is free space on the channel, the channel notifies
the ok_to_put event, and the waiting thread is moved to
the pool of “runnable” processes among which the kernel
selects the next process to run. Most core SystemC objects
have an associated event that indicates that some change has
occurred. For example, an sc_signal has an event that is
notified when the signal changes; an sc_fifo has an event
for writing to and an event for reading from the channel;
an sc_clock’s positive and negative edges are represented
by events. Thus, events are the fundamental synchronization
mechanism in SystemC, and keeping track of when a particular
event is notified allows us to pinpoint the instant in time
when something important happens. In the particular example

mentioned before, we might want to specify that every time
ok_to_put is notified the number of items in the channel is
strictly smaller than the capacity of the channel.

Events are notified by calling the notify() method of
class sc_event. There are three types of event notification:

1) notify() with no arguments: immediate notification.
Notification happens upon execution.

2) notify(SC_ZERO_TIME): delta notification. Notifi-
cation happens during the delta-notification phase.

3) notify(time) with a non-zero time argument: timed
notification. Notification happens during a subsequent
timed-notification phase.

Pending event notifications can be canceled using the
cancel() method, pending timed notifications are canceled
by delta notifications, and pending delta notifications are
canceled by immediate notifications.

PSL’s and Jeda’s treatment of events is to allow them to be
used as clock expressions, though the issue when events are
actually notified is not discussed explicitly. We believe that the
fundamental role played by events in the execution of SystemC
models justifies fully exposing event notification in the kernel’s
state. In essence, we are elevating event notification to the
Boolean layer. This means that properties can refer directly to
event notification, for example, specifying that ok_to_put
is notified at least once every clock cycle.

B. User Model State

The state of the user model is the full state of the C++
code of all processes in the model, which includes the values
of the variables, the location counter, and the call stack. Our
perspective is that of ”white-box validation”, which means
that the state of the model should be fully exposed. Thus, the
property languages should consider all class members to have
public access, including those that are declared as private or
protected.



As argued earlier, we believe that a property specification
language for SystemC ought to consider SystemC as a system-
level language, rather than a hardware-level language. This
requires that the execution of a SystemC model be exposed
also at the source-code level [5]. This should enable us to refer
explicitly to statements being executed both via their label as
well as by their syntax; for example, we should be able to
refer to all invocations of a specific method. Formally, we add
to the state a variable of type string that contains as a string
the statement being executed at a given step. Furthermore, as
method invocation is central to the execution of object-oriented
code, the values of arguments passed to and returned from in-
voked methods should also be exposed, by exposing the values
of the formal parameters of the method upon invocation. In
essence, we are requiring traces of SystemsC model to include
both state and transition descriptions, in contrast to standard
models of temporal logics that are typically state based [28].
By exposing both semantics and syntax of the model, we
enable properties that relate source code and execution; for
example, we can specify that for every port connected to a
specific channel, the write() interface method call is passed
only positive numbers as arguments. In order to simplify the
process of referring to individual statements in what could
be many thousands of lines of code, we provide several pre-
defined labels for important locations. This is discussed further
in Section IV.

Finally, like Moy et al., we expose for each process its
status, as waiting, runnable, or running, corresponding to the
simulation semantics, per Figure 3.

C. Library Code State

Most SystemC models rely heavily on external libraries (the
TLM library, for example). These libraries encapsulate crucial
components of SystemC models, such as signals and channels.
When formalizing the notion of SystemC state, we need to
decide how to formalize the state of libraries. One approach
would be to extend the white-box approach to library code,
but users need to be familiar with libraries only at the API
level, and not at the implementation level. Furthermore, while
in many cases the code of the library is available, in others
the library may be supplied as compiled code, thereby hiding
the internal state.

Kroening and Sharygina [22] do not discuss how they
handle library code. Moy et. al’s approach [23], [25] is to
provide specific state-machine models reflecting the function-
ality of TLM constructs. The benefit of this approach is that
it preserves important information about the structure and
behavior of the design. A major drawback is that this requires
manual effort to develop formal models for libraries. These
formal models may have to be revised when libraries are
revised.

To attain generality, we believe that library code should
be treated as a black box. For example, when it comes to
tlm_fifo, the state of the queue should be exposed without
exposing implementation details. Furthermore, the state of a
library should be exposed only in terms of the API of that

library. Consider, for example, the TLM 1.0 library. Properties
should not have access to the state of the tlm_fifo other
than via side-effect-free function calls, for example, via the
peek method. Of course, when library source code is avail-
able, users can choose to treat it as a part of the user model
and view it from a white-box perspective.

D. Trace

A SystemC trace is a sequence of states corresponding to
the execution of the model. Such execution consists of an
alternation of control between the kernel, on one hand, and the
model and the libraries on the other hand. We have discussed
so far how we formalize the state of the kernel, the model, and
the libraries. It remains to discuss at what level of granularity
we formalize the transition from one state to its successor.

When the kernel is executing, we follow transitions in the
state machine described in Figure 3. When the kernel selects
a process to run or a channel to update, control passes to that
process, which then runs until it terminates or is suspended
via a wait statement. With respect to transitions of processes,
we follow the “large-step semantics” approach [32]. Under this
approach we focus only on the overall effect of each statement,
as opposed to considering the individual subexpressions. For
example, y = x++; consists of two subexpressions (y =
x; and x = x + 1;), but we ignore the valuations of
the variables during the execution of the subexpressions. We
believe that this matches the level at which programmers and
verification engineers think about the source code. By follow-
ing large-step semantics our framework may miss rare cases
where a property is violated in a subexpression. For example,
suppose that a program invariant requires that x must always
be positive, and suppose that x = 1. During the execution
of the expression y = (x--) + (x++); the value of x is
temporarily set to 0 by the x-- subexpression, but since the
value of x is restored back to 1 by the x++ subexpression,
no violation of the property will be reported. Modern design
practices discourage the use of complex subexpressions that
change the valuation of variables, therefore the choice of large-
step semantics over small-step semantics is justified.

Finally, we consider each invocation of a library method, for
example, invoking a channel-interface method, to return in one
step. This is consistent with our black-box view of libraries.

IV. LANGUAGE DEFINITION

After we have given a definition of an execution trace
we can define a set of specification primitives for SystemC
models. Notice that specification languages like PSL and SVA
are already quite expressive temporarily, so no extension is
necessary for their temporal layer in SystemC. Thus, our focus
in this section is on extending the Boolean layer. The new set
of primitives introduced here not only allows the specification
of a richer set of properties, but also provides a uniform
mechanism for controlling the temporal resolution of the
specification language. Unlike Kasuya and Tesfaye’s approach
[21], which requires a separate language for clock-based
and event-based models, our framework allows for greater



flexibility in the temporal granularity of the specification,
and is general enough that it can readily be adapted for any
temporal language with the notion of clock expressions.

Table I summarizes our proposed specification primitives.

SystemC expr ::= model expr | kernel expr
model expr ::= loc expr | arg expr | proc expr
loc expr ::= [before | after] {code label | syntax expr }

| func name:{entry | exit | call | return}
syntax expr ::= functionString → Boolean (curr statement, . . . )
arg expr ::= func name : non-negative integer
proc expr ::= proc name.proc state
kernel expr ::= phase expr | event expr
phase expr ::= kernel phase
event expr ::= event name.notified

TABLE I
PROPOSED SPECIFICATION PRIMITIVES

A. User Model Primitives

A model expr is a Boolean expression about the state of
the user model. Under this category we include expressions
about the location counter (loc expr), the arguments and return
values of functions (arg expr), and expressions about the state
of each process (proc expr).

Our definition of a trace explicitly keeps track of the
location counter during the execution of the user model. With
each label code_label in the source code of the model
we associate a Boolean variable that is true precisely in those
states where the statement that is about to be executed is la-
beled by code_label. We introduce two optional modifiers,
before and after, to refer, respectively, to the state immediately
before and immediately after that statement is executed (the
default behavior corresponds to specifying before). Using this
primitive allows the specification of forbidden or mandatory
paths in the execution of the compiled model, e.g., if execution
reaches lbl1 it should not reach lbl2. It also allows the
specification of properties that must hold at particular locations
in the code.

Inspired by BLAST [5], we also propose adding a primitive
curr statement of type string that exposes the syntax of
the statement that is about to be executed. As mentioned
earlier in Section III-B, this mechanism enables properties
that relate syntax and semantics. PSL and SVA allow using
functions defined in the underlying HDL language, which in
the context of SystemC means that we can use a number of
C++ functions that operate on strings and return Booleans
(syntax expr) and pass curr statement as an argument. Of
particular interest are regular expression matching and string
comparison functions, because they allow the user to quickly
identify a set of “important” locations in the source code
without having to introduce labels manually. As an example,
one can use this mechanism to identify all locations in the
user model where a particular statement is executed.

Example 1 (Matching source code): Suppose that before a
function foo() is called in any module, some consistency condi-
tion bar must hold. For this property we first define a function
match(string) that returns true whenever the string contains

“foo(“, e.g. via pattern matching. The property then becomes
(before match(curr_statement)) -> bar.

The specification of pre- and post-conditions requires eval-
uating assertions at specific locations in the source code that
are difficult to identify automatically via the mechanisms
described so far. Inspired by SLIC [4], we introduce two
additional primitives, entry and exit, that refer to the location
immediately before the first executable statement, and the
location immediately after the last executable statement, in a
function. In some cases the pre-condition may need to refer to
the values of the formal parameters passed on to the function.
If the function is a part of the user model, one can use the
names of the variables on the parameter list. We also propose
an alternative mechanism (previously used in both BLAST [5]
and SLIC [4]) to refer to the value of each parameter according
to its order. For a function func(type1 param1, type2 param2,
. . . ), we define implicit variables func:1, func:2, etc., whose
values (and types) are equal to the values (and types) of the
formal parameters of the function at the entry point (i.e., the
values of the variables before the first statement in the function
has been executed).

Example 2 (Precondition): One desirable precondition
for a function long division(double dividend, double
divisor) is ALWAYS (long_division:entry ->
long_division:2 != 0).

This mechanism is inadequate for the specification of pre-
and post-conditions of functions defined in a proprietary
library because the source code is not exposed in the execution
trace. For cases like this we introduce another set of primitives
that we adopt from SLIC [4]. For each function call to
func() we introduce the primitives func.call and func.return
to refer, respectively, to the location in the source code that
contains the function call and to the location immediately after
the function call. (Note that here we assume that function
calls are not nested.) The values of the arguments can be
accessed via implicit variables func:1, func:2, etc., whose
types match the types of the arguments to the function, and
whose values are precisely the values of the actual parameters
at func.call. Another implicit variable, func:0, is defined as
the value returned by the function, and it is only defined
at func.return. This mechanism allows the specification of
properties of proprietary functions and objects even if the
library does not expose their states directly (e.g., a proprietary
channel). For example, we can ensure that a channel contains
only positive values by specifying that the arguments to all
relevant calls to write() are always positive. As a second
example, we can express the property that the channel behaves
like a queue by using PSL’s modeling layer to temporarily
remember two values written to the channel, and then verifying
that the values are returned in the same order via the channel’s
read() method.

Finally, we propose adding a primitive proc state that for
each process name returns a value in the enumerated set
{ waiting, runnable, running } depending on the status of the
process in the kernel. One can use this primitive to specify that
a particular process is executed infinitely often, or is executed



at least once during each delta cycle.
B. Kernel Primitives

A kernel expr is an expression about the state of the
kernel. We introduce primitives for exposing the current phase
(phase expr) and when events are notified (event expr).

When the kernel has the thread of control, the execution
trace makes transitions that reflect the changing phases of
the kernel. We propose adding a primitive kernel phase
that exposes the current phase. The primitive returns a
value in an enumerated set { startsim, init select channel,
init update channel, . . . , endsim }, corresponding to our
abstraction of the kernel in Figure 3. kernel phase allows
the user to define properties whose evaluation is triggered by
different phases of the kernel.

Example 3 (Stable states): Variable p in process proc in
module mod must be 0 in all stable states (i.e., states where
no process is executing): ALWAYS (! kernel_phase
= eval_run_proc -> mod.proc.p = 0). The kernel
phase eval_run_proc corresponds to the instances where
a process is running (line 25 in Figure 1) in the evaluation
loop (lines 23–26 on Figure 1).

Event notifications (event expr) allow us to detect when
the notifications actually take place. Note that the mecha-
nisms described earlier expose function calls at the source-
code level, and event notification requests and cancellations
(i.e., calls to notify() and cancel()) are exposed via
the user model primitives. However, these primitives do not
expose the particular state when the actual notification is
carried out (i.e., when the dependent processes are made
runnable by the kernel). For each event we propose a primitive
notified which is true whenever the kernel carries out the
actual notification. For immediate notifications this happens
concurrently with the function call to notify(); for delta-
delayed notifications it happens during the earliest delta-
notification phase; for time-delayed notifications it happens
during the corresponding timed-notification phase. Note that
both delta-delayed and time-delayed notification requests can
be subsequently canceled, therefore a call to notify() with
a non-negative argument does not guarantee that notified will
be true in the future. The role of this primitive is particularly
important when referring to events that are notified implicitly,
e.g. when an sc_signal changes value, a built-in event
named value_changed_event is notified implicitly by
the kernel in the delta notification phase that immediately
follows.

Example 4: The requirement that a signal
changes in every delta cycle can be expressed as
ALWAYS (kernel_phase = delta_notify ->
signal.value_changed_event.notified).

Example 5: Variable p in process proc in module mod
must be 0 at the rising edge of clock cl: ALWAYS
(cl.posedge.notified -> mod.proc.p = 0).
C. Using Primitives as Clock Expressions

So far we have not discussed how the primitives de-
scribed here can be used to control the temporal resolution

of the specification language. Existing languages like PSL
and SVA allow the use of ”clock expressions” (CE), which
are Boolean expressions that indicate when a state in the
execution trace should be sampled. Traditionally (e.g., [14],
[21], [31]) sampling is done at the boundary of clock cycles.
Our framework can easily provide the same functionality by
using the event notification primitive described earlier. Note
that an sc_clock exposes two events, posedge_event
and negedge_event, which are notified every time the
value of the clock changes and the new value is, respec-
tively, 1 and 0. Using posedge_event.notified and/or
negedge_event.notified as CEs we can sample at the
boundaries of half-clock or clock cycles. Clearly, we are not
limited to the simulation clock. If finer grained resolution is
required, one can sample at the boundary of delta cycles by
using (kernel phase = delta notification) as a CE (sampling
at the delta notification phases of the kernel), or at the end
of execution of each process by sampling at (kernel phase =
next proc select), which corresponds to the phases where the
kernel is selecting the next process to be executed. One can
even sample at the boundary of the individual statements in
the source code (which is the default sampling rate).

Example 6 (Clock expressions): For this example we
borrow some of PSL’s syntax. The property “A call to
function req() is followed within 3 clock cycles (of clock cl)
by a notification of event ack” can be expressed as
default clock = cl.posedge.notified;
ALWAYS (req:call -> next[3] ack.notified).

If the acknowledgment needs to be received within 3
delta cycles instead, all we need to do is change the clock
expression:
default clock=(kernel_phase=delta_notify);
ALWAYS (req:call -> next[3] ack.notified).

The same mechanism allows specifying coarser sampling
rates as well. In a transaction-level or system-level model
one is typically interested in its behavior at event notifica-
tion instances. Jeda’s framework provides this functionality
in a separate language (NSCv), but they require the user
to setup callbacks (essentially, function calls) that ”report
an event occurrence at the point of transaction process-
ing” [21]. In our framework this can be done by using
as CEs the event-notification primitives introduced earlier.
For example, in a TL model we can sample at the in-
stances when the an sc_fifo is written to (by sampling at
data_written_event.notified), or when a signal changes
value (by sampling at value_changed_event.notified),
etc. The advantage of our framework is that it is using the
same language throughout the refinement process as the model
is transformed from higher to lower levels of abstraction.

V. DISCUSSION

To the best of our knowledge this is the first work that
provides a principled discussion and definition of a SystemC
execution trace. Our notion of a state encompasses information
about the kernel (current phase and notification of events), as
well as statement-level information about the user model, and



publicly exposed state of the libraries. The level of details
preserved in the states allows us to define a rich set of
new properties about the execution of the SystemC model.
Moreover, the user can specify a range of sampling rates, from
the most coarse (transaction- and system-level) to the most
detailed (statement level) by combining clock expressions
with the primitives introduced in this paper. Our framework
is general enough that it can be adopted by most existing
temporal specification languages by simply enriching the set
of allowed atomic expressions.

Bringing techniques from software verification to the Sys-
temC world is our second contribution. The fact that SystemC
models should be viewed as software models has been ignored
so far. The result is a minimal yet highly expressive extension
of PSL/SVA.

The framework that we propose is equally applicable to dy-
namic verification and formal verification. Enabling a dynamic
verification path would require a minimal “one-time” addition
to SystemC’s simulation kernel source code to expose a part
of SystemC kernel’s internal state and data structures. The
user code will have to be instrumented to allow the monitors
to observe the behavior of the relevant components, and the
monitors will be compiled and executed together with the
model. We are currently working on an implementation that
automates the process.

Applying formal methods to SystemC is an active area
of research with several different approaches (e.g. using
communicating state machines [24], [25], Petri-nets [20], or
leveraging Promela/SPIN [29]). All of these works propose
some FSM-like abstraction of the SystemC kernel, and no
two abstractions are the same. The model presented in this
paper corresponds directly to the simulation semantics as
described in the SystemC LRM [1] and is the most detailed
model without making any assumptions about the particular
kernel implementation. The FSM in Figure 3 can easily be
adopted by existing and future formal verification approaches.
Exposing the syntax further allows the analysis of the model
from a purely software point of view. The techniques used in
SLIC [4] and BLAST [5] can and should be applied to formal
verification of SystemC.
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