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Abstract
In many model checking tools that support temporal logic, perfor-
mance is hindered by redundant reasoning performed in the pres-
ence of nested temporal operators. In particular, tools supporting
the state-based temporal logic CTL often symbolically partition the
system’s state space using the sub-formulae of the input temporal
formula. This can lead to repeated work when tools are applied to
infinite-state programs, as often the characterization of the state-
spaces for nearby program locations are similar and interrelated.
In this paper, we describe a new symbolic procedure for CTL ver-
ification of infinite-state programs. Our procedure uses the struc-
ture of the program’s control-flow graph in combination with the
nesting of temporal operators in order to optimize reasoning per-
formed during symbolic model checking. An experimental evalu-
ation against competing tools demonstrates that our approach not
only gains orders-of-magnitude performance speed improvement,
but allows for scalability of temporal reasoning for larger programs.

1. Introduction
Branching-time temporal logics allow us to reason about a system’s
interaction with inputs and nondeterminism in a way that linear-
time temporal logics do not. Such reasoning is crucial to applica-
tions including planning, games, security analysis, disproving, en-
vironment synthesis, and many others. Unfortunately, the search
for scalable and high-performance temporal-logic proof tools for
infinite-state programs remains an open problem. The problem with
existing tools is that performance is often hindered by redundant
reasoning performed in the presence of nested temporal opera-
tors. For example, tools supporting the state-based temporal logic
CTL [8] invariably recurse over the structure of the input property
and reason about the sets of system states that respect the various
sub-formulae. Consider a property such as AG (x<y⇒ (EF y<z)),
which states that that whenever x<y, then it is possible that even-
tually y<z. When checking that this property holds of the input
program, the tool from Beyene et al. [4] solves for constraints char-
acterizing the sets of states respecting each of the sub-formulae, i.e.
it computes representations of the “x<y”-states, the “y<z”-states,
the “EF y<z”-states, the “x<y⇒ (EF y<z)”-states, etc. Other tools
supporting CTL do the same, e.g. [4, 6, 7, 11].
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In this paper, we describe a new symbolic CTL model checker
for infinite-state programs. Our approach makes use of the structure
of the program’s control-flow graph during a bottom-up analysis
over the property’s structure. Our approach reduces the amount
of reasoning perfomed as part of the procedure, suggesting that
current competing tools, e.g. [4, 11] perform redundant reasoning.
Our strategy makes use of the fact that the set of states that respect
a property such as EF y<z before a program command is very often
the same or nearly the same as the set of states respecting EF y<z
after the command.

Our method leads to dramatic performance improvements and
allows for scalability to larger programs: An experimental evalua-
tion using examples from the benchmark suites of the competing
tools (which are drawn from industrial benchmarks) demonstrates
orders-of-magnitude performance improvement in many cases.

Related work. Model checking has been extensively studied in
the context of finite-state systems (e.g. [3, 5, 9, 10, 22]) as well
as for various types of systems with limitations on the infiniteness
(e.g. pushdown systems [16], parameterized systems [15], etc). In
recent years powerful new tools have been developed for proving
temporal properties of full-blown infinite-state programs, e.g. [4,
11, 13, 19, 28–30].

In this work we are aiming to prove CTL properties with
nested combinations of existential and universal path quantifiers
of infinite-state programs. A number of CTL model checking tools
for programs do not meet these criteria. For example, SMV (and
in general BDD based tools) are restricted to finite-state programs
[7]. Song & Touili [28] perform a coarse one-time abstraction to
pushdown automata, and Gurfinkel et al. [19] do not reliably sup-
port mixtures of nested universal/existential path quantifiers, etc.
The two tools closest in their feature set to our setting are from
Cook & Koskinen [11] and Beyene et al. [4]. Cook & Koskinen
essentially implement the Kesten and Pnueli [21] deductive proof
system using an incremental reduction to program analysis tools.
Beyene et al. [4] implement the same idea as Cook & Koskinen us-
ing a reduction to Horn-clause reasoning. The problem with these
tools is that they perform redundant reasoning when proving nested
temporal properties. For example, Cook & Koskinen and Beyene
et al. walk recursively over the structure of the temporal formula,
whereas we look up the current precondition in what would be
the recursive case. This prevents an exponential state explosion
which would be caused otherwise by nesting the recursive verifi-
cation of each sub-property contained within a CTL property. We
also introduce a new approach to the treatment of existential path
quantification based on dualization. This is in contrast to Cook &
Koskinen, which attempts to find a non-trivial restriction on the
state-space such that AF can be used to reason about EF, or AG
can be used to reason about EG. Our approach also contrasts to
the tool from Beyene et al. [4], as it uses existential quantification
techniques in the underlying constraint-solver.
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Limitations. While perhaps our approach could be adapted to
work in the general setting of recursive heap-manipulating concur-
rent programs, we are currently limited to sequential non-recursive
programs that use commands expressed in linear-arithmetic. The
programs we consider during our experimental evaluation have
been abstracted from heap-manipulating programs using the tech-
nique of Magill et al. [23].

As our technique heavily relies on calculating weakest precon-
ditions, it is important that fragments of the underlying program
logic are closed under weakest preconditions, e.g. integer linear
arithmetic, a fragment of integer arithmetic. Our procedure is not
complete as we use a series of incomplete subroutines.

2. Preliminaries
First, we begin by briefly discussing our formal representation of
programs and methods, as well as CTL.

Programs. As is standard [24], we treat programs as control-flow
graphs, where edges are annotated by the updates they perform
to variables. A program is a triple P = (L, E,Vars), where L
is a set of locations, E is a set of labeled triples, and Vars is a
set of variables. Each triple τ : (`, ρ, `′) in E specifies possible
transitions in the program. The condition ρ is an assertion in terms
of Vars and Vars’, a primed copy of Vars. Intuitively, Vars refers
to the values of variables before the update and Vars′ refers to the
values of variables after the update. The set of locations includes
the initial location `0 that has no incoming transitions from any
prior program locations. That is, for every τ = (`, ρ, `′) ∈ E we
have `′ 6= `0. Transitions exiting `0 have their conditions expressed
in terms of Vars′. Locations with incoming transitions from `0 are
initial locations. This allows us to encode more complex initial
conditions. In figures we usually omit `0 and add edges with no
source to locations having an incoming transition from `0. The
program gives rise to a transition system T = (S,R), where S
is the set of program states of the form S = (L−{`0})× (Vars→
Vals) andR ⊆ S×S. That is, a program state is a pair (`, s) where
` 6= `0 and s is a function from program variables to values. The
program can transition from (`, s1) to (`′, s2) if there is a transition
(`, ρ, `′) ∈ E such that s1, s2 |= ρ. A state (`, s) is initial if there
is a transition (`0, ρ, `) such that ∅, s |= ρ. See Figure 2 for an
example representation of the program while x ≤ 0 do x := x + 1;
done; y := 1; with initial condition x = 0∧y = 0. A trace or a path
of a program is either a finite or an infinite sequence of program
states allowed by the program.

A finite set of program locations C is called a cut-point set if
C ⊆ L such that `0, `n ∈ C and every cycle in the program’s
graph contains at least one cut-point, that which is a member of C.

CTL. We are interested in verifying state-based temporal proper-
ties in the form of CTL [8] (a.k.a. Computational tree logic). A
CTL formula is of the form

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | AGϕ | AFϕ | A[ϕWϕ]

| EFϕ | EGϕ | E[ϕUϕ]
where α is an atomic proposition (e.g. x < y).

Here P, s |= AFϕ asserts that ϕ will eventually hold in a future
reachable state from s, whereas EFϕ asserts that ϕ can potentially
eventually hold in a future reachable state. AGϕ asserts that ϕmust
hold throughout all possible executions, while EGϕ asserts that
there exists an execution such that ϕ would be true throughout. AU
and EW are represented as syntactic sugar as usual.

CTL entailment. For a transition system T and a CTL propertyϕ,
we say that ϕ holds in T , denoted by T |= ϕ if ∀s ∈ I.R, s |= ϕ.

Ranking functions. For a state space S, a ranking function f is
a total map from S to a well ordered set with ordering relation ≺.
A relation R ⊆ S × S is well-founded if and only if there ex-
ists a ranking function f such that ∀(s, s′) ∈ R. f(s′) ≺ f(s).
We denote a finite set of ranking functions (or measures) as M.
Note that the existence of a finite set of ranking functions for a re-
lation R is equivalent to containment of R within a finite union
of well-founded relations [27]. That is, a set of ranking func-
tions {f1, . . . , fn} denotes the disjunctively well-founded relation
{(s, s′) | f1(s′) ≺ f1(s) ∨ . . . ∨ fn(s′) ≺ fn(s)}.

Counterexamples. In our setting new ranking functions can be
automatically synthesized by examining counterexamples pro-
duced by an underlying safety prover (discussed in more detail
in Section 4). A counterexample CEX in ACTL is defined follows:

CEXα of s | CEX∧ of CEX | CEX∨ of CEX× CEX |
CEXAG of π × CEX | CEXAF of π × π × CEX |

CEXW of π × CEX× CEX

where π is a trace through the transformed program. We only re-
quire counterexamples in ACTL as recall that existential formulas
utilize counterexamples acquired from their (universal) dual. Note
that often tools will not report a concrete trace but rather a path,
i.e. a sequence relations and program counter values correspond-
ing to a set of traces. The counterexample structure for an atomic
proposition CEXα is simply a state in which α does not hold.
Counterexamples for conjunction and disjunction are as expected.
A counterexample to an AG property is a path to a place where there
is a counterexample to the sub-property. A counterexample to an
AF property is a “lasso”: a stem path to a particular program loca-
tion, then a cycle which returns to the same program location, and
a sub-counterexample along that cycle in which the sub-property
does not hold. Finally, an AW counterexample is a path to a place
where there is a sub-counterexample to the first property as well as
a sub-counterexample to the second property.

Calculating weakest preconditions. As is standard in [14], for
any statement T and a postcondition Q, the weakest precondition
of T with respect toQ, denoted bywp(T,Q), characterizes all pre-
conditions such that the initial state ensures that the execution of T
terminates in a final state satisfying Q. For our generated coun-
terexamples, we employ a recursive definition of weakest precon-
ditions for unstructured programs proposed by [2] as follows:

wp(assert P,Q) = P ∧Q
wp(assume P,Q) = P ⇒ Q

wp(S;T,Q) = wp(S,wp(T,Q))

In our case, T is a relation corresponding to program counter
values.

3. Examples
Before we formally describe our CTL proving procedure, we first
informally demonstrate a few key ideas with illustrative examples.
Later on we will provide an in-depth account of these examples in
Section 5.

Sharing intermediate results. Our first example illustrates how
we can avoid redundant computation while reasoning about sub-
formulae of a temporal formula. Consider the program in Figure 1.
Imagine that our goal is to prove the property AFAG x=0. This
property states that, for all initial states, the program will definitely
reach a state wherein x=0 holds forever. The approach followed by
nearly all tools supporting CTL would be to find, in this instance,
a set of states ℘ such that AF℘ holds, and such that ℘ |= AG x=0



`1

`2

τ1 : x′ = 0

τ2 : x′ = x+ 1

τ4 : x′ = 0

Figure 1: The control-flow graph of an example program for which
we wish to prove the CTL property AFAG x = 0.

`1 `2

τ1 : x′ = 0
y′ = 0

τ2 : x ≤ 0
x′ = x+ 1

τ3 : x > 0

τ4 : true
y′ = 1

Figure 2: The control-flow graph of an example program for which
we wish to prove the CTL property AGEF y = 1.

holds. In our approach we use a precondition synthesis based strat-
egy: we initially let ℘ , true and attempt to prove ℘ |= AG x=0.
Failures to the proof attempt will result in refinements to ℘ through
the iterative calculation of the negated weakest precondition of each
discovered counterexample. It is trivial to prove ℘ |= x = 0. Given
the simplicity of our example, the weakest precondition happens to
be equivalent to the atomic proposition itself. Hence from this point
on, we shall treat the weakest precondition of the atomic proposi-
tion and the atomic proposition itself synonymously.

Eventually this will result in ℘ , (pc = `1 ⇒ false) ∧ (pc =
`2 ⇒ x = 0) after the elimination of counterexamples. We then
repeat the same procedure and proceed to prove AF (pc = `1 ⇒
false ∧ `2 ⇒ x = 0), thus proving that the original formula
AFAG x=0 holds.

We operate by iteratively proving lemmas at each program loca-
tion. This facilitates the use of high performance program analysis
techniques. That is, we are attempting to find ℘’s for each location
in the program: ℘`1 , and ℘`2 . Thus in our tool ℘ will be defined as

℘ , (pc = `1 ⇒ ℘`1) ∧ (pc = `2 ⇒ ℘`2)

where pc = `1 is used to assert that the state is at location `1
in the program’s control-flow graph. Notice that in our example,
℘`1 , false and ℘`2 , x = 0. The problem with the tools from
Cook & Koskinen [11] or Beyene et al. [4] is that they spend time
computing both ℘`1 , ℘`2 . In our approach we attempt to prove and
refine AG x = 0 at location `1, but we are careful to adapt the
refinement for `2 simultaneously. Thus we can avoid the redundant
reasoning.

Existential path formulae. In order to support existential path
formulae (e.g. EG) we use a strategy that eliminates counterex-
amples to the negation of the existential property using additional
constraints to the precondition.

Consider the program in Figure 2. Imagine that we are trying
to prove the property AGEF y=1. This property states that, for all
states, it is always possible that eventually y=1. As before, we are
looking for a ℘ such that AG℘ holds for the program such that

1 let Verify (ϕ, P) : bool =
2
3 (L, E,Vars) = P
4 ℘ = TemporalWP(ϕ, P)
5 return ∀(`0, ρ, `) ∈ E s.t. ρ⇒ ℘〈`, ϕ〉

Figure 3: CTL model checking procedure VERIFY, which utilizes
the subroutine in Figure 4 to generate weakest preconditions for
temporal properties.

1 let rec TemporalWP(ψ, P) : map =
2 ℘ = Init (ψ)
3 M = ∅
4 (L, R,Vars) = P
5 if ψ = α is atomic then
6 foreach {` | (`, t, `′) ∈ R
7 ℘〈`, ψ〉 = wp(t, α); ℘〈`,¬ψ〉 = ¬wp(t, α)
8 else
9 match (ψ) with

10 | ψ′1 ∧ ψ′2
11 | ψ′1 ∨ ψ′2
12 | ψ′1Uψ′2
13 | ψ′1Wψ′2 →
14 ℘ = ℘ ∪ TemporalWP(ψ′1, P) ∪ TemporalWP(ψ′2, P)
15 | AFψ′1 | AGψ′1 | ¬ψ′1 →
16 ℘ = ℘ ∪ TemporalWP(ψ′1, P)
17 C = findCutPoints(P)
18 foreach ` ∈ C do
19 P ′ = Transform(〈`, ψ〉,M, P,℘)
20 CEX, M = Refine(P ′, ψ, ℘, `0,M,ERR)
21 while CEX 6= ∅ do
22 α = wp(`,CEX)
23 foreach (s, tn, s′) ∈ CEX reachable from ` do
24 if ψ = Eψ′ then
25 ℘〈s, ψ〉 = ℘〈s, ψ〉 ∨ wp(s,CEX)
26 ℘〈s,¬ψ〉 = ℘〈s,¬ψ〉 ∧ ¬wp(s,CEX)
27 else
28 ℘〈s, ψ〉 = ℘〈s, ψ〉 ∧ ¬wp(s,CEX)
29 ℘〈s,¬ψ〉 = ℘〈s,¬ψ〉 ∨ wp(s,CEX)
30 foreach {′` | (′`, t, `) ∈ R′} do
31 t = t ∧ assume(¬α)
32 CEX,M = Refine(P ′, ψ, ℘, `0,M,ERR)
33
34 ℘

Figure 4: Precondition synthesis procedure utilizing sequential
locality. Two parameters are given: a program and a sub-property.
The procedure returns a function that maps sub-properties to their
synthesized preconditions. A precondition of a CTL sub-property
is automatically synthesized from counterexamples and then is
successively replaced by a condition over program states.

℘ |= EF y=1 holds. Our attempts to prove ℘ |= EF y=1 are via
negation: we attempt to prove ℘ 6|= AG y 6=1. We thus must start
with ℘ , false as only failures to proving AG y 6= 1 can necessitate
that there exists a witness such that EF y= 1.

Failures to the proof attempt will result in refinements to ℘
through the iterative calculation of the weakest precondition of each
discovered counterexample. In this case weakest preconditions to
the failure are disjuncted onto ℘. Each counterexample serves as
a subset of the existential witness for EF y=1. The successive
discovery of all possible counterexamples indicates the existential
witness of ℘ , (pc = `1 ⇒ x ≥ 0) ∧ (pc = `2 ⇒ x ≥ 0)



1 let Refine(P, ψ, ℘, `0,M,ERR) : map =
2
3 CEX = Reachable(P,`0,ERR)
4 if ψ 6= AF then
5 return CEX, M
6 while P can reach ERR do
7 if ∃ lasso fragment CEX′ from CEX then
8 if ∃ witness f showing CEX′ w.f. then
9 M = M ∪ {f}

10 else
11 return CEX, M
12 else
13 return CEX, M
14 CEX = Reachable((Transform(〈`, ψ〉,M, P, ℘),`0,ERR)

Figure 5: An existing safety prover similar to IMPACT is employed
as a reachability checker to ERR. A ranking function refinement
procedure then follows for when proving liveness (AF), where the
input transition system P is assumed to be a program.

1 let Init (ψ) : map =
2
3 ℘ = ∅
4 if ψ = Eψ′ then
5 foreach ` ∈ L do
6 ℘〈`, ψ〉 = false; ℘〈`,¬ψ〉 = true
7 else
8 foreach ` ∈ L do
9 ℘〈`, ψ〉 = true; ℘〈`,¬ψ〉 = false

10 return ℘

Figure 6: Preconditions of universal CTL formulas are initialized
to true as counterexamples are utilized to strengthen the initial con-
dition. Given that existential formulas are handled by considering
their universal dual, counterexamples serve as a witness thus weak-
ening the initial condition false.

4. Procedure
In this section we describe the details of our CTL model check-
ing procedure. See Figure 3, which depicts the main procedure,
VERIFY. Figure 4 defines the subroutine TEMPORALWP used
in VERIFY, while Figures 5, 6, and 7 are subroutines used in
TEMPORALWP.

In our approach the table ℘ is the key data structure which maps
pairs of program locations and sub-formulae to formulae which
represent the current candidate precondition that would guarantee
the property at that location. That is, our hope is that ℘〈`, ϕ〉
is a sufficient precondition to prove that ϕ holds at location `.
If such is not the case, a counterexample is produced and the
procedure attempts to refine ℘ given the counterexample path. A
brief description of each of the subroutines is provided below,
followed by more details pertaining to TEMPORALWP.

TEMPORALWP performs both a recursive and a refinement-based
computation to construct ℘. We recursively enumerate over
each sub-property wherein a corresponding precondition is
synthesized over program locations to be stored in ℘, assert-
ing the satisfaction of the aforementioned sub-property. In
TEMPORALWP, the procedure INIT in 6 initializes the precon-
dition for a CTL formula such that it could be iteratively refined
with each counterexample acquired. When TEMPORALWP re-
turns to VERIFY, it is then only necessary to check if the pre-
condition of the most outer temporal sub-property is satisfied
by the initial states of the program.

1 let Transform(〈k, ϕ〉,M, P, ℘) : Program =
2
3 (L, R,Vars) = P
4 match(ϕ) with
5 | ψ∧ψ′ →
6 α1 = ℘〈k,¬ψ〉; α2 = ℘〈k,¬ψ′〉
7 R = R ∪ (k, assume(α1 ∨ α2), ERR)
8 | ψ∨ψ′ →
9 α1 = ℘〈k,¬ψ〉; α2 = ℘〈k,¬ψ′〉

10 R = R ∪ (k, assume(α1 ∧ α2), ERR)
11 | A[ψWψ′]→
12 foreach (`, t, `′) ∈ R reachable from k do
13 α1 = ℘〈`, ψ〉; α2 = ℘〈`, ψ′〉
14 t = t ∧ assume(α1 ∧ ¬α2)
15 R = R ∪(`, assume(¬α1 ∧ ¬α2), ERR)
16 | E[ψUψ′]→
17 P = Transform(〈k,A[¬ψ′W(¬ψ ∧ ¬ψ′)]〉,M, P, ℘)
18 | AFψ →
19 foreach (′`, t, k) ∈ R do
20 t = t ∧ dup=false; state ′s
21 foreach (`, t, `′) ∈ R reachable from k do
22 α = ℘〈`, ψ〉
23 t = (t∧¬α)∨(t∧assume(¬dup∧¬α);dup=true;′s = s)
24 c = assume(dup ∧ ¬α ∧ ¬(∃f ∈M. f(s) ≺ f(′s)))
25 R = R ∪(`, c, ERR)
26 | EGψ →
27 P = Transform(〈k,AF¬ψ〉,M, P, ℘)
28 | AGψ →
29 foreach (`, t, `′) ∈ R reachable from k do
30 α = ℘〈`, ψ〉
31 t = t ∧ assume (α)
32 R = R ∪(`, assume(¬α), ERR)
33 | EFψ →
34 P = Transform(〈k,AG¬ψ〉,M, P, ℘)
35
36 P

Figure 7: A source-to-source transformation that reduces the
checking of temporal properties to safety through finding nested
conditions for sub-properties from the function ℘. Existential quan-
tifiers are handled by considering their (universal) dual.

TRANSFORM employs a source-to-source transformation that re-
duces the checking of temporal properties to safety and well-
foundedness.
The TRANSFORM transformation utilizes the function ℘, which
maps the preconditions synthesized previously for sub-properties
and their negations (lines 6,9,13,23, and 30). The program is
then transformed according to the CTL sub-property by modi-
fying the program from a given program location k ∈ L. The
reduction is only applied from a location k onwards (see loop
invariants in lines 12, 21, and 29), that is, we only wish to ver-
ify the sub-property starting from transitions stemming from
k. Whenever ϕ does not hold for a location `, a new reachable
transition to an error location ERR is added.
We support existential quantifiers by dualizing them; effectively
allowing us to extend the transformation, which only handles
universal quantifiers, to handling existential. Note that the pre-
condition of a counterexample to a universal property corre-
sponds as the precondition, thus a witness, of its existential
dual. This will be discussed more extensively further below.

REFINE uses a safety prover (similar to IMPACT) to obtain coun-
terexamples of the transformed system, if a counterexample
exists. In case that the counter example to a liveness property
(such as AF) contains a lasso fragment we may be able to find
an accompanying set of ranking functions M that will show



that the counter example is not valid. We thus atempt to enlarge
the set of ranking functions M using the well known method
of [12].

We now discuss TEMPORALWP in some more detail.

4.1 TEMPORALWP: computing ℘
See Figure 4. In order to synthesize a precondition for a sub-
property ψ, we first recursively accumulate the preconditions gen-
erated when considering the sub-properties of ψ at lines 7,14, and
16. We compute our base case, an atomic proposition α, as is stan-
dard in [2] wherein the weakest precondition of a given a transi-
tional relation t is a function mapping any postcondition α to a
precondition. Our transformation TRANSFORM then allows us to
reduce the checking of temporal properties starting from the inner-
most temporal property.

We then calculate a cut-point set C such that C ⊆ L and every
cycle in the program’s graph contains at least one cut-point (line
17). We wish to synthesize a precondition over these cut-points,
hence we generate a transformed program corresponding to each
cut-point using the subroutine TRANSFORM at line 19. Each trans-
formed program is then verified through the subroutine REFINE
(lines 20 and 32). Our counterexample-guided precondition refine-
ment loop begins at line 18, where we iteratively refine a precon-
dition for C ⊆ L until no more counterexamples are found. The
preconditions for each C ⊆ L are then accumulated to define the
precondition over program locations asserting the satisfaction of
the aforementioned sub-property. We discuss the refinement pro-
cess for each type of quantifier separately below.

We utilize sequential locality to simultaneously calculate sev-
eral preconditions for the set of locations that are arranged and can
be accessed from a CEX starting from the cut-point `. That is, the
computation of the precondition along the counterexample is used
to instrument every reachable location from ` ∈ C along the coun-
terexample. Our propagation loop begins at line 23, and iterates
along the counterexample path. In more informal terms, every state
along the path can utilize the same counterexample to show that the
property does or does not hold.

We choose to verify the set of cut-points [17] instead of all pro-
gram locations, as a sequential locality analysis allows us to si-
multaneously calculate several preconditions for a set of locations
reachable from an attained counterexample. Cut-points provide lo-
cality across program locations given the nature of cycles. We will
thus be able to propagate a cut-point precondition to all locations
contained within a cycle of a generated counterexample. This is
discussed in more detail below. Other program analysis inspired
techniques may be used for the selection of initial locations to be
verified. A cycle independent analysis can be run for those loca-
tions unreachable from program cut-points.

Universal precondition synthesis. For a universal CTL sub-
property ψ, a precondition ℘`,ψ for a program location ` is initially
true. If a counterexample is returned, we refine ℘`,ψ by taking the
negation of weakest precondition of the counterexample returned
at location `. As shown on line 28, our precondition then becomes
℘`,ψ = true ∧ ¬wp(`,CEX).

Next, we will propagate a cut-point precondition to all loca-
tions contained within a cycle of a generated counterexample in
lines 23-29. We then rule out the aforementioned counterexample
by adding the assumption ¬wp(`,CEX) at the cut-point program
state as shown on line 31. Note that there may be multiple transi-
tions leading to a program location, hence the assumption must be
instrumented at each ingoing transition.

We then continue to unfold the loop whenever a new counterex-
ample is discovered while iteratively refining ℘`,ψ , resulting in the
precondition

℘`,ψ =
∧
n∈N

¬wp(CEXn)

Existential precondition synthesis. For an existential CTL prop-
erty, a precondition must entail an existential witness satisfying the
sub-property ψ at program location `. We thus verify the universal
dual of an existential property (as instrumented by our encoding)
and seek a set of counterexamples generated from the property’s
universal dual to serve as an existential witness.

A precondition ℘`,ψ for a program state is initially false (line
5). If a counterexample is returned, ℘`,ψ is refined through the
disjunction of the weakest precondition of the counterexample re-
turned, that is ℘`,ψ = false ∨ wp(`,CEX) as shown on line 25.
We then propagate the precondition to the set of locations reach-
able along the counterexample path, as described in the universal
synthesis above from lines 23-29. We rule out the aforementioned
counterexample by adding the assumption ¬wp(`,CEX), and con-
tinue to unfold the loop with each newly discovered counterexam-
ple while iteratively refining ℘`,ψ . Note that finding one witness is
not sufficient to satisfy an existential property, as ℘`,ψ must char-
acterize all the states satisfying the sub-property phi at a location.
We thus have

℘`,ψ =
∨
n∈N

wp(CEXn)

The remaining resumes in the same manner as for universal prop-
erties. For both existential and universal properties, our mapping
function is also updated with the precondition for the negation of
the property on lines 7, 26, and 27. This allows us to conveniently
access the negation of the property in Figure 7 when encoding ex-
istential properties as their universal duals. Upon the return of our
precondition method to its caller, ℘ will contain the precondition
for the most outer temporal property of the original CTL property
ϕ.

4.2 Soundness and relative completeness.
Notation. For a program P , a location `, and a condition p over
Vars, we denote by P [p@`] the program obtained from P by
splitting the location ` to `+ and `− and adding the condition p
on all transitions entering `+ and adding the condition ¬p on all
transitions entering `−. That is, P [p@`] = (L′, E′,Vars), where
L′ = (L−{`})∪ {`+, `−}, E′ contains the following transitions,
and p′ is a primed copy of p.
• If (`1, ρ, `2) ∈ E and `1, `2 6= ` then (`1, ρ, `2) ∈ E′.
• If (`1, ρ, `) ∈ E and `1 6= ` then (`1, ρ ∧ p′, `+) ∈ E′ and
(`1, ρ ∧ ¬p′, `−) ∈ E′.
• If (`, ρ, `2) ∈ E and `2 6= ` then (`+, ρ, `2), (`

−, ρ, `2) ∈ E′.
• If (`, ρ, `) ∈ E then (`∗, ρ ∧ p′, `+), (`∗, ρ ∧ ¬p′, `−) ∈ E′,

where ∗ ∈ {+,−}.
This transformation has two distinct locations representing `, one
where the precondition p does hold and one where the precondi-
tion p does not hold. The modified program has the same set of
computations. This way we can reason about the correctness of our
preconditions by considering the locations `+ and `−.

PROPOSITION 4.1. If the algorithm in Figure 4 terminates, for
every sub-formula ψ of ϕ and every location ` ∈ L we have

P [℘`,ψ@`] |= AG(`+ ⇒ ψ) ∧ AG(`− ⇒ ¬ψ)

Proof: We prove the proposition by induction on the structure of
the formula. It is clear for an atomic proposition. For a non-atomic
formula, as the counter examples obtained from the underlying
program analysis tool are real counter examples, it follows that their



preconditions do not satisfy the formula. We then get additional
counter examples, which are all sound. The termination of the loop
searching for counter examples implies that the disjunction of all
pre-conditions is sound and complete.

We now discuss the proof in more detail. Consider an atomic
proposition α. By construction, for every location ` we have
℘`,α = α and ℘`,¬α = ¬α. Clearly, P [α@`] |= AG(`+ → α)
and P [¬α@`] |= AG(`+ → ¬α).

We now proceed by induction on the nesting depth of formulas.
• If ψ = ψ1 ∨ ψ2. Consider a location `. Denote ℘1 = ℘`,ψ1

and ℘2 = ℘`,ψ2 . By induction, we know that P [℘1@`] |=
AG(`+ ⇒ ψ1) and P [℘2@`] |= AG(`+ ⇒ ψ2).
Suppose that P [℘ψ@`] 6|= AG(`+ ⇒ ψ). Then, there is a
state (`′, s) that is reachable in the program such that (`′, s) 6|=
`+ ⇒ ψ. Clearly, `′ = `+.
However, the encoding of ψ in Figure 7 adds the transition
(l,¬℘1 ∧ ¬℘2, ERR) to P . Then, the precondition synthesis
terminates only when ℘`,ψ is strong enough to guarantee that
ERR is not reachable in the modified program.
However, it must be the case that the same state (`, s) that
serves as counter example to AG(` ⇒ ψ) would serve as a
counter example to EG¬ERR in the modified program.
The dual argument (relating to l−) is similar and thus omitted.
• If ψ = ψ1 ∧ ψ2 the proof is similar to the previous case.
• If ψ = A[ψ1Wψ2]

Consider a location `. Denote ℘1 = ℘`,ψ1 and ℘2 = ℘`,ψ2 . By
induction, we know that P [℘i@`] |= AG(`+ ⇒ ψi) and that
P [℘i@`] |= AG(`− ⇒ ¬ψi).
Suppose that P [℘ψ@`] 6|= AG(`+ ⇒ ψ). Then, there is a
state (`′, s) that is reachable in the program such that (`′, s) 6|=
`+ ⇒ ψ. Clearly, `′ = `+.
However, the encoding ofψ in Figure 7 adds to every location `′

the transition (`′,¬℘1 ∧ ¬℘2, ERR) to P . It also changes every
other transition to two transitions one augmented by ℘1 ∧ ¬℘2

to the same target and one augmented by ℘2 that leads to
locations from where the error is no longer reachable. Then,
the precondition synthesis terminates only when ℘`,ψ is strong
enough to guarantee that ERR is not reachable in the modified
program.
The completeness of the case of A[ψ1Wψ2] follows from the
proof of E[ψ1Uψ2] below.
• If ψ = E[ψ1Uψ2] This is the dual of A[ψ1Wψ2] above.

Consider a location `. Denote ℘1 = ℘`,ψ1 and ℘2 = ℘`,ψ2 . By
induction, we know that P [℘i@`] |= AG(`+ ⇒ ψi) and that
P [℘i@`] |= AG)`− ⇒ ¬ψi).
Suppose that P [℘ψ@`] 6|= AG(`+ ⇒ ψ). Then, there is a
state (`′, s) that is reachable in the program such that (`′, s) 6|=
`+ ⇒ ψ. Clearly, `′ = `+.
However, the encoding of ψ in Figure 7 treats EU as the dual
of AW . Thus, it adds to every location ` a transition (`,¬℘1 ∧
¬℘2, ERR) and every other transition is replaced with two tran-
sitions one augmented by ℘1 ∧ ¬℘2 leading to the same target
and one augmented by ℘2, which is then leading to a region
where the transitions to ERR are no longer reachable. Then, the
precondition synthesis extracts counter examples that reach the
ERR state. Clearly, a path reaching ERR is a path that violates the
dual AW and thus satisfies ψ. Thus, from every state satisfying
the weakest precondition of this counter example the formula ψ
holds.
• If ψ = AFψ1

Consider a location `. Denote ℘1 = ℘`,ψ1 . By induction, we
know that P [℘1@`] |= AG(`+ ⇒ ψ1) and that P [℘1@`] |=
AG(`− ⇒ ¬ψ1).

Suppose that P [℘ψ@`] 6|= AG(`+ ⇒ ψ). Then, there is a
state (`′, s) that is reachable in the program such that (`′, s) 6|=
`+ ⇒ ψ. Clearly, `′ = `+.
However, the encoding of ψ in Figure 7 adds a transition to
ERR only in case that a loop is found that does not have a
ranking function. It also adds a transition to SAFE in the case
that ℘1 holds. Otherwise, from every state either it duplicates
the state and searches for a loop to that state or continues. From
the soundness for this program analysis procedure for ACTL1,
we know that when the program analysis task returns that the
system is safe. It follows that the precondition synthesized is
strong enough to ensure that the error location is not reached
implying that there are no loops where ψ1 does not hold.
The completeness of the case of AFψ1 follows from the proof
of EGψ1 below.
• If ψ = EGψ1.

Consider a location `. Denote ℘1 = ℘`,ψ1 . By induction, we
know that P [℘1@`] |= AG(`+ ⇒ ψ1) and that P [℘1@`] |=
AG(`− ⇒ ¬ψ1).
Suppose that P [℘ψ@`] 6|= AG(`+ ⇒ ψ). Then, there is a
state (`′, s) that is reachable in the program such that (`′, s) 6|=
`+ ⇒ ψ. Clearly, `′ = `+.
However, the encoding of ψ in Figure 7 treats EG as the dual
of AF. Thus, it adds transitions to error whenever a loop is
found that does not visit ℘1. Then, the precondition synthesis
extracts counter examples that reach the ERR state. Clearly,
a path reaching ERR is a path that violates the dual AF and
thus satisfies ψ. Thus, from every state satisfying the weakest
precondition of this counter example the formula ψ holds.

COROLLARY 4.2. For every symbolic program P we have P |= ϕ
iff for every (`0, ρ, `) ∈ E we have ρ⇒ ℘`,ϕ .

PROPOSITION 4.3. Our algorithm is relatively complete.

Proof: We rely on the following algorithms. We assume that RE-
FINE finds paths to the error state instrumented in the program. We
assume that ranking functions that rule out counterexamples to live-
ness properties can be found (line 27 in Figure 7). We assume that
the computed weakest preconditions (lines 21–28 in Figure 4) are
accurate.

Relative completeness follows from the structure of counter
examples. A counterexample analyzed by wp is not a trace of
the program but rather a fragment of the control-flow graph. As
such, the extracted precondition is a precondition for all traces that
use the fragment. In particular, if the fragment contains a loop,
an extracted precondition would correspond to all possible traces
through the loop. It follows from the finiteness of the control-flow
graph of the program the number of different counterexamples that
can be found by REFINE is finite (corresponding to the number of
subgraphs of the control-flow graph).

Other sources of possible non-termination of our procedure
are the well-foundedness checking and the search performed by
REFINE. If these are assumed to be complete then our technique is
complete as well.

5. Examples in detail
We now walk through the two examples from Figures 1 and 2 of
Section 3 in detail, connecting them to our procedure from the
preceding section.

1 A formula is in ACTL if the only temporal operators it uses are universal,
i.e., AX, AW , AF, AU , or AG.



`1

`2 ERR

τ1 : x′ = 0

τ2 : x 6= 0

τ3 : x = 0 ∧
x′ = x+ 1

τ4 : x′ = 0 ∧
x = 0

τ5 : x 6= 0

Figure 8: The transformation of the program in Figure 1 for the sub-
property AG x=0 which is utilized in the verification algorithm.

`1

`2 ERR

τ1 : x′ = 0
dup′ = false

τ3 : x′ = x+ 1

τ4 : x 6= 0 ∧ dup ∧
¬(∃f ∈M. f(x) ≺ f(′s))

τ5 : ¬dup ∧
x 6= 0 ∧
dup′ ∧
′s′ = x ∧
x′ = 0

τ6 : x 6= 0 ∧
x′ = 0

Figure 9: The transformation of the program from Figure 1 for
the sub-property AFAG x=0 to be utilized in the verification
algorithm. The nested property AG x = 0 is substituted with its
precondition resulting in a transformation for AF (pc = `1 ⇒
false ∧ `2 ⇒ x = 0) instead.

`1 `2

ERR

τ1 : x′ = 0
y′ = 0

τ2 : x ≤ 0 ∧
y = 0
x′ = x+ 1

τ3 : y 6= 0

τ4 : x > 0 ∧
y = 0

τ5 : y = 0
y′ = 1

τ6 : y 6= 0

Figure 10: The transformation of the program from Figure 2 for the
sub-property EF y = 1 using its dual AG y = 0 which is utilized
in the verification algorithm.

`1 `2

ERR

τ1 : x′ = 0
y′ = 0

τ2 : x ≤ 0 ∧
x ≥ 0
x′ = x+ 1

τ3 : x < 0

τ4 : x > 0 ∧
x ≥ 0

τ5 : x ≥ 0
y′ = 1

τ6 : x < 0

Figure 11: The transformation of the program from Figure 2 for
the sub-property AGEF y =1 to be utilized in the verification
algorithm. The nested property EF y = 1 is substituted with its
precondition resulting in a transformation for AG (pc = `1 ⇒ x ≥
0 ∧ pc = `2 ⇒ x ≥ 0) instead.

Sharing intermediate results. Recall the program in Figure 1.
We show how the algorithm establishes that the CTL property
AFAG x=0 holds for the program. We synthesize the preconditions
starting from sub-properties. We start with the atomic proposition
x = 0 and then the temporal sub-property AG x=0.

On lines 5-7 in Figure 4 we trivially obtain the weakest precon-
dition for the atomic proposition x = 0. Given the simplicity of our
example, the weakest precondition happens to be equivalent to the
atomic proposition itself. Hence from this point on, we shall treat
the weakest precondition of the atomic proposition and the atomic
proposition itself synonymously.

Let ℘AG x=0 be the precondition for the sub-property AG x=0. A
precondition for this sub-property at a certain program location ` is
denoted by ℘`,AG x = 0 .

On line 18 in Figure 4 we begin synthesizing ℘AG x = 0 over each
location in the program. We begin with the location `1 (recall that
`0 is omitted and the incoming arrow to `1 represents the transition
(`0, x

′ = 0, `1)). The call to TRANSFORM on line 19 in Figure 4,
when applied on `1, returns the program in Figure 8.

The transition system in Figure 8 is then verified on line 20
using an existing safety prover similar to IMPACT [25] to verify
whether or not ERR is reachable. As AG x=0 does not hold from `2
a CEX1 is returned below

〈`0, τ1, `1〉
〈`1, τ3, `2〉
〈`2, τ5, ERR〉

We then calculate the weakest precondition of CEX1 in the dif-
ferent locations reachable on the counterexample from lines 23-29.
Starting from `2 in CEX1, the calculated result is wp(`2,CEX1) ,
x 6= 0. The negation of this condition is conjoined with the current
value of ℘`2,AG x=0 on line 28. Then, from `1, the calculated result is
wp(`1,CEX1) , true (computed in line 22). The negation of this
result is conjoined with the current value of ℘`1,AG x=0 on line 28.
After our propagation we thus have

℘AG x = 0 , (pc = `1 ⇒ ℘`1,AG x = 0) ∧ (pc = `2 ⇒ ℘`2,AG x = 0)

We then rule out CEX1 on lines 30 and 30 by adding¬wp(`1,CEX1) =
false as an assumption on all transitions entering `1 and re-run the
safety prover, continuing onto the next loop refinement iteration.
Once CEX1 is eliminated, we do not generate anymore counterex-



amples and can thus conclude that

℘AG x = 0 , (pc = `1 ⇒ false) ∧ (pc = `2 ⇒ x = 0)

℘AG x = 0 ⇒ AG x = 0

Now that we have synthesized ℘AG x = 0 , we continue onto ver-
ifying the outer-most temporal property AFAG x = 0 by substi-
tuting AG x = 0 with ℘AG x = 0 , resulting in the temporal property
AF ℘AG x = 0 , that is, AF (pc=`1 ⇒ false∧pc=`2 ⇒ x=0), which
is equivalent to AF (pc=`2 ∧ x=0). The substitution is performed
on line 22 in Figure 7 when called from line 19 in Figure 4, result-
ing in Figure 9.

Transitions τ4, τ5, and τ6 include the (negation of the) pre-
condition (pc=`2 ∧ x=0), as for AF, we only wish to continue
if pc=`2 ∧ x=0 has not been satisfied as of yet. Transitions τ5 and
τ6 correspond to further exploration of the loop (τ6) and duplica-
tion of the current state (τ5) as required for identification of loops
violating the reachability of x=0. Then, transition τ4 reaches ERR
if x 6= 0 and there exists no well-founded relation. In the absence
of a well-founded relation the identified loop (dup) corresponds to
a real loop in the program and a counter-example to reaching x=0.
Recall that on line 20 in Figure 4 we verify Figure 9 using a re-
finement procedure utilizing a safety prover alongside termination
techniques, allowing us to discover the necessary well-founded re-
lation required for a sub-property to hold.

In the case of our program, when verifying reachability of ERR
on the program in Figure 9, no counterexamples are returned as
at `2, we satisfy the requirement that (eventually) x = 0. That is,
AF ℘AG x = 0 does hold. This implies

true⇒ AF ℘AG x = 0

We have now shown that AFAG x = 0 holds for the transition
system in Figure 1.

Existential path formulae. Recall the program in Figure 2. We
are trying to identify the precondition for EF y = 1, denoted
℘EF y = 1 . In line 19 in Figure 4 we well TRANSFORM on program
location `1 and the property AG y=0. The transformation in line
33 in Figure 7 returns the program in Figure 10. We then verify the
resulting program (line 20 in Figure 4) using our safety prover to
verify whether or not ERR is reachable. As AG y =0 does not hold
at `2 the counter example CEX1 below is returned.

〈`0, τ1, `1〉
〈`1, τ2, `1〉
〈`1, τ4, `2〉
〈`2, τ5, `2〉
〈`2, τ6, ERR〉

We then begin our refinement loop and calculate the weakest pre-
condition of CEX1 on line 22 for `1. The calculated result is
wp(`1,CEX1) , x ≥ 0 and is disjuncted to ℘`1,EF y = 1 on line
25. Recall that unlike the universal example, we do not negate
wp(`1,CEX1) as our counterexample derived from verifying its
universal dual indicates a subset of the existential witness. On line
23, we then begin to propagate our synthesized precondition us-
ing CEX1 starting from `2, as ERR is reachable from `2. After our
propagation we thus have

℘EF y = 1 , (pc = `1 ⇒ ℘`1,EF y = 1) ∧ (pc = `2 ⇒ ℘`2,EF y = 1)

One existential witness may not be sufficient to find all states
that satisfy EF y = 1 in the respective locations, we thus rule out
CEX1 on lines 30 and 31 by adding ¬wp(`1,CEX1) = x ≤ 0 as an
assumption and begin the next loop iteration. We re-run the safety
prover and do not generate anymore counterexamples and can thus

conclude that

℘EF y = 1 , (pc =`1 ⇒ x ≥ 0) ∧ (pc = `2 ⇒ x ≥ 0)

℘EF y = 1 ⇒ EF y = 1

Now that we have synthesized ℘EF y = 1 , we continue onto ver-
ifying the outer-most temporal property AGEF y = 1 by substi-
tuting EF y = 1 with ℘EF y = 1 , resulting in the temporal property
AG x ≥ 0. The substitution is carried out on line 28 in Figure 7.
By calling TRANSFORM on line 19 in Figure 4 we obtain the pro-
gram in Figure 11. Transitions τ2 and τ5 reflect (pc = `1 ⇒ x ≥
0) ∧ (pc = `2 ⇒ x ≥ 0). Transitions τ3 and τ6 correspond to
¬((pc = `1 ⇒ x ≥ 0) ∧ (pc = `2 ⇒ x ≥ 0)) and reach ERR.
The safety prover returns no counterexamples, as AG ℘EF y = 1 does
hold. This implies

true⇒ AG ℘EF y = 1

We have now shown that AGEF y=1 holds for the transition system
in Figure 2.

6. Evaluation
In this section we discuss the results of our experiments with an im-
plementation of the procedure from Figure 3. Our implementation
is built as an extension to the open sourcecode of T2 [1], which uses
a safety prover similar to IMPACT [25] alongside previously pub-
lished techniques for discovering ranking functions, etc [18, 26].

We have compared our tool to that of Cook & Koskinen [11]
and Beyene et al. [4]. The benchmarks used are the same as those
used in [11] and [4]. These benchmarks were originally created
by Cook & Koskinen using the examples drawn from the I/O
subsystem of the Windows OS kernel, the back-end infrastructure
of the PostgreSQL database server, and the SoftUpdates patch
system [20]. For each program and CTL property ϕ, we verify
both ϕ and ¬ϕ. Our tool was executed on hardware identical to
the hardware used by Cook & Koskinen and Beyene et al.: an Intel
x64-based 2.8 GHz single-core processor.

In Figure 12 we display the comparison of our results. For each
program and its set of CTL properties, we display the number of
lines of code (LOC), and report the time it took to verify a CTL
property (Time) column in seconds. A X in the “Result” column
indicates that the tool was able to verify the property. Likewise, an
× indicates that the tool failed to prove the property. A timeout
or memory exception is indicated by T/O. When the symbol ”–
“ appears in the Time and Result column this indicates that the
experiment was not run.

Overall, our tool demonstrates a significant increase in perfor-
mance. Contrary to existing tools, our tool produces no timeouts
and programs are often verified in under a second or less. The
aforementioned tools often take minutes (the former more-so than
the latter). Furthermore, the previous tools produce T/Os in cases
where the temporal formula is complex, the size of the program
is large, or both. Although a few of our results are on par with
Beyene et al., one can speculate from our evaluations that said
tool is not well equipped to handle larger programs. Contrarily, our
tool demonstrates the potential for scalability. On average, our tool
demonstrates orders-of-magnitude performance improvement over
existing tools.

In a few cases our tool produces results that differ with one of
the previous tools, due to bugs in the previous tools, As an example,
in the S/W Updates case we are unable to repeat the result of Cook
& Koskinen on c > 5 ∧ AG(r ≤ 5) and c > 5 ∧ EG(r ≤ 5).
Our result agrees with that of Beyene et al., and Cook & Koskinen
acknowledge the bug in their tool. OS frag. 2 needs support for
fairness, which our implementation does not have.



Our procedure (Fig. 3) Beyene et al. [4] Cook & Koskinen [11]
Program LOC Property Time Result Time Result Time Result
OS frag. 1 29 AG(a = 1⇒ AF(r = 1)) 1.4 X 1.20 X 4.6 X
OS frag. 1 29 AG(a = 1⇒ EF(r = 1)) 0.1 X 4.8 X 9.5 X
OS frag. 1 29 EF(a = 1 ∧ AG(r 6= 1)) 0.2 X 0.6 X 105.7 X
OS frag. 1 29 EF(a = 1 ∧ EG(r 6= 1)) 1.0 X 0.6 X 3.5 X
OS frag. 1 29 ¬(AG(a = 1⇒ AF(r = 1))) 1.4 × 2.7 × 9.1 ×
OS frag. 1 29 ¬(AG(a = 1⇒ EF(r = 1))) 0.1 × 0.1 × 1.5 ×
OS frag. 1 29 ¬(EF(a = 1 ∧ AG(r 6= 1))) 0.1 × 0.4 × 18.1 ×
OS frag. 1 29 ¬(EF(a = 1 ∧ EG(r 6= 1))) 0.7 × 5.2 × 12.5 ×
OS frag. 2 58 AG(s = 1⇒ AF(u = 1)) 2.1 × 6.1 X 2.1 X
OS frag. 2 58 AG(s = 1⇒ EF(u = 1)) 0.2 X 12.9 X 3.7 X
OS frag. 2 58 EF(s = 1 ∧ AG(u 6= 1)) 2.1 X 44.7 X 5.6 X
OS frag. 2 58 EF(s = 1 ∧ EG(u 6= 1)) 0.2 X 1.4 X 1.2 X
OS frag. 2 58 ¬(AG(s = 1⇒ AF(u = 1))) 0.2 X 0.2 × 1.8 ×
OS frag. 2 58 ¬(AG(s = 1⇒ EF(u = 1))) 0.2 × 0.2 × 1.5 ×
OS frag. 2 58 ¬(EF(s = 1 ∧ AG(u 6= 1))) 0.2 × 3.8 × 8.7 ×
OS frag. 2 58 ¬(EF(s = 1 ∧ EG(u 6= 1))) 1.2 × 3.6 × 6.5 ×
OS frag. 3 370 AG(a = 1⇒ AF(r = 1)) 6.9 X 51.3 X 38.9 X
OS frag. 3 370 AG(a = 1⇒ EF(r = 1)) 2.8 X 67.6 X 90.0 X
OS frag. 3 370 EF(a = 1 ∧ AG(r 6= 1)) 2.9 X 67.9 X T/O –
OS frag. 3 370 EF(a = 1 ∧ EG(r 6= 1)) 6.2 X 132.0 X 1680.7 X
OS frag. 3 370 ¬(AG(a = 1⇒ AF(r = 1))) 6.2 × 120.0 × 18.0 ×
OS frag. 3 370 ¬(AG(a = 1⇒ EF(r = 1))) 3.4 × 3.9 × 107.3 ×
OS frag. 3 370 ¬(EF(a = 1 ∧ AG(r 6= 1))) 3.1 × 3.8 × T/O –
OS frag. 3 370 ¬(EF(a = 1 ∧ EG(r 6= 1))) 6.0 × 45.9 × 1930.0 ×
OS frag. 4 370 AF(io = 1) ∨ AF(ret = 1) 12.9 X 2284 X 34.3 X
OS frag. 4 370 EG(io 6= 1) ∧ EG(ret 6= 1) 10.2 X T/O – 7.6 X
OS frag. 4 370 EF(io = 1) ∧ EF(ret = 1) 8.6 X T/O – 1261.0 X
OS frag. 4 370 AG(io 6= 1) ∨ AG(ret 6= 1) 3.0 X 0.1 X – –
OS frag. 4 370 ¬(AF(io = 1) ∨ AF(ret = 1)) 13.9 × T/O – 18.8 ×
OS frag. 4 370 ¬(EG(io 6= 1) ∧ EG(ret 6= 1)) 14.2 × 136.6 × 61.3 ×
OS frag. 4 370 ¬(EF(io = 1) ∧ EF(ret = 1)) 4.8 × 1.4 × T/O ×
OS frag. 4 370 ¬(AG(io 6= 1) ∨ AG(ret 6= 1)) 3.7 × 874.5 × – –
OS frag. 6 1050 AG(b = 1⇒ AF(u = 0)) 67.3 X T/O – T/O –
OS frag. 6 1050 EG(b = 1⇒ EF(u = 0)) 36.2 X T/O – T/O –
OS frag. 6 1050 ¬(AG(b = 1⇒ AF(u = 0))) 82.9 × T/O – T/O –
OS frag. 6 1050 ¬(EG(b = 1⇒ EF(u = 0))) 38.8 × T/O – – –
OS frag. 5 58 AG(AF(w ≥ 1)) 0.2 X 3.0 X 569.7 X
OS frag. 5 58 AG(EF(w ≥ 1)) 0.1 X 3.3 X T/O –
OS frag. 5 58 EF(AG(w < 1)) 0.1 X 0.7 X 255.8 X
OS frag. 5 58 EF(EG(w < 1)) 0.1 X 0.5 X 351.1 X
OS frag. 5 58 ¬(AG(AF(w ≥ 1))) 0.2 × 0.1 × 65.1 ×
OS frag. 5 58 ¬(AG(EF(w ≥ 1))) 0.0 × 0.1 × T/O –
OS frag. 5 58 ¬(EF(AG(w < 1))) 0.1 × 0.1 × 85.5 ×
OS frag. 5 58 ¬(EF(EG(w < 1))) 0.0 × 0.1 × 1471.7 ×
PgSQL arch 90 AG(AF(w = 1)) 1.9 X 2.8 X T/O –
PgSQL arch 90 AG(EF(w = 1)) 0.0 X 4.5 X T/O –
PgSQL arch 90 EF(AG(w 6= 1)) 2.1 × 3.4 X T/O –
PgSQL arch 90 EF(EG(w 6= 1)) 0.1 X 2.2 X 35.2 X
PgSQL arch 90 ¬(AG(AF(w = 1))) 1.3 × 0.1 × 38.1 ×
PgSQL arch 90 ¬(AG(EF(w = 1))) 0.0 × 0.1 × 42.7 ×
PgSQL arch 90 ¬(EF(AG(w 6= 1))) 2.4 X 0.7 × 30.2 ×
PgSQL arch 90 ¬(EF(EG(w 6= 1))) 0.1 × 5.0 × 45.3 ×
S/W Updates 36 c > 5⇒ AF(r > 5) 0.1 × 3.2 X 70.2 X
S/W Updates 36 c > 5⇒ EF(r > 5) 0.1 X 0.2 × 18.5 X
S/W Updates 36 c > 5 ∧ AG(r ≤ 5) 0.1 × 0.1 × 0.3 X
S/W Updates 36 c > 5 ∧ EG(r ≤ 5) 1.0 × 0.1 × 4.5 X
S/W Updates 36 ¬(c > 5⇒ AF(r > 5)) 1.1 X 0.1 × 32.4 ×
S/W Updates 36 ¬(c > 5⇒ EF(r > 5)) 0.8 × 0.1 × 1.3 ×
S/W Updates 36 ¬(c > 5 ∧ AG(r ≤ 5)) 1.1 X 0.3 × 0.5 ×
S/W Updates 36 ¬(c > 5 ∧ EG(r ≤ 5)) 0.7 X 1.3 × 0.4 ×

Figure 12: The results of applying our CTL model checking procedure on benchmarks from [4, 11]. For each program we verify a set of
properties and their negations and compare our results with [4, 11]. The results from [4, 11] were not re-run, however experiments with our
approach were run on an identical hardware configuration.



7. Concluding remarks
In this paper we have described an optimization to the standard re-
cursively defined procedure for CTL that takes advantage of the
structure of control-flow graphs available in programs. The idea is
to use a decomposition based on program-location (thus facilitat-
ing the use of program analysis techniques), but to maintain the
current state of the intermediate lemmas in a way their results can
be used to quickly facilitate the computation of results for nearby
program locations. As is evident from the outcome of our experi-
mental evaluation, our method leads to dramatic performance im-
provement over competing tools that support CTL verification for
infinite-state programs. Additionally, we wish to further experiment
with the scalability that our methodology can perhaps provide.
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