arXiv:1508.05497v2 [cs.LO] 23 Sep 2015

Skolem Functions for Factored Formulas

Shetal Shah
IIT Bombay

Ajith K. John
HBNI, BARC, India

Abstract—Given a propositional formula F(z,y), a Skolem
function for z is a function v (y), such that substituting ¢ (y) for
x in F gives a formula semantically equivalent todz F'. Auto-
matically generating Skolem functions is of significant inérest
in several applications including certified QBF solving, firding
strategies of players in games, synthesising circuits anditb
vector programs from specifications, disjunctive decompason of
sequential circuits, etc. In many such applicationsF is given as
a conjunction of factors, each of which depends on a small sshket
of variables. Existing algorithms for Skolem function geneation
ignore any such factored form and treat I as a monolithic
function. This presents scalability hurdles in medium to lage
problem instances. In this paper, we argue that exploiting e
factored form of F' can give significant performance improve-
ments in practice when computing Skolem functions. We prese
a new CEGAR style algorithm for generating Skolem functions
from factored propositional formulas. In contrast to earlier work,
our algorithm neither requires a proof of QBF satisfiability
nor uses composition of monolithic conjunctions of factors We
show experimentally that our algorithm generates smaller olem
functions and outperforms state-of-the-art approaches orseveral
large benchmarks.

I. INTRODUCTION

Skolem functions, introduced by Thoralf Skolem in the

1920s, occupy a central role in mathematical logic. Forynall
let F(z,y) be a first-order logic formula, and lébm(z) and
dom(y) denote the domains of andy respectively. ASkolem
functionfor = in F is a functiony : dom(y) — dom(z) such
that substituting)(y) for « in F yields a formula semantically
equivalent to3zF(x,y), i.e. F(¢(y),y) = JxF(z,y). In
this paper, we focus on the case where the formtilas
propositional and given as a conjunction of factors. Ctzbij,

Supratik Chakraborty
IIT Bombay

2)

3)

Skolem functions have been used in proving theorems in logic

More recently, with the advent of fast SAT/SMT solvers, it
has been shown that several practically relevant problems c

be encoded as quantified formulas, and can be solved by

constructingealizersof quantified variables. We identify these

realizers as specific instances of Skolem functions, andsfoc

on algorithms for constructing them in this paper.
We begin by listing some applications that illustrate the ut
ity of constructing instances of Skolem functions in preeti

Ashutosh Trivedi
IIT Bombay

S. Akshay
IIT Bombay

x with a Skolem function for:. SinceVzF(x,y) can be
written as—3xz—F(x,y), the same idea applies in this
case too. In fact, the process can be repeated in principle
to eliminate quantifiers from a formula with arbitrary
quantifier prefix.

Controller Synthesis and Game8ontrol-program syn-
thesis in the Ramadge-Wonham[[12] framework reduces
to games between two players—environment and the
controller—such that the optimal strategy of the controlle
corresponds to an optimal control program. The optimal
(or winning) strategy of the controller corresponds to
choosing values of variables controlled by it such that
regardless of the way the environment fixes its variables,
the resulting play satisfies the controller's objective. If
the rules of the game are encoded as a propositional
formula and if the strategy space for both players is
finite, the optimal strategy of the controller corresponds
to finding Skolem functions of variables controlled by
it. In fact, for a number of two-player games—such as
reachability games and safety games [2], tic-tac-toe [5]
and chess-like games![3],/[2]—the problem of deciding
a winner can be reduced to checking satisfiability of a
guantified Boolean formula (QBF), and the problem of
finding winning or best-effort strategy reduces to Skolem
function generation.

Graph DecompositionSkolem functions can be used to
compute disjunctive decompositions of implicitly speci-
fied state transition graphs of sequential circuits [16f Th
disjunctive decomposition problem asks the following
guestion: Given a sequential circuit, derive “component”
sequential circuits, each of which has the same state space
as the original circuit, but only a subset of transitions
going out of every state. The components should be such
that the complete set of state transitions of the original
circuit is the union of the sets of state transitions of
the components. Disjunctive decompositions have been
shown to be useful in efficient reachability analys$is| [15].

There are several other practical applications where &kole

1) Quantifier elimination Given a quantified formula functions find use; see, e.g.]11], for a discussion. Hernezet
Qz F(z,y), whereQ € {3,V}, the quantifier elimination is a growing need for practically efficient and scalable ap-
problem requires us to find a quantifier-free formulproaches for generating instances of Skolem functiongyd_ar
that is semantically equivalent ©Qz F(z,y). Quantifier and complex representations of the formi#lan 3z F often
elimination has important applications in diverse aregsesent scalability hurdles in generating Skolem funaion
(see, e.q.[[7],[[14],[12] for a sampling). It follows fromin practice. Interestingly, for several problem instandbe
the definition of Skolem function that eliminating thespecification ofF' is available in afactored form, i.e., as a
quantifier from3xF'(x, y) can be achieved by substitutingconjunction of simpler sub-formulas, each of which depends

http://arxiv.org/abs/1508.05497v2

on a subset of variables appearingfin Unfortunately, unlike f(X1,Y3),..., f"(X,,Y,), where eachX; (resp.,Y;) is
in the case of disjunction, existential quantification does a possibly empty sub-sequence &f (resp.,Y). For no-
distribute over conjunction of sub-formulas. Existing @lg tational convenience, we usé and /\;7:1 f7 interchange-
rithms therefore ignore any factored form Bfand treat the ably throughout this paper. The set of variables fihis
conjunction of factors as a single monolithic function. Wealled the support of F, and is denotedSupp(F). Given
show in this paper that exploiting the factored form can help propositional formulaF'(X) and a propositional function
significantly when generating Skolem functions. U(X), we useF|[z;/¥(X)], or simply F[z;/¥], to denote
Our main technical contribution is a SAT-based Countethe formula obtained by substituting every occurrence ef th
Example Guided Abstraction-Refinement (CEGAR) algorithwvariable z; in F' with ¥(X). Since the notions of formulas
for generating Skolem functions from factored formulas- Urand functions coincide in propositional logic, the abovalgo
like competing approaches, our algorithm exploits thediazt conventionally calledunction compositionlf X is a sequence
representation of a formula and leverages advances mad@firvariables andz; is a variable, we useX \ z; to denote
SAT-solving technology. The factored representation isdusthe sub-sequence of obtained by removing:; (if present)
to arrive at an initial abstraction of Skolem functions, l#ha from X. Abusing notation, we us& to also denote the set
SAT-solver is used as an oracle to identify counter-examplef elements inX, when there is no confusion. ¥aluationor
that are used to refine the Skolem functions until no countessignmentr of X is a mappingr : X — {0,1}.
examples exist. We present a detailed experimental ev'xaliuatD
of our algorithm vis-a-vis state-of-the-art algorithm$, [[11]
over a large class of benchmarks. We show that on sev
large problem instances, we outperform competing algmsth

efinition 1. Given a propositional formuld'(X,Y’) and a
vg[iable x; € X, a Skolem functionfor z; in F(X,Y) is a
unctiony(X \ z;,Y") such that3z; F = Flz; /1]

A Skolem function forz; in F' need not be unique. The
following proposition, which effectively follows from [7]16],
haracterizes the space of all Skolem functionsafpm F'.

Related Work. We are not aware of other techniques fo
Skolem function generation that exploit the factored for
of a formula. Earlier work on Skolem function generation
broadly fall in one of four categories. The first categoriroposition 1. A functiony(X \ z;,Y") is a Skolem function
includes techniques that extract Skolem functions fromo@bpr for z; in F(X,Y) iff Flz;/1] A =F[z;/0] = ¢ and ¢ =
of validity of 3X F(X,Y) [11], [8], [4], [9]. In problem F[z;/1]V —=F][z;/0].

instances wherelX F(X,Y) is valid (and this forms an

important sub-class of problems), these techniques caallysu The functionF[z;/0] (resp.,F'[z;/1]) is called thepositive

find succinct Skolem functions if there exists a short pro&esp.,negat.lve) cofactorof F' with respegt tar;, and play.s.a
cTentraI role in the study of Skolem functions for propositib

of validity. However, in several other important classes . - v
y P ?ormulas. In particular, it follows from Proposition 1 that

problems, the formule3X F(X,¥) does not evaluate tof[xi/l] is a Skolem function fox; in F. The above definition
f

true for all values ofY’, and techniques in the first categor ! .
cannot be applied. The second category includes techniqu @ single _vanable can be naturally ex_tended to a vector of
that use templates for candidate Skolem functions [14]S§hevar|ables. GiverF'(X,), a Skolem function vectdor X =

techniques are effective only when the set of candidatesgkol (xl’h' tr; xtnﬂ) in Fis aFVeEtOF of l}gncﬂonsﬁp = (1,... ,1/172)\
functions is known and small. While this is a reasonabfy' that3ry...zy I = (- (Flwa/yn]) - [wn /n]).
assumption in some domains [14], it is not in most Othesltra_ughtforvyard way to Obta".‘ a Skolem function vectris
domains. BDD-based techniquehs [13] are yet another Wayt first obtain a Skolem functiom, for z, in F7, then compute

— i ; i ’
compute Skolem functions. Unfortunately, these techrique — 31 F and obtain a Skolem functiop, for x; in F, and

are known not to scale well, unless custom-crafted variapi@ °" untily, has been obtained. More formally; can be

orders are used. The last category includes technigues t%rlr}puted as adSkoIem f(l;.nc“?n fm{l\lmtaxtlh. 't‘ﬂxi‘l F'.Sta;'
use cofactors to obtain Skolem functiorig [7],][16]. The<89 from ¢ and proceeding t@,. Note thatix; ... zi—

techniques do not exploit the factored representation of4" itself be computed &s- - (F[z1/¢1]) -+ [zi1/9i1])-
formula and, as we show experimentally, do not scale welefinition 2. The “Can’t-be-1” function for «; in F, de-

to large problem instances. noted Cb1[z;](F), is defined to b&—3x; ... 2,1 F) [2;/1].
Similarly, the “Can’t-be-0” function for z; in F', denoted
Il. PRELIMINARIES CbO[z](F), is defined to bg—3z; ...z;_1 F)[z;/0]. When

We use lower case letters (possibly with subscripts) # and F" are clear from the context, we use1(i] andCboi]
denote propositional variables, and upper case letters f@ Cb1[zi](F") and Cbo[z;](F'), respectively.

denote sequences of such variables. We Osand 1 10 yitively, in order to makeF evaluate tol, we cannot set;
Qenote the propositional Constar@se and true, respec- 41 (resp.0) whenever the valuation dfr; 1, . . . , 7, JUY sat-
tively. Let F'(X,Y) be a propositional formula, wher& isfiescp1i] (resp.,cboli]). The following proposition follows
and Y denote the sequences of variables, ..., =) and fom pefinition[2 and from our observation about computing

(41,- -, ym), respectively. We are interested in problem iny gyolem function vector one component at a time.
stances wherd’(X,Y’) is given as a conjunction of factors

Proposition 2. ¥=(—Cb1[1],...,~Cb1[n]) is a Skolem func- Algorithm 1: MONOSKOLEM

tion vector forX in F. Input: Prop. formulaf(X,Y) = \'_, f7(X;,Y;),
Note that the support af; in ¥, as given by Propositidd 2, where X' = (Ila.' .+ Tn)
is {zi11,...,2,} UY. If we want a Skolem function vector ~Output: Skolem function vecto’ (Y')

¥ such that every component function has oy (or a // Phase 1 of algorithm
subset thereof) as support, this can be obtained by repgated Factors := {fi1<j<r};
substituting the Skolem function for every variablgin all 2 for i in1ton do
other Skolem functions where; appears. We denote such a8 | FactorsWithXi:={f : f € Factors,z; € Supp(f)};
Skolem function vector a® (Y). 4 Fii= A efactorswithxi /3
5 CbO[¢] := —F;[x;/0]; Cbi[i] := —F;[z;/1];
I11. A MONOLITHIC COMPOSITION BASED ALGORITHM 6 ; := —Cb1[d];

. . : . // Generally, ;:=CoMBINE (CbO[i],Cb1[i]);

Our algorithm is motivated in part by cofactor-based tech- ._ L .
nigues for computing Skolem functions, as proposed by Jiang - Factors := (Factors \ FactorsWithXi) U {Fi[zi/¥i]};
et al [7] and Trivedil[18]. GiverF (X, Y) = A\'_, f/(X;,Y}), // Phase 2 of algorithm
the techniques of[[7],[T16] essentially compute a Skolerf return REVERSESUBSTITUTE(Y1, . . ., ¥n);
function vector¥(Y) for X in F as shown in algorithm
MONOSKOLEM (see Algorithm[1). In this algorithm, the
variables inX are assumed to be ordered by their indices(\{xi}uy_ Since computing interpolants using a SAT solver
While variable ordering is known to affect the difficulty ofis often time-intensive and does not always lead to succinct
computing Skolem functiond [[7], we assume w.l.o.g. th@kolem functions[]7], we simply usecCbi[i| as a Skolem

the variables are indexed to represent a desirable order. }ygction in Steps. Propositio 2 guarantees the correctness of
describe the variable order used in our study later in Sefio this choice.

MONOSKOLEM works in two phases. In the first phase, it
implements a straightforward strategy for obtaining a 8kol Algorithm 2: REVERSESUBSTITUTE
function vector, as suggested by Proposifidn 2. Specificall Input: Functions
steps3 and4 of MONOSKOLEM build a monolithic conjunc- V1(T2y o, T, YY), 02(x3, oy, V), o 0 (V)
tion F; of all factors that haver; in their support, before Qutput: Function vector&(Y)
computing;. This restricts the scope of the quantifier for, for ; = n downto2 do
x; to the conjunction of these factors. In Stép we use » for k=i — 1 downtol do vy = ¥y [z;/1i]
—Cb1li] as a specific choice for the Skolem functipn After)
comp[u]tingzpi from F;, step7 discards the factors with; 3 reum ¥(Y) = 1Y), . 9n(Y));
in their support, and introduces a single factor represgnti
3x; F; (computed ag[z;/v;]) in their place. Note that each Observe that MNOSKOLEM works with a monolithic
1; obtained in this manner hds:; 1, ..., 2, }UY (orasubset conjunction ;) of factors that haver; in their support.
thereof) as support. Since we want each Skolem function $pecifically, it composes each such monolithic conjunction
have supporl’, a second phase of “reverse” substitutions ig; with a cofactor of F; in Step 7 to eliminate quantifiers
needed. In this phase (see Algorithin 2), the Skolem functigaquentially. This can lead to large memory footprints and
¥, (Y') obtained above is substituted fof, in ¢1,...,9,—1. more time-outs when used with medium to large benchmarks,
This effectively renders all Skolem functions independeint as confirmed by our experiments. This motivates us to ask if
z,. The process is then repeated with_, substituted for we can develop a cofactor-based algorithm that does narsuff

Tp—1 iN P1,..., 9,2 and so on, until all Skolem functionsfrom the above drawbacks of ®NOSKOLEM.
have been made independentqf. .., z,, and have onlyy”
(or subsets thereof) as support. IV. CEGAR FOR GENERATINGSKOLEM FUNCTIONS

MONOSKOLEM can be further refined by combining steps We now present a new CEGARI[6] algorithm for generating
5 and 6, and directly defining; in terms of ;. However, Skolem function vectors, that exploits the factored form of
we introduce the intermediate step usitigh[:] andCbi[i] to F(X,Y). Like MONOSKOLEM, our new algorithm, named
motivate their central role in our approach. Note that iadte CEGARSKOLEM, works in two phases, and assumes that the
of —Cb1[i], we could combineCbi[i{] and CbO[¢] in other variables inX are ordered by their indices. The first phase
ways (denoted by GMBINE(CbO[i], Cb1[¢]) within comments of the algorithm consists of the core abstraction-refinegmen
in Algorithm [I) to gety; in Step6. In fact, Jiang et al[]7] part, and computes a Skolem function vectgs, ..., v,),
compute a Skolem function fog; in F' as an interpolant wherey; has{z;11,...,2,}UY, or a subset thereof, as sup-
of —Cb1[i] A CbO[{] and Cb1[i] A —CbO[:], while Trivedi [16] port. Unlike in MONOSKOLEM, this phase avoids composing
observes that the functigaCb1[i] A (CbO[é] Vg)) V (Cb1[i]A monolithic conjunctions of factors, yielding simpler S&oi
Cbo[i] A h) serves as a Skolem function far in F where functions. The second phase of the algorithm performs sever
h and g are arbitrary propositional functions with support irsubstitutions, similar to that in MINOSKOLEM.

Before describing the details ofEGARSKOLEM, we intro- Algorithm 3: INITABSREF
duce some additional notation and terminology. Given propo Input: Prop. formulaF(X,Y) = A'_, fI(X;,Y;)
sitional functions (or formulasf andg, we say thatf refines whereX — (zy.. ”a o) j=1 VIR

g andg abstractsf iff f logically impliesg. Given F(X,Y") Output: Abstract Skolem function vector

and a vector of function@# = (y¥4,... ¥4), we say that WA = (..., 0", and refinementso[i] and
¥A is anabstract Skolem function vectéor X in F iff there ri[i] for ela;cha:; in ¥

exists a Skolem function vectd = (¢, ...,%,) for X in F 1 for iin1ton do

such that 1)/ abstracts);, for everyi € {1,...,n}. Instead) L r0[i] := 0; v1[i] := 0; // Initializing

of using CbO[i] and Cb1[i] to compute Skolem functions, as .
was done in MONOSKOLEM, we now use theirefinements 3 for j in 1tor do

denotedr0fi] and rifi] respectively, to compute abstract’ | / =/’ // for each factor
Skolem functions. For convenience, we represedi] and 5 | for ¢inltondo

ri[i] as sets of implicitly disjoined functions. Thus,xfi[i], © if 2; € Supp(f) then _

viewed as a set, i§g1, g2}, then it isg; V go when viewed as ’ ro[’,] = rO[Z_] J {ﬁf[xi/o]}f

a function. We abuse notation and usti] (resp.,r0[i]) to 8 rifi] =1l u {ﬁf[x}’/l]}' .

denote a set of functions or their disjunction, as needed. ;/ Skofl[en}l]fumtlon for z; in f
9 if = J T4)

A. Overview of our CEGAR algorithm 10 fo=flai/tigl; /7 - floi/wig) = 3 f

Algorithm CEGARSKOLEM has two phases. The first phase -
consists of a CEGAR loop, while the second does revetsefor i in 1 ton do
substitutions. The CEGAR loop has the following steps. 12 P 1= —rifi);

— Initial abstraction and refinement. This step involves L // Interpreting ri[i] as a function
constructing refinements dfoofi] and Cb1[i] for every 13 return WA=(y{!, ...) andr0[i], r1[i] Vz;€X
x; in X. Using Proposition]2, we can then construct an
initial abstract Skolem function vectab®. This step is
implemented in Algorithni 13 @ITABSREF), which pro- o .
cesses individual factors df(X,Y) = /\;:1 F(X;,Y) its C(_)ntrl_butlon toCb1[i] is (—Elx% e Zic1 f) [;i/l]. The.se
separately, without considering their conjunction. As gontributions are accumulated in the setsfi] and ri[i],
result, this step is time and memory efficient if thdeSPectively, andr; is existentially quantified fromy. The
individual factors are simple with small representationd?’0C€ss is then repeated with the next variable in the stppor
Termination Condition. Once NITABSREF has com- ©f f. Once the contributions from all factors are accumulated
puted ¥4, we check whethe®A is already a Skolem in O[] and r1[i] for each_:ci iQ X, INITABSREF computes
function vector. This is achieved by constructing af" abstract Skolem functiony” for eachz; in £ by com-
appropriate propositional formuta called the “error for- plementingr1[i], |_nterpreted as a disjunction of functions.
mula” for &2 (details in SubsectidmIVAC), and checking¥Ote that executing stepd through 10 of INITABSREF

for its satisfiability. An unsatisfiable formula implies thafor @ specific factorf is operationally similar to executing
TA is a Skolem function vector. Otherwise, a satisfyin§t€PS 1 through 7 of MONOSKOLEM with a singleton set

assignmentr of ¢ is used to improve the current refineOf factors, i.e.,Factors = {f}. This highlights the key
ments ofcb1[i] andCbo[i] for suitable variables;. difference betweenNITABSREF and MONOSKOLEM: while

Counterexample guided abstraction and refinement. MonNoSKkoLEM works with monolithic conjunctions of factors
This step is implemented in Algorithfdl 4: RIDATEAB- and their compositions,NITABSREF works with individual
SREF, and computes an improved (i.e., more abstraéfj}CtorS’ without ever considering their conjunctions. lbeail
refinement otbo[i] andcbi[i] for somez; € X. This, in @SSerts the correctness ofi TABSREF.

turn, leads to a refinement of the abstract Skolem functi9R \ma 1. The vector&A computed byINITABSREF is an

A
vector ¥ abstract Skolem function vector f&f in F/(X,Y). In addition,

The overall CEGAR loop starts with the first step and repeats[;] and r1[i] computed byiNITABSREF are refinements of
the second and third steps until a Skolem function vector igo[;](F) and cb1[i](F) for everyz; in X.

obtained. We now discuss the three steps in detail.

N)) Proof. Consider the ordered paiyj,) of loop indices cor-

B. Initial Abstraction and Refinement responding to the nested loops in steps 10 and 5 — 10
Algorithm INITABSREF (see AlgorithnB) starts by initial- of algorithm INITABSREF. Every update ofr0[:;] and r1[:]

izing eachri[i:] andr0[i], viewed as sets, to the empty setin steps7 and 8 of INITABSREF can be associated with a
Subsequently, it considers each facfom /\;:1 f7(X;,Y;), unique ordered pair of loop indices. Define a linear ordering
and determines the contribution $fto Cbo[i] andCb1[i], for =< on the loop index pairs agyj,7) < (j/,4) iff j < 4/, or
every z; in the support off. Specifically, if z; € Supp(f), j = j' andi < i’. Note that this represents the ordering of
the contribution off to CbO[i] is (—3z1 ... x;—1 f)[z;/0], and loop index pairs in successive iterations of the loop in step

5—10 of INITABSREF. We use induction ofj, i), ordered by . Hence, ¥4 is not a Skolem function vector fak in F,
=, to show thatr0[i] andr1][i], as computed byNITABSREF, as witnessed by the valuation &f in . O
are refinements ofb0[i] and Cb1[i]. The base case follows
from the initialization in stepd and 2 of INITABSREF. To
prove the inductive step, consider an update@f] andr1[:]
in steps7 and 8, respectively, of NiITABSREF. The function Example 1. Let X = {z1,22}, Y = {y1,y2,y3} in
f used in stepg and8 is easily seen to b8z;...z;_1 fI. Jz1z.F(X,Y) where F = (fi A fo A f3), with f; =
Since f7 is a factor of ', we also havel’ = f7. It follows (=1 V-xaV—y1), f2 = (22V-yzV—y), f3 = (21V-12VYys3).
that 3z; ... 2, « F = 3x;...2;_1 f7 = f. Taking the Algorithm INITABSREF givesri[l] = (x2 Ay1), TO[1] =
contrapositive gives-f = —3x;...xz;_1 F. Therefore, (xo A -ys3), r1[2] = false, r0[2] = y3 A yo. This yieldsy;! =
=flzi/a] = (=321 ...24_1 F)[x;/a] for every propositional (-z3V —y), 15 = true. Now, whilew* is a correct Skolem
constanta. Recalling the definitions ofbo[i] and Cbi[i], function forz, in F, ¢4 is not for x,. This is detected by the
we get —f[z;/0] = Cbo[i] and —f[z;/1] = Cbi[l]. By satisfiability of the error formulae = F(a},z},Y) A (21 =
the inductive hypothesis;0[i] and r1[i] are refinements of —z2 vV —y1) A (22 = 1) A=F(21,22,Y). Note that-F(—z3 V
CbO[i] and Cb1[i] prior to executing stefy of INITABSREF. —wyq,1,Y") simplifies to(y; A —ys), andy; = 1,y2 = 1,y5 =
Therefore, the updated valuesi[:] andr1[i], as computed 0,z; = 0,22 = 1,2} = 0,24 = 0 is a satisfying assignment
in steps7 and8 of INITABSREF, are also refinements 6b0[i] for e.
andCbi[i]. This completes the induction. D. Count le-quided abstracti d refi ¢
Sincer1[i] = Cbi[i] for everyx; in X when we reach step — ounterexample-guided abstraction and refinemen

11 of INITABSREF, it follows from Propositioi R that;A = Lete be the error formula fo@#, and letr be a satisfying
—r1[i] abstracts a Skolem function faf;, in F. Hence,w#, assignment of. We callw a counterexamplef the claim that

as computed byNITABSREF, is an abstract Skolem function®* is a Skolem function vector. For every variables X' U

The following example illustrates the role of the error
formula.

vector for X in F. 0 XUY, we user(v) to denote the value af in 7. Satisfiability
of e implies that we need to refine at least one abstract Skolem
C. Termination condition functiony? in ¥4 to make it a Skolem function vector. Since

Given F(X,Y) and an abstract Skolem function vectf*, vitis ﬁ?l[i] in our approach' refining* can be achieved by
it may happen tha@® is already a Skolem function vectoréOmputing an improved (i.e., more abstract) version f].

for X in F. We therefore check ift is a Skolem function Algorithm_ UPDA_TEAB_SREF implements this idea by using .
vector before refinement. Towards this end, we definethe to deterr_nlne Wh'c.hl[l] ShO,UId -be rendered abstract by adding
formulafor ¥4 as (X", Y) AN, (21 & 2 A-F(X,Y), appropriate functhns to1[i], V|ev_ved as a set.
whereX'=(z1,...,z,) is a sequence of fresh variables with Before delving into the details of RDATEABSREF, we
state some key results. In the following, we use= f to

no variable in common withX. The first term in the error q hat the f | | h h bl
formula checks if there exists some valuationbthat renders | enote that the formulg evaluates tal when the variables

Y F(X,Y) true. The second term assigns variablestirto ' supp(f) arel set to valuez glvenWby. It = ': /s Wz
the values given by the abstract Skolem functions, and {lgo sayf evaluates tol underw. We user0[din: an

third term checks if this assignment falsifies the form#la r1i]snir to refer toro[i] andri[i], as computed by algorithm
INITABSREF. Since WDATEABSREF only adds tori[i] and

Lemma 2. The error formula for&# is unsatisfiable ifflt* ro[i] viewed as sets, it is easy to see thali];,.;; = ro[i] and
is a Skolem function vector dof in F. r1[ilinie = r1[i] viewed as functions (recall these functions

Proof. Let ¢ be the error formula forbA. Supposes is are simply disjunctions of elements in the correspondirg) se

unsatisfiable. By definition of, we have Lemma 3. Let ©# be a satisfying assignment of the error
n formulae for ¥4. Then the following hold.
VYVX'VX (F(X’,Y) = (/\(:ci a9 = F(X, Y))) . (@) 7 = =CbO[n] V ~Cb1[n].
i=1 (b) There exist € {1,...,n — 1} s.t., 7 = ri[k] A rO[k].
(c) There exists no Skolem function vedlor= (v, . .., ¥y,)
such thaty; < ¢ for all j in {k+1,...,n}.
(d) There existd € {k+1,...,n} such thatz; = 1 in 7,
and | Cb1[l] A —x0[l].

By standard logic transformations, this implies
VY BX'F(X',Y) = F'(Y)), where F'(Y) denotes
(- (Flzy/9gY]) - [#a/2]). Therefore, ¥4 is a Skolem
function vector forX in F.

Supposer is a satisfying assignment af By definition Proof. Part (a): Consider an assignment’ of variables in
of ¢, m is a satisfying assignment of'(X’,Y) and of X UY, such thats'(z;) = =(z;) for all z; € X, and
Ny (2 & ¥) A =F(X,Y), considered separately. Thuss’(y;) = 7(y;) for all y; € Y. Sincer |= ¢, by definition of
the values ofry,...,z, given by i, ... ¥4 respectively, ¢, we haver = F(X',Y). This implies thatr’ = F(X,Y)
causeF’ to evaluate td for the valuation oft” in 7. However, and hences’ = 3xy...2,1 F. If 2, = 1 in 7/, we get
there exists a valuation oX (viz. same as that oK’ in) «' = (3z1...2,-1 F)[z,/1], Or equivalentlys’ = —Cb1[n].
that caused” to evaluate tal for the same valuation of in If x,, = 0 in 7/, by a similar arguments’ = —Cb0[n].

Thereforer’ = —Cb1[n] V —Cb0O[n]. Sincex,, is the variable Algorithm 4: UPDATEABSREF
with the highest index inX, both Cbi[n] and CbO[n] have ™ jnpyt: r0[i] andr1[i] for all z; in X,

only Y as their support. Since’(y;) = 7 (y;) for all y; € Y, Satisfying assignment of error formula, i.e.,

it follows that 7 = ~Cb1[n] V =Cb0[n] as well. F(X',Y)ANNS, (zi = v2) A-F(X,Y)
Part (b): Since 7 = ¢, by definition ofe, we haver = output: Improved (i.e.j_rzefined)I'AZ: W,),
~F(X,Y). SinceF = A\;_, f1, there existy € {1,...,7} Improved (i.e., abstracted[i] & ri[i], Va; € X

such thatr = —f7. Without loss of generality, assume that, j .— |argestm such thatr satisfiesr0[m] A r1[m];
Supp(f?) # 0 (otherwise,f’ can be removed from\,_, f9). 5 o := GENERALIZE(r, TO[k]);
Let z; be the variable with the smallest index $upp(f?). 3 4, := GENERALIZE(T, ri[k]);
We claim thatz), = 0 in 7, and prove this by contradiction. 4 ;.= ;g A pq;

If possible, letz, =1 in m. Then,r |= (=f/)[xx/1]. Sinceé // search for Skolem function among
xy, is the lowest indexed variable Bupp(f?), it follows from {1, ., 2} to be refined
algorithm INITABSREF that (=f7)[zx/1] € ri[k]ini, When g j.— 41

r1[kinit is viewed as a set. This implies thatf?)[zx/1] = ¢ while true do // current guess: refine it

r1[k]init, Wwhenri[k];,;: is viewed as a function. Hence,= - if 2, € Supp(y) then

r1[k]init, and sincer1[k];nic = ri[k], we haver = rifk]. By 4 if 2; =1 in 7 then

definition of ¢, we also haver = (z, < ¥7), wherey! = i = pla/1];

—r1[k]. It follows thatz, = ¥{ = 0 in 7. This contradicts 14 r1fl] == r1[l] U {m};

our assumptionaf;, = 1), and hencer;, must be0 in 7. 1 if 7 satisfiesro[l] then
Sincez; = 0 in 7, following the same reasoning as above, Lo := GENERALIZE(rr, rO[l));

we can show that |= ro[k]. Furthermore, since = (2, < 15 L L= o A pa;

Yit) andyi! = —ri[k], havingzy, = 0 in 7 implies thatr |=

r1[k]. Hence,r = rO[k] A ri[k]. Sinceri[k] = Cbik] and else

r0[k] = CbO[k], we haver |= CbO[k] ACb1]k] as well. It now 15 B | break;

follows from part (a) thak # n and hencé: € {1,...,n—1} 4 else

Part (c): We prove this by contradiction. If possible, let, tio == pz1/0];

there be a Skolem function vectdd such thaty; < v g r0[l] := O[] U {mo};

for all i in {k+1,...,n}. Sincer = F(X'Y), it fol- 4 pi1 = GENERALIZE(T, r1[l]);

lows thatw = Jzy...,z, F. Therefore, by definition of ,, L= po A i1

Skolem functions;r = (- (Flz1/v1]) -+ - [zn/¥n]). Since L -

we have assumed); < o for all i in {k+1,...,n} 21 | l:=1+1;

and sincer = Al (z; < o), it follows that m = @A = (—r1[1],...,-r1[n]);

(- (Flz1/¢n]) - - [zx/1r]). However, we know from part 3 return ro[i] andr1[i] for all z; in X, and T4
(b) that7 |= rO[k] A r1[k] and hencer = CbO[k] A Cb1[k].
Recalling the definitions o€b0[k] and Cb1[k], we getr |=
(=3z1...2 F). This contradicts our inference above, i.e.,) o
7 k= (- (F[z1/1]) -+ - [2/1b]). Hence our assumption is contradicts Fhe assertion in part (c) above. Hence we cannot
wrong, i.e., there is no Skolem function vectdr such that haveaz; =0 in m or m |= =Cb1[l], foralll € {k +1,...,n}.
v < foralliin {k+1,...,n}. If assumptiorA has to hold, there must therefore exist some
Part (d):We prove this by contradiction. If possible, suppose€ {k+1,...,n} such thatr; = 1 in 7 and 7 = Cb1[]] A
r;=0in7, orm = —=Cbi[l]vrol]foralll € {k+1,...,n}. r0[l]. Sincer0[l] = CbO[l], we must haver = Cb1[{] ACbO[I]
For convenience of notation, let us call this assumptiom in this case. From part (a), we know that= —Cb0[n] A
the discussion below. —Cb1[n]. It follows that! is strictly less tham, and we can
If 2; = 0 in 7, then sincer |= /\?:1(;31. o %A) and repeat the entire argument above with assumpAigaestricted
YA = —rifi] for alli € {1,...,n}, it follows thatr |= r1[]]. to indices in{{+1,...,n}. Note that{l + 1,...,n} is non-
Sinceri[l] = Cb1[l], we haver = Cbi[l] as well. It is also empty (sincel < n), and is a strict subset dft + 1,...,n}
easy to see that whenever= —Cb1[l], thenw |= —ri[l] as (sincel € {k +1,...,n}). Therefore, restricting assumption
well. Therefore, ifz; = 0 in 7 or if 7 = —Cb1[l], then both A to smaller subsets of indices can only be done finitely many
Cb1[l] andri[l] evaluate to the same value under times, after which there won't be arlyin the set of indices
Consider the subcase of assumptowherez; = 0 in 7, or under consideration such that = 1 in 7 and 7 |= Cb1[l] A
7 = —Cbi[l], for all I € {k +1,...,n}. From the discussion r0[l]. This shows that assumptidhis false, thereby proving

above, eitherr = Cb1[l]Ari[l] or = ~Cbi[l]A-ri[l] forall the assertion in part (d). O
le{k+1,...,n}. Now consider the Skolem function vector
¥ given by Propositio]2. Since; = —Cbi[l] and ¢! = Algorithm[4 (UPDATEABSREF) uses LemmA]3 to compute

—r1[l], it follows that there exists a Skolem function vectorbstract versions af0[:] andri[i], and a refined version of
viz. ¥, such thaty; < ! for all 7 in {k+1,...,n}. This ¥4, when ¥4 is not a Skolem function vector. It takes as

input the current versions @D[i] andr1[¢] for all z; in X, and

our algorithm starting withl instead ofk. Steps19-21 of

a satisfying assignment of the error formula for the current algorithm UPDATEABSREF effectively implement this.

version of &4, Sincer = F(X',Y) andr = -F(X,Y), and
since the value of every; in 7 is given by}, there exists

at least oney;, for I € {1,...,n}, that fails to generate (=r1[1],...

the right value ofz; when the value ot is as given byr.
UPDATEABSREF works by identifying such an indek and
refining ¢, Sincey? = —r1]i], ¥ is refined by updating
(abstracting) the corresponding[!] set. In fact, the algorithm
may, in general, end up abstracting not onlyl], but several
r0[i] andri[i] as well in a sound manner.

As shown in Algorithn[#%, WDATEABSREF first finds the
largest indexk such thatr | rO[k] A ri[k]. Lemma[Bb
guarantees the existence of such an indetln..,n}. We
assume access to a function calle@N&ERALIZE that takes
as arguments an assignmentand a functiony such that
7 = ¢, and returns a functiog that generalizesr while
satisfying ¢. More formally, if ¢ = GENERALIZE(w, ¢),
then Supp(¢) C Supp(p), # E £ and¢ = ¢ (details of

Once we exit the loop in steps21 of UPDATEABSREF,
we compute the refined Skolem function vectd” as
—ri[n]) in step22 and return the updatetD[i],
ri[i] for all z; in X, and also®*.

Lemma 4. Algorithm UPDATEABSREF always terminates,
and renders at least one1[:] strictly abstract, and at least
oney? strictly refined, fori € {1,...,n}.

Proof. By LemmalBa, we know that = —CbO0[n] Vv —Cb1[n],
and thereforer = —r0[n] vV —r1[n]. Since stepd2-13 or 17-
20 of UPDATEABSREF can be executed only when= roO[l]A
r1[l], and sincd is incremented in every iteration of the loop
in steps6-21, it follows that stepsl4—15 must be executed
for somel < n. Therefore, algorithm BDATEABSREF always
terminates.

It is easy to see from the pseudocode of algorithrplTE-
ABSREF that steps7—10 and 14-15 must be executed before

GENERALIZE used in our implementation are discussed |ateréxiting the while loop (step§—21) and terminating. Before

Thus, in steps2 and 3 of UPDATEABSREF, we compute
generalizations ofr that satisfyr0[k] andr1[k], respectively.
The functionu computed in step is therefore such that = ¢
andp = rO[k] Arilk]. SincerO[k] Ari[k] = -3z ... xpF,

n

executing sted0, we haver; =1 in 7 andwm = A\/_, (z; &
YA . Sinceyt = —r1[l] before stepl0, with x; = 1 in 7,
it must be the case that = —r1[l] before stepl0. However,
sincew E plx;/1] in step9, we haverl=ri[l] after step

any abstract Skolem function vector that produces values @f Therefore, executing stef®) rendersr1[l] strictly abstract

x1,...,T, (given the valuation ofY” as inx) for which

than what it was earlier. This also implies thgt = —r1[l] is

evaluates ta, cannot be a Skolem function vector. Since theyicily refined when BDATEABSREF returns in ste@3. O

support ofus is {xg41, . -
functionsy, ..., ¥;' must be refined.

The loop in step$—21 of UPDATEABSREF tries to identify
an abstract Skolem function/* to be refined, by iterating
from k + 1 to n. Clearly, if 2, ¢ Supp(u), the value ofy;*
underr is of no consequence in evaluatipg and we ignore
such variables. If;; € Supp(p) and ifz; = 1 in «, thenw =
plz /1] andpfz; /1] = (=321 ... 2—1 F)[x;/1]. Recalling the
definition of Cb1[l], we haveu[z;/1] = Cb1[l], and therefore

., Zn }UY, one of the abstract Skolem

Example 1(Continued) Continuing with our earlier example,
the error formula after the first step has a satisfying assign
menty; = 1,y = 1,y3 = 0,21 = 0,22 = 1,2} = 0,25 = 0.
Using this for = in UPDATEABSREF, we find thatw{ is

left unchanged a{—xz2 V —y1), while wé“, which wastrue
earlier, is refined to(—y; V y3). With these refined Skolem
functions, (¢4, 14", Y') evaluates tdrue for all valuations of

Y. As a result, the (new) error formula becomes unsatisfiable,

pla/1] can be added tari[l] (viewed as a set) yielding @ confirming the correctness of the Skolem functions.

more abstract version efi[l]. Steps3—10 of UPDATEABSREF
implement this update af1[l]. Note that sincer = u[z;/1],
we haver = ri[l] after stepl0. If it so happens thatr =
r0[l] as well, then we haver = rO[l] A r1[l], wherer1]l]
refers to the updated refinement @b1[l]. In this case, we
have effectively found an indek> k such thatr = r0[k] A

ri[k]. We can therefore repeat our algorithm starting with

instead ofk. Steps11-13 followed by step21 of algorithm

The overall GGARSKOLEM algorithm can now be imple-
mented as depicted in Algorithinh 5. From the above discussion
and Lemmas]1]2 arid 4, we obtain our main result.

Theorem 1. CEGARSKOLEM(F'(X,Y)) terminates and com-
putes a Skolem function vector f&f in F.

Proof. By Lemmal4, we know that every invocation ofPt

UPDATEABSREF effectively implement this. If, on the other DATEABSREF renders at least onet[:] strictly abstract than

hand,r (£ rO[k], then we have found ahthat satisfies the

what it was earlier. Sincer1[i] is a propositional function,

conditions in Lemm&l]3d. We exit the search for an abstratthas finitely many minterms and can be rendered strictly

Skolem function in this case (see stejpis-15).

If ; = 0 in 7, a similar argument as above shows thatlso know that(—Cb1[1],...

w[z/0] can be added ta0[/]. Steps17-18 of UPDATEAB-

abstract only finitely many times. From Propositioh 2, we
,—Cb1[n]) is indeed a Skolem
function vector, and therefore by Lemifa 2, its error formisla

SREF implement this update. As before, it is easy to see thabhsatisfiable. The termination ofEGARSKOLEM follows im-

7 = r0[l] after stepl8. Moreover, sincer = AJ_, (z; < ¥{)
and¢# = —r1[l], in order to haver; = 0 in 7, we must

mediately from the above observations. Siads unsatisfiable
when (GEGARSKOLEM terminates, it follows from Lemm@l 2

have = = ri[l]. Therefore, we have once again found athat the vector of functions returned is a Skolem function

index ! > k such thatr = rO[k] A ri[k], and can repeat vector for X in F.

O

Algorithm 5: CEGARSKOLEM MONOSKOLEM on all benchmarks, we raBlogger only on

Input: Propositional formula TYPE-1 benchmarks. Further, sincBlogger required the
F(X,Y)= /\;:1 F(X,Y5), X = (x1,...,2,) input to be ingdimacs format, we converted each TYPE-
Output: Skolem function vecto’ (Y) for X in F benchmark intezdimacs format using Tseitin encoding [17].
1 (WA {xoi],rifi] : 1 <i < n}):= All our benchmarks can be downloaded fram [1].
INITABSREF(A_, 1) Our implementations of MNOSKOLEM _and
2 = F(X/7Y)/\/\?:1(~Ti S YM A-F(X,Y); CEGARSKOLEM make use of the ABC [[10] library
3 while ¢ is satisfiabledo to represent and manipulate functions as AIGs. For
4 | Letr be a satisfying assignment of CEGARSKOLEM, we used the default SAT solver provided
s | (TA, {rofi],r1[i] : 1 <i<nl):= by ABC, which is a variant of MiniSAT. We used a simple
UPDATEABSREF({r0[i], r1[i] : 1 <i < n}, 7); heuristic to order the variables, and used the same ord_fmng
6 ei=F(X,Y)ANNA", (z; & ¢A) A-F(X,Y); both MONOSKOLEM and GEGARSKOLEM. In our ordering,

variables that occur in fewer factors are indexed lower than
those that occur in more factors.

We used the following metrics to compare the performance
of the algorithms: (i) average/maximum size of the generate
Skolem functions in a Skolem function vector, where the

The function GENERALIZE(m, ¢) used in LPDATEABSREF size is the number of nodes in the AIG representation of
can be implemented in several ways. Sincé= ¢, we may a function, and ii) total time taken to generate the Skolem
return a conjunction of literals corresponding to the assignt function vector (excluding any input format conversioneéjm
w, or the functiony itself. From our experiments, it appearsThe experiments were performed on a 1.87 GHz Intel(R)
that the first option leads to low memory requirements andeon machine withl 28GB memory running Ubuntu 12.04.4.
increased run-time (due to large number of invocations The maximum time and main memory usage was restricted
UPDATEABSREF). The other option requires more memoryo 2 hours and 32GB, although we noticed that for most
and less run-time due to fewer invocations oPRATEAB- benchmarks, all three algorithms used less th&B memory.
SREF. For our study, we let GNERALIZE(r, ri[k]) return))
one element irr1[k] (viewed as a set) amongst all those thds: Results and Discussion
evaluate tol underm, such that the support gf computed We conducted our experiments witl24 benchmarks, of
in Algorithm UPDATEABSREF is minimized (we had to allow which 160 were TYPE4 benchmarks and64 were TYPE2
GENERALIZE(-, -) access tq for this purpose). We follow a benchmarks. Thd24 benchmarks covered a wide spectrum
similar strategy for GNERALIZE(w, rO[k]). This gives us a in terms of number of factors, total number of variables, and
reasonable tradeoff between time and space requirementsnumber of quantified variables. For instance, in the TYPE-
category, the number of factors varied fraiah to 7034, total
number of variables varied frof4 to 9782 and the number
A. Experimental Methodology of variables to eliminate varied frorfi0 to 4751. Amongst

We compared EGARSKOLEM with (a) MoNoSkoLEM the TYPE2 benchmarks, the number of factors varied varied
(the algorithm based on the cofactoring approach of [7]])[16from 24 to 3956, the total number of varibles varied frorio
and with (b)Blogger (a QRAT-based Skolem function gen-to 5963, and the variables to eliminate varied to 2689.
eration tool reported in_[11]). As described n_[1Bloqqer 1) CEGARSKOLEM vs MONOSKOLEM: The performance
generates Skolem functions by first generating QRAT proad$ these two algorithms on all the benchmarks (TYPE-
using a remarkably efficient (albeit incomplete) preprsoes and TYPEZ2) is shown in the scatter plots of Figufé 1,
and then generates Skolem functions from these proofs. where Figurg_Tla shows the average sizes of Skolem func-

The Skolem function generation benchmarks were obtaintidns generated in a Skolem function vector and Fidure 1b
by considering sequential circuits from the HWMCC10 benclshows the total time taken in seconds. From Fiduide 1a, it is
mark suite, and by reducing the problem of disjunctivelglear that the Skolem functions generated BGBRSKOLEM
decomposing a circuit into components to the problem af a Skolem function vector are on averagmaller than
generating Skolem function vectors. Details of how thethose generated by &NOSKOLEM. There is no instance on
benchmarks were generated are describedlin [1]. Each benghichCEGARSKOLEM generates Skolem function vectors with
mark is of the form3X F(X,Y’), where F(X,Y) is a con- larger functions on average vis-a-vi8 ONOSKOLEM.
junction of factors anddY (3X F(X,Y)) is true. However, Due to repeated calls to the SAT-solvers @ARSKOLEM
for some benchmark&Y (3X F(X,Y’)) does not evaluate to takes more time than MINOSKOLEM on some benchmarks,
true. SinceBloqger can generate Skolem functions only whetut on most of them the total time taken by both algorithms
VY (3XF(X,Y)) is true, we divided the benchmarks intois less than100 seconds (Figuré_1b). Indeed, on profiling
two categories: a) TYPE-1 wherdY3X F(X,Y) is true, we found that EGARSKOLEM spent most of its time on
and b) TYPE-2 wher&/Y3IXF(X,Y) is false (although SAT solving. On38 benchmarks where E:3ARSKOLEM took
JYIXF(X,Y) is true). While we ran GGARSKOLEM and greater thanl00 but less tharB00 seconds, MVNOSKOLEM

7 ¥(Y) := REVERSESUBSTITUTE(—r1[1],..., rl[n]);
g return ¥(Y);

V. EXPERIMENTAL RESULTS

1e+09

T 1e+08 T

Typel © FA T me
FALEOB L oo o« coemme 0 1e+07 | R
1e+07 | X]
e _ 9 « X . . 1e+06 o]
@ 1e+06 F 3 = N
2 S & 100000 } o o]
g 100000 F o x] g . o .
S o ¥ x « 10000 ¢ o o7
= 10000 | o 1 £ obod 8 99
c ° X X g 1000 L o 30 R 0 ° ° 1
X 1000 | g b %) 63 o8 0 0 o
%] x ©)
100] 100 | :
w0l 2 : 10 ¢ 1
1 L L L L L L L FA\ 1 L L L L L L L FA
1 10 100 1000 10000L0000QLe+061e+071e+081e+09 1 10 100 1000 100001000001e+06 le+07 le+08
Size in CegarSkolem Size in CegarSkolem
(a) Average Skolem function sizes (a) Maximum size of Skolem functions
; ; 100000
100000 Typel o
Type2 x EA) ow o
FAlOOOO [@ 0D ® ©O0XXGEWED O Xo:ooxn 0@0 oom @ 1 10000 ¢ i k!
L ® o o ¥
§ 1000 = s 1 _ 1000¢ 1
o o (5]
2 ° x g 100 ’
e 100 E 2 R
o &0 o
= . x § o % £ o
£ 10 + ol A X x 1 @ 10 ¢ o 5 . ° b
° b R £ 0o 6 oo o
£ ° X x = o 4 %5
= [® xx] 1k 8 © 2 E
1 ¥4 o ° © o, o 8
0.1} 2 '] o1l]
. Xw&xxx .
-3 FA FA
001 L L L L L 001 L L L L L L
001 01 1 10 100 1000 10000 100000 001 01 1 10 100 1000 10000 100000
Time in CegarSkolem Time in CegarSkolem
(b) Time taken (in seconds) (b) Time taken (in seconds)

Fig. 1: CEGARSKOLEM vs MONOSKOLEM on TYPE4 & TYPE-2 Fig. 2: CEGARSKOLEM vs Blogger on TYPE4 benchmarks.
benchmarks. Topmost (rightmost) points indicate bencksathere Topmost (rightmost) points indicate benchmarks for whatbqqger
MONOSKOLEM (CEGARSKOLEM) was unsuccessful. (CEGARSKOLEM) was unsuccessful.

performed significantly worse, taking more thEN0 seconds. vectors in148 cases. It gave 80T VERIFIED message for
We found the degradation of ®NOSKOLEM was due to the remainingl2 benchmarks (in less than 30 minutes). These
the large sizes of Skolem functions generated (of the ordggnchmarks are indicated by the topmost points (see label
of 1 million AIG nodes) compared to those generated bYFA” on the axes) in the scatter plots of Figure 2. Of these,
CEGARSKOLEM (< 8000 AIG nodes).Large Skolem function § are large benchmarks witth00+ factors and variables to
sizes clearly imply more time spent in function compositigfliminate (overall, there ar@ such large benchmarks). On the
and reverse-substitution. other hand, EGARSKOLEM was able to successfully generate

For benchmarks where the sizes of Skolem functions geBkolem functions onl54 benchmarks, including the large
erated were even larger (of the order ti” AIG nodes), benchmarks, on each of which it took less tidnminutes.
MONOSKOLEM could not complete generation of all Skolem For the 142 benchmarks for which both algorithms suc-
functions: for 8 benchmarks, the memory consumed byeeded, we compared the times taken in Fifiute 2b. As earlier,
MONOSKOLEM increased rapidly, resulting in memory outSCecarRSKOLEM took more time on many benchmarks, but
for 10 benchmarks, it ran out of time; for an overwhelminghere were several benchmarks, including the large bench-
83 benchmarks, it encountered integer overflows (and henggrks, on whichBlogger was out-performed. We also com-
assertion failures) in the underlying ABC library. These afpared the maximum sizes of Skolem functions generated in a
indicated by the topmost points (see label “FA” on the axegkolem function vector (see Figuire 2a). We used the maximum
in Figure[1. In contrast, EGARSKOLEM generated Skolem (instead of average) size, since Tseitin encoding was meede
functions for almost al(412/424) benchmarksThe rightmost to convert the benchmarks tgdimacs format, and this in-
points indicate thd2 cases where EGARSKOLEM failed, of troduces many variables whose Skolem function sizes age ver
which 10 were time-outs an@ were memory outs. small, skewing the average. For a majority)§/142) of the

2) CEGARSKOLEM vs Bloqger: Of the 160 TYPE-1 benchmarks where both algorithms succeeded, the maximum
benchmarksBlogger successfully generated Skolem functiosizes of Skolem functions obtained bye GARSKOLEM were

smallerthan those generated Byjoqger. Hencenot only does
CEGARSKOLEM run faster on the large benchmarks, it also
generates smaller Skolem functions on most of them

3) Discussion: For all benchmarks on which
CEGARSKOLEM timed out, we noticed that there were
large subsets of factors that shared many variables in their
supports. As a result, ESARSKOLEM could not exploit
the factored representation effectively, requiring many
refinements. We also noticed that for many benchmarks
(197/424), the initial abstract Skolem functions were correct,
and most of the time was spent in the SAT solver. In fact, on
averaging over all benchmarks, we found that arossid of
the time spent by EGARSKOLEM was for SAT-solving. This
shows that we can leverage improvements in SAT solving
technology to improve the performance 0cEGARSKOLEM.

VI. CONCLUSION AND FUTURE WORK

We presented a CEGAR algorithm for generating Skolem
functions from factored propositional formulas. Our exper
ments show that for complex functions, our algorithm out-
performs two state-of-the-art algorithms. As part of fetur
work, we will explore integration with more efficient SAT-
solvers and refinement using multiple counter-examples.

REFERENCES

[1] A. John et al Disjunctive Decomposition Benchmarks.
http://www.cse.iitb.ac.in? supratik/tools/fmcad2015 experiments/.

[2] Rajeev Alur, P. Madhusudan, and Wonhong Nam. Symbolinmata-
tional techniques for solving gameSTTT 7(2):118-128, 2005.

[3] Carlos Ansotegui, Carla P Gomes, and Bart Selman. Thelléshheel
of QBF. InProc. of AAA] volume 2, pages 275-281, 2005.

[4] Marco Benedetti. sKizzo: A Suite to Evaluate and Ceri@BFs. In
Proc. of CADE pages 369-376. Springer-Verlag, 2005.

[5] Christian Bessiere and Guillaume Verger. Strateginst@int satisfac-
tion problems. InProc. of CP. pages 17-29, 2006.

[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Cotexample-
guided Abstraction Refinement for Symbolic Model CheckidgACM
50(5):752—-794, 2003.

[7] J.-H. R. Jiang. Quantifier elimination via functionalmposition. In
Proc. of CAV pages 383-397. Springer, 2009.

[8] J.-H.R. Jiang and V Balabanov. Resolution proofs ande&kdunctions
in QBF evaluation and applications. Proc. of CAV pages 149-164.
Springer, 2011.

[9] T. Jussila, A. Biere, C. Sinz, D. Kroning, and C. Winteiger. A First
Step Towards a Unified Proof Checker for QBF Aroc. of SATvolume
4501 of LNCS pages 201-214. Springer, 2007.

[10] Berkeley Logic and Verification Group. ABC: A System f8equential
Synthesis and Verification| . http://www.eecs.berkelayle@lanmi/abc/.

[11] Martina Seidl Marijn Heule and Armin Biere. Efficient &action of
Skolem Functions from QRAT Proofs. Broc. of FMCAD 2014.

[12] P. J. Ramadge and W. M. Wonham. Supervisory control ofaascof
discrete event processeSlAM J. Control Optim.25(1):206-230, 1987.

[13] Fabio Somenzi. Binary decision diagrams. Qalculational System
Design, vol. 173 of NATO Science SeriepBges 303-366. I0OS Press,
1999.

[14] S. Srivastava, S. Gulwani, and J. S. Foster. Templased program
verification and program synthesiSTTT 15(5-6):497-518, 2013.

[15] D. Thomas, S. Chakraborty, and P.K. Pandya. Efficiemdeplisymbolic
reachability using reachability expressio®ITT 10(2):113-129, 2008.

[16] A. Trivedi. Techniques in symbolic model checking. Nas thesis,
Indian Institute of Technology Bombay, Mumbai, India, 2003

[17] G. S. Tseitin. On the complexity of derivation in profimmal calculus.
Structures in Constructive Mathematics and Mathematiaagit, Part
II, Seminars in Mathematicgpages 115-125, 1968.

http://www.cse.iitb.ac.in/~supratik/tools/fmcad_2015_experiments/
http://www.eecs.berkeley.edu/~alanmi/abc/

	I Introduction
	II Preliminaries
	III A monolithic composition based algorithm
	IV CEGAR for generating Skolem functions
	IV-A Overview of our CEGAR algorithm
	IV-B Initial Abstraction and Refinement
	IV-C Termination condition
	IV-D Counterexample-guided abstraction and refinement

	V Experimental Results
	V-A Experimental Methodology
	V-B Results and Discussion
	V-B1 CegarSkolem vs MonoSkolem
	V-B2 CegarSkolem vs Bloqqer
	V-B3 Discussion

	VI Conclusion and Future Work
	References

