
ar
X

iv
:1

50
8.

04
95

8v
1

 [c
s.

P
L]

 2
0

A
ug

 2
01

5
1

Difference Constraints: An adequate Abstraction for
Complexity Analysis of Imperative Programs

Moritz Sinn, Florian Zuleger, Helmut Veith
TU Wien, Austria

Abstract—Difference constraints have been used for termination
analysis in the literature, where they denote relational inequalities
of the form x′ ≤ y + c, and describe that the value ofx in the
current state is at most the value ofy in the previous state
plus some constantc ∈ Z. In this paper, we argue that the
complexity of imperative programs typically arises from counter
increments and resets, which can be modeled naturally by
difference constraints. We present the first practical algorithm for
the analysis of difference constraint programs and describe how
C programs can be abstracted to difference constraint programs.
Our approach contributes to the field of automated complexity
and (resource) bound analysis by enabling automated amortized
complexity analysis for a new class of programs and providing
a conceptually simple program model that relates invariant- and
bound analysis. We demonstrate the effectiveness of our approach
through a thorough experimental comparison on real world C
code: our tool Loopus computes the complexity for considerably
more functions in less time than related tools from the literature.

I. I NTRODUCTION

Automated program analysis for inferring program complexity
and (resource) bounds is a very active area of research.
Amongst others, approaches have been developed for ana-
lyzing functional programs [14], C# [13], C [5], [20], [16],
Java [4] and Integer Transition Systems [4], [7], [10].
Difference constraints(DCs) have been introduced by Ben-
Amram for termination analysis in [6], where they denote
relational inequalities of the formx′ ≤ y + c, and describe
that the value ofx in the current state is at most the value
of y in the previous state plus some constantc ∈ Z. We call
a program whose transitions are given by a set of difference
constraints adifference constraint program(DCP).
In this paper, we advocate the use ofDCs for program
complexity and (resource) bounds analysis. Our key insight
is that DCs provide a natural abstractionof the standard
manipulations of counters in imperative programs: counter
increments/decrementsx := x+ c resp.resetsx := y, can be
modeled by theDCs x′ ≤ x+ c resp.x′ ≤ y (see Section IV
on program abstraction). In contrast, previous approachesto
bound analysis can model either only resets [13], [5], [20],[4],
[7], [10] or increments [16]. For this reason, we are able to
design a more powerful analysis: In Section II-A we discuss
that our approach achievesamortized analysisfor a new class
of programs. In Section II-B we describe how our approach
performsinvariant analysisby means of bound analysis.

Supported by the Austrian National Research Network S11403-N23 (RiSE)
of the Austrian Science Fund (FWF) and by the Vienna Science and Tech-
nology Fund (WWTF) through grants PROSEED and ICT12-059.

In this paper, we establish the practical usefulness ofDCs

for bound (and complexity) analysis of imperative programs:
1) We propose the first algorithm for bound analysis of
DCPs . Our algorithm is based on the dichotomy between
increments and resets. 2) We develop appropriate techniques
for abstracting C programs toDCPs : we describe how to
extract norms (integer-valued expressions on the program
state) from C programs and how to use them as variables in
DCPs . We are not aware of any previous implementation of
DCPs for termination or bound analysis. 3) We demonstrate
the effectiveness of our approach through a thorough experi-
mental evaluation. We present the first comparison of bound
analysis tools on source code from real software projects (see
Section V). Our implementation performs significantly better
in time and success rate.

II. M OTIVATION AND RELATED WORK

A. Amortized Complexity Analysis

Example 1 stated in Figure 1 is representative for a class of
loops that we found in parsing and string matching routines
during our experiments. In these loops the inner loop iterates
over disjoint partitions of an array or string, where the partition
sizes are determined by the program logic of the outer loop.
For an illustration of this iteration scheme, we refer the reader
to Example 3 stated in Appendix A,which contains a snippet
of the source code after which we have modeled Example 1.
Example 1 has the linearcomplexity2n, because the inner
loop as well as the outer loop can be iterated at mostn
times (as argued in the next paragraph). However, previous
approaches to bound analysis [13], [5], [20], [16], [4], [7],
[10] are only able to deduce that the inner loop can be
iterated at most aquadraticnumber of times (with loop bound
n2) by the following reasoning: (1) the outer loop can be
iterated at mostn times, (2) the inner loop can be iterated at
mostn times within one iteration of the outer loop (because
the inner loop has a local loop boundp and p ≤ n is an
invariant), (3) the loop boundn2 is obtained from (1) and (2)
by multiplication. We note that inferring the linear complexity
2n for Example 1, even though the inner loop can already be
iteratedn times within one iteration of the outer loop, is an
instance ofamortized complexity analysis[18].
In the following, we give an overview how our approach infers
the linear complexity for Example 1:
1. Program Abstraction. We abstract the program to aDCP

over Z as shown in Figure 1. We discuss our algorithm for
abstracting imperative programs toDCPs based on symbolic

http://arxiv.org/abs/1508.04958v1

void foo(uint n) {
int x = n;

int r = 0;

l1 while(x > 0) {
x = x - 1;

r = r + 1;

l2 if(*) {
int p = r;

l3 while(p > 0)

p--;

r = 0;

}
l4 } }

lb

l1 le

l2

l3l4

τ0 ≡
x′ ≤ n;
r′ ≤ 0;

τ1 ≡

x > 0,
x′ ≤ x − 1
r′ ≤ r + 1

τ2a ≡

x′ ≤ x

r′ ≤ r

p′ ≤ rτ2b ≡
x′ ≤ x

r′ ≤ r

τ4 ≡
x′ ≤ x

r′ ≤ 0

τ5 ≡

r′ ≤ r

x′ ≤ x

p > 0,
x′ ≤ x

r′ ≤ r

p′ ≤ p − 1
τ3 ≡

foo(uint n, uint m1,

uint m2) {
int y = n;

int x;

l1 if(*)

x = m1;

else

x = m2;

l2 while(y > 0) {
y--;

x = x + 2; }
int z = x;

l3 while(z > 0)

z--; }

lb

l1

l2

l3 le

τ0 ≡ y′ ≤ n

τ0a ≡
y′ ≤ y

x′ ≤ m1
τ0b ≡

y′ ≤ y

x′ ≤ m2
τ1 ≡

y > 0,
y′ ≤ y − 1
x′ ≤ x + 2

τ2 ≡ z′ ≤ x;

τ3 ≡
z > 0,

z′ ≤ z − 1

Complexity:TB(τ5) + TB(τ3) = n + n = 2n Complexity:TB(τ1) + TB(τ3) = max(m1,m2) + 3n

Example 1 abstractedDCP of Example 1 Example 2 abstractedDCP of Example 2

Fig. 1. Running Examples, * denotes non-determinism (arising from conditions not modeled in the analysis)

execution in Section IV.
2. Finding Local Bounds. We identify p as a variable that
limits the number of executions of transitionτ3: We have the
guardp > 0 on τ3 andp decreases on each execution ofτ3.
We call p a local boundfor τ3. Accordingly we identifyx as
a local boundfor transitionsτ1, τ2a, τ2b, τ4, τ5.
3. Bound Analysis. Our algorithm (stated in Section III)
computestransition bounds, i.e., (symbolic) upper bounds on
the number of times program transitions can be executed, and
variable bounds, i.e., (symbolic) upper bounds on variable val-
ues. For both types of bounds, the main idea of our algorithm
is to reasonhow muchand how oftenthe value of the local
bound resp. the variable value may increase during program
run. Our algorithm is based on a mutual recursion between
variable bound analysis (“how much”, functionVB(v)) and
transition bound analysis (“how often”, functionTB(τ)).
Next, we give an intuition how our algorithm computes
transition bounds: Our algorithm computesTB(τ) = n for
τ ∈ {τ1, τ2a, τ2b, τ4, τ5} because the local boundx is initially
set ton and never increased or reset. Our algorithm computes
TB(τ3) (τ3 corresponds to the loop atl3) as follows:τ3 has
local boundp; p is reset tor on τ2a; our algorithm detects that
before each execution ofτ2a, r is reset to0 on eitherτ0 or τ4,
which we call thecontextunder whichτ2a is executed; our
algorithm establishes that between being reset and flowing into
p the value ofr can be incremented up toTB(τ1) times by1;
our algorithm obtainsTB(τ1) = n by a recursive call; finally,
our algorithm calculatesTB(τ3) = 0 + TB(τ1)× 1 = n. We
give an example for the mutual recursion betweenTB and
VB in Section II-B.
We contrast our approach for computing the loop bound of
l3 of Example 1 with classical invariant analysis: Assume
’c’ counting the number of inner loop iterations (i.e.,c
is initialized to 0 and incremented in the inner loop). For
inferring c <= n through invariant analysis the invariant
c+x+ r <= n is needed for the outer loop, and the invariant
c+x+p <= n for the inner loop. Both relate 3 variables and
cannot be expressed as (parametrized) octagons (e.g., [11]).
Further, the expressionsc + x + r and c + x + p do not
appear in the program, which is challenging for template based
approaches to invariant analysis.

B. Invariants and Bound Analysis

We explain on Example 2 in Figure 1 how our approach
performsinvariant analysisby means of bound analysis. We
first motivate the importance of invariant analysis for bound
analysis. It is easy to inferx as a bound for the possible
number of iterations of the loop atl3. However, in order to
obtain a bound in thefunction parametersthe difficulty lies
in finding an invariantx ≤ expr(n,m1,m2). Here, the most
precise invariantx ≤ max(m1,m2)+2n cannot be computed
by standard abstract domains such asoctagonor polyhedra:
these domains areconvex and cannot express non-convex
relations such asmaximum. The most precise approximation of
x in the polyhedra domain isx ≤ m1+m2+2n. Unfortunately,
it is well-known that the polyhedra abstract domain does not
scale to larger programs and needs to rely on heuristics for
termination. Next, we explain how our approach computes
invariants using bound analysis and discuss how our reasoning
is substantially different from invariant analysis by abstract
interpretation.
Our algorithm computes a transition bound for the loop at
l3 by TB(τ3) = TB(τ2) × VB(x) = 1 × VB(x) =
VB(x) = TB(τ1) × 2 + max(m1,m2) = (n × TB(τ0)) ×
2 + max(m1,m2) = (n × 1) × 2 + max(m1,m2) = 2n +
max(m1,m2). We point out the mutual recursion between
TB and VB: TB(τ3) has calledVB(x), which in turn
calledTB(τ1). We highlight that the variable boundVB(x)
(corresponding to the invariantx ≤ max(m1,m2) + 2n) has
been established during the computation ofTB(τ3).
Standardabstract domainssuch asoctagon or polyhedra
propagate informationforward until a fixed point is reached,
greedily computing all possible invariants expressible in the
abstract domain at every location of the program. In contrast,
VB(x) infers the invariantx ≤ max(m1,m2) + 2n by
modular reasoning:local informationabout the program (i.e.,
increments/resets of variables, local bounds of transitions) is
combined to aglobalprogram property. Moreover, our variable
and transition bound analysis isdemand-driven: our algorithm
performs only those recursive calls that are indeed needed
to derive the desired bound. We believe that our analysis
complements existing techniques for invariant analysis and

2

will find applications outside of bound analysis.

C. Related Work

In [6] it is shown that termination ofDCPs is undecidable
in general but decidable for the natural syntactic subclassof
deterministicDCPs (see Definition 3), which is the class of
DCPs we use in this paper. It is an open question for future
work whether there is a complete algorithm for bound analysis
of deterministicDCPs .
In [16] a bound analysis based on constraints of the form
x′ ≤ x + c is proposed, wherec is either an integer or a
symbolic constant. The resulting abstract program model is
strictly less powerful thanDCPs . In [20] a bound analysis
based on so-calledsize-change constraintsx′

⊳ y is proposed,
where⊳ ∈ {<,≤}. Size-change constraints form a strict syn-
tactic subclass ofDCs. However, termination is decidable even
for non-deterministic size-change programs and a complete
algorithm for deciding the complexity of size-change programs
has been developed [9]. Because the constraints in [20], [16]
are less expressive thanDCs , the resulting bound analyses
cannot infer the linear complexity of Example 1 and need to
rely on external techniques for invariant analysis.
In Section V we compare our implementation against the
most recent approaches to automated complexity analysis [10],
[7], [16]. [10] extends the COSTA approach by control flow
refinement for cost equations and a better support for multi-
dimensional ranking functions. The COSTA project (e.g. [4])
computes resource bounds by inferring an upper bound on
the solutions of certain recurrence equations (so-calledcost
equations) relying on external techniques for invariant analysis
(which are not explicitly discussed). The bound analysis in[7]
uses approaches for computing polynomial ranking functions
from the literature to derive bounds for SCCs in isolation
and then expresses these bounds in terms of the function
parameters using invariant analysis (see next paragraph).
The powerful idea of expressing locally computed loop bounds
in terms of the function parameters by alternating between
loop bound analysis and variable upper bound analysis has
been explored in [7], [16] (as discussed in the extended ver-
sion [17]) and [12]. We highlight some important differences
to these earlier works. [7] computes upper bound invariants
only for the absolute values of variables; this does, for
example, not allow to distinguish between variable increments
and decrements during the analysis. [17] and [12] do not give
a general algorithm but deal with specific cases.
[19] discusses automatic parallelization of loop iterations; the
approach builds on summarizing inner loops by multiplying
the increment of a variable on a single iteration of a loop
with the loop bound. The loop bounds in [19] are restricted
to simple syntactic patterns.
The recent paper [8] discusses an interesting alternative for
amortized complexity analysis of imperative programs: A
system of linear inequalities is derived using Hoare-style
proof-rules. Solutions to the system represent validlinear
resource bounds. Interestingly, [8] is able to compute the linear
bound forl3 of Example 1 but fails to deduce the bound for
the original source code (provided in Appendix A).Moreover,

[8] is restricted to linear bounds, while our approach derives
polynomial bounds (e.g., Example B in Figure 2) which
may also involve the maximum operator. An experimental
comparison was not possible as [8] was developed in parallel.

III. PROGRAM MODEL AND ALGORITHM

In this section we present our algorithm for computing worst-
case upper bounds on the number of executions of a given
transition (transition bound) and on the value of a given
variable (variable bound). We base our algorithm on the
abstract program model ofDCPs stated in Definition 3. In
Section III-B we generalizeDCPs and our algorithm to the
non-well-founded domainZ.

Definition 1 (Variables, Symbolic Constants, Atoms). By V
we denote a finite set of Variables. ByC we denote a finite set
of symbolic constants.A = V ∪ C ∪ N is the set ofatoms.

Definition 2 (Difference Constraints). A difference constraint
overA is an inequality of formx′ ≤ y+ c with x ∈ V , y ∈ A
and c ∈ Z. We denote byDC(A) the set of all difference
constraints overA.

Definition 3 (Difference Constraint Program). A difference
constraint program(DCP) overA is a directed labeled graph
∆P = (L, T, lb, le), whereL is a finite set oflocations, lb ∈ L
is the entry location,le ∈ L is the exit location andT ⊆
L×2DC(A)×L is a finite set of transitions. We writel1

u
−→ l2 to

denote a transition(l1, u, l2) ∈ T labeled by a set of difference
constraintsu ∈ 2DC(A). Given a transitionτ = l1

u
−→ l2 ∈ T

of ∆P we call l1 the source location ofτ and l2 the target
location of τ . A pathof ∆P is a sequencel0

u0−→ l1
u1−→ · · ·

with li
ui−→ li+1 ∈ T for all i. The set ofvaluationsof A is

the setValA = A → N of mappings fromA to the natural
numbers withσ(a) = a if a ∈ N. A run of ∆P is a sequence
(lb, σ0)

u0−→ (l1, σ1)
u1−→ · · · such thatlb

u0−→ l1
u1−→ · · · is

a path of∆P and for all i it holds that (1)σi ∈ ValA, (2)
σi+1(x) ≤ σi(y)+c for all x′ ≤ y + c ∈ ui, (3)σi(s) = σ0(s)
for all s ∈ C. Given v ∈ V and l ∈ L we say thatv is
definedat l and writev ∈ D(l) if l 6= lb and for all incoming
transitionsl1

u
−→ l ∈ T of l it holds that there area ∈ A and

c ∈ Z s.t. v′ ≤ a+ c ∈ u.
∆P is deterministic(fan-in-freein the terminology of [6]), if
for every transitionl1

u
−→ l2 ∈ T and everyv ∈ V there is at

most onea ∈ A and c ∈ Z s.t. v′ ≤ a+ c ∈ u.

Our approach assumes the givenDCP to be deterministic.
We further assume thatDCPs arewell-defined: Let v ∈ V
and l ∈ L, if v is live at l then v ∈ D(l). Our abstraction
algorithm from Section IV generates only deterministic and
well-definedDCPs.
In Definitions 4 to 11 we assume aDCP ∆P(L, T, lb, le) over
A to be given.

Definition 4 (Transition Bound). Let τ ∈ T , τ is bounded
iff τ appears a finite number of times on any run of∆P . An
expressionexpr overC ∪Z is a transition boundfor τ iff τ is
boundedand for anyfinite run ρ = (lb, σ0)

u0−→ (l1, σ1)
u1−→

(l2, σ2)
u2−→ . . . (le, σn) of ∆P it holds that τ appears not

more thanσ0(expr) often onρ. We say that a transition bound

3

(A)
lb

l1

le

τ0 ≡
i′ ≤ n
j′ ≤ 0

τ1 ≡

i′ ≤ i − 1
j′ ≤ j + 1

τ2 ≡

i′ ≤ i

j′ ≤ j − 1

(B)
lb

l1

le

τ0 ≡

i′ ≤ n

j′ ≤ 0
l′ ≤ n
k′ ≤ 0

τ1 ≡

i′ ≤ i − 1
j′ ≤ j

l′ ≤ l

k′ ≤ k + 1

τ3 ≡

i′ ≤ i

j′ ≤ j − 1
l′ ≤ l

k′ ≤ ki′ ≤ i

j′ ≤ k

l′ ≤ l − 1
k′ ≤ k

τ2 ≡

(C)
lb

l1 le

l2

τ0 ≡
i′ ≤ n

r′ ≤ n

τ1 ≡

i′ ≤ i

r′ ≤ r

k′ ≤ r

i′ ≤ i

r′ ≤ r

k′ ≤ k − 1τ2 ≡

τ3 ≡

i′ ≤ i − 1
r′ ≤ 0

Complexity:TB(τ1) + TB(τ2) = 2n Complexity:TB(τ1) + TB(τ2) + TB(τ3) = 2n+ n2 Complexity:TB(τ2) +TB(τ3) = 2n

ζ : {τ0 7→ 1, τ1 7→ i, τ2 7→ j} ζ : {τ0 7→ 1, τ1 7→ i, τ2 7→ l, τ3 7→ j} ζ : {τ0 7→ 1, τ1 7→ i, τ3 7→ i, τ2 7→ k}

TB(τ1) = n,TB(τ2) = n TB(τ1) = n, TB(τ2) = n, TB(τ3) = n2 Def. 9: TB(τ1) = n, TB(τ2) = n2, TB(τ3) = n

Def. 11:TB(τ1) = n, TB(τ2) = n, TB(τ3) = n

Fig. 2. ExampleDCP ’s (A), (B), (C)

expr of τ is preciseiff there is a runρ of ∆P s.t. τ appears
σ0(expr) times onρ.

We want to infer the complexity of the examples in Figure 2
(Examples A, B, C), i.e., we want to infer how often location
l1 can be visited during an execution of the program. We
will do so by computing a bound on the number of times
transitionsτ0, τ1, τ2 andτ3 may be executed. In general, the
complexity of a given program can be inferred by summing
up the transition bounds for the back edges in the program.

Definition 5 (Counter Notation). Let τ ∈ T and v ∈ V . Let
ρ = (lb, σ0)

u0−→ (l1, σ1)
u1−→ · · · (le, σn) be a finite run of

∆P . By ♯(τ, ρ) we denote the number of times thatτ occurs
on ρ. By ↓(v, ρ) we denote the number of times that the value
of v decreases onρ, i.e. ↓(v, ρ) = |{i | σi(v) > σi+1(v)}|.

Definition 6 (Local Transition Bound). Let τ ∈ T andv ∈ V .
v is a local boundfor τ iff on all finite runsρ = (lb, σ0)

u0−→
(l1, σ1)

u1−→ · · · (le, σn) of ∆P it holds that♯(τ, ρ) ≤ ↓(v, ρ).
We call acompletemappingζ : T → V ∪ {1} a local bound
mappingfor ∆P if ζ(τ) is a local boundof τ or ζ(τ) = 1
and τ can only appear at most once on any path of∆P .

Example A:i is a local bound forτ1, j is a local bound for
τ2. Example C:i is a local bound forτ1 and forτ3.

A variablev is a local transition boundif on any run of∆P
we can traverseτ not more often than the number of times the
value ofv decreases. I.e., a local boundv limits the potential
number of executions ofτ as long as the value ofv does
not increase. In our analysis,local transition boundsplay the
role of potential functionsin classicalamortized complexity
analysis [18]. Our bound algorithm is based on a mapping
which assigns each transition a local bound. We discuss how
we find local bounds in Section III-C.

Definition 7 (Variable Bound). An expressionexpr overC∪Z
is a variable boundfor v ∈ V iff for any finite run ρ =
(lb, σ0)

u0−→ (l1, σ1)
u1−→ (l2, σ2)

u2−→ . . . (le, σn) of ∆P and
all 1 ≤ i ≤ n with v ∈ D(li) it holds thatσi(v) ≤ σ0(expr).

Let v ∈ V . Our algorithm is based on asyntacticdistinction
between transitions whichincrementv or resetv.

Definition 8 (Resets and Increments). Let v ∈ V . We define
the resetsR(v) and incrementsI(v) of v as follows:
R(v) = {(l1

u
−→ l2, a, c) ∈ T ×A× Z |

v′ ≤ a+ c ∈ u, a 6= v}

I(v) = {(l1
u
−→ l2, c) ∈ T × Z | v′ ≤ v + c ∈ u, c > 0}

Given a pathπ of ∆P we say thatv is reseton π if there
is a transition τ on π such that(τ, a, c) ∈ R(v) for some
a ∈ A and c ∈ Z.

Example B: I(k) = {(τ1, 1)} andR(k) = {(τ0, n, 0)}.

I.e., we have(τ, a, c) ∈ R(v) if variablev is reset to a value
≤ a+c when executing the transitionτ . Accordingly we have
(τ, c) ∈ I(v) if variablev is incremented by a value≤ c when
executing the transitionτ .

Our algorithm in Definition 9 is build on amutual recursion
between the two functionsVB(v) andTB(τ), whereVB(v)
infers avariable boundfor v andTB(τ) infers a transition
boundfor the transitionτ .

Definition 9 (Bound Algorithm). Let ζ : T → V ∪ {1} be a
local bound mappingfor ∆P . We defineVB : A 7→ Expr(A)
andTB : T 7→ Expr(A) as:
VB(a) = a, if a ∈ A \ V , else
VB(v) = Incr(v) + max

(,a,c)∈R(v)
(VB(a) + c)

TB(τ) = 1, if ζ(τ) = 1, else
TB(τ) = Incr(ζ(τ))

+
∑

(t,a,c)∈R(ζ(τ))

TB(t)×max(VB(a) + c, 0)

where
Incr(v) =

∑

(τ,c)∈I(v)

TB(τ) × c (Incr(v) = 0 for I(v) = ∅)

Discussion: We first explain the subroutineIncr(v): With
(τ, c) ∈ I(v) we have that a single execution ofτ increments
the value ofv by not more thanc. Incr(v) multiplies the
transition bound ofτ with the incrementc for summarizing
the total amount by whichv may be incremented over all
executions ofτ . Incr(v) thus computes a bound on the total
amount by which the value ofv may beincrementedduring
a program run.
The functionVB(v) computes a variable bound forv: After
executing a reset transition(τ, a, c) ∈ R(v), the value ofv is

4

bounded byVB(a) + c. As long asv is not reset, its value
cannot increase by more thanIncr(v).
The functionTB(τ) computes a transition bound forτ based
on the following reasoning: (1) The total amount by which
the local boundζ(τ) of transition τ can be incrementedis
bounded byIncr(ζ(τ)). (2) We consider a reset(t, a, c) ∈
R(ζ(τ)); in the worst case, a single execution oft resets the
local boundζ(t) to VB(a) + c, addingmax(VB(a) + c, 0)
to the potential number of executions oft; in total all TB(t)
possible executions oft add up toTB(t)×max(VB(a)+c, 0)
to the potential number of executions oft.
Example A, ζ as defined in Figure 2:j is resetto 0 on τ0 and
incremented by1 on τ1. i is reset ton on τ0. Our algorithm
computesTB(τ2) = TB(τ1)× 1 +TB(τ0)× 0 = TB(τ1) =
TB(τ0)× n = n. Thus the overall complexity of Example A
is inferred byTB(τ1) + TB(τ2) = 2n.
Example B, ζ as defined in Figure 2:i and l areresetto n on
τ0. Our algorithm computesTB(τ1) = TB(τ0)× n = n and
TB(τ2) = TB(τ0) × n = n. j is reset to 0 on τ0 and reset
to k on τ2. Our algorithm computesTB(τ3) = TB(τ0)× 0+
TB(τ2)×VB(k). Sincek is resetto 0 on τ0 and incremented
by 1 on τ1, our algorithm computesVB(k) = TB(τ1)× 1 =
n × 1 = n. ThusTB(τ3) = TB(τ2) × VB(k) = n × n =
n2. Thus the overall complexity of Example B is inferred by
TB(τ1) + TB(τ2) + TB(τ3) = n+ n+ n2 = 2n+ n2.
Example 2 (Figure 1): ζ = {τ0, τ0a , τ0b , τ2 7→ 1, τ1 7→
y, τ3 7→ z}, R(z) = {(τ2, x, 0)}, I(x) = {(τ1, 2)}, R(x) =
{(τ0a,m1, 0), (τ0b,m2, 0)}, R(y) = {(τ0, n, 0)}. We have
stated the computation ofTB(τ3) in Section II-B.
Termination: Our algorithm does not terminate if recursive
calls cycle, i.e., if a call toTB(τ) resp.VB(v) (indirectly)
leads to a recursive call toTB(τ) resp.VB(v). This can be
easily detected, we return the value⊥ (undefined).

Theorem 1 (Soundness). Let ∆P(L, T, lb, le) be a well-
defined and deterministicDCP over atomsA, ζ : T 7→
V ∪ {1} be alocal bound mappingfor ∆P , v ∈ V andτ ∈ T .
Either TB(τ) = ⊥ or TB(τ) is a transition boundfor τ .
Either VB(v) = ⊥ or VB(v) is a variable boundfor v.

A. Context-Sensitive Bound Analysis

So far our algorithm reasons about resets occurring on single
transitions. In this section we increase the precision of our
analysis by exploiting the context under which resets are
executed through a refined notion of resets and increments.

Definition 10 (Reset Graph). The Reset Graphfor ∆P
is the graph G(A, E) with E ⊆ A × T × Z × V s.t.
E = {(x, τ, c, y) | (τ, y, c) ∈ R(x)}. We call a finite path
κ = an

τn,cn
−−−→ an−1

τn−1,cn−1
−−−−−−−→ . . . a0 in G with n > 0 a reset

path of ∆P . We definein(κ) = an, c(κ) =
n∑

i=1

ci, trn(κ) =

{τn, τn−1 . . . , τ1}, and atm(κ) = {an, an−1 . . . , a0}. κ is
sound if for all 1 ≤ i < n it holds that ai is reseton all
paths from the target location ofτ1 to the source location of
τi in ∆P . κ is optimal if κ is sound and there is no sound
reset pathκ̂ s.t. κ is a suffix ofκ̂, i.e., κ̂ = an+k

τn+k,cn+k
−−−−−−−→

an+k−1
τn+k−1,cn+k−1
−−−−−−−−−−→ . . . an

τn,cn
−−−→ an−1

τn−1,cn−1
−−−−−−−→ . . .a0

0n

ji

τ0τ0

n l

i
0 k

j

τ0

τ0

τ0

τ2
τ0

0 n

r i

k

τ1

τ0 τ0
τ3

00

rn

px

τ0

τ2a

τ4

τ0

G(A) G(B) G(C) G(Ex1)

Fig. 3. Reset Graphs, increments by0 are not depicted

with k ≥ 1. Let v ∈ V , by R(v) we denote the set of optimal
reset paths ending inv.

We explain the notionssoundand optimal in the course of
the following discussion. Figure 3 shows the reset graphs
of Examples A, B, C and Example 1 from Figure 1. For a
given reset(τ, a, c) ∈ R(v), the reset graph determines which
atom flows into variablev under which context. For example,
considerG(C): When executing the reset(τ1, r, 0) ∈ R(k)
under the contextτ3, k is set to0, if the same reset is executed
under the contextτ0, k is set ton. Note that the reset graph
does not representincrementsof variables. We discuss how
we handle increments below.
We assume that the reset graph is a DAG. We can always
force the reset graph to be a DAG by abstracting theDCP :
we remove all program variables which have cycles in the
reset graph and all variables whose values depend on these
variables. Note that if the reset graph is a DAG, the setR(v)
is finite for all v ∈ V .
Let v ∈ V . Given a reset pathκ of length k that ends
in v, we say that(trn(κ), in(κ), c(κ)) is a reset ofv with
context of lengthk − 1. I.e., R(v) from Definition 8 is the
set of context-freeresets ofv (context of length0), because
(trn(κ), in(κ), c(κ)) ∈ R(v) iff κ ends inv and has length
1. Our algorithm from Definition 9 reasonscontext freesince
it uses onlycontext-freeresets.
Consider Example C. The precise bound forτ2 is n because we
can iterateτ2 only in the first iteration of the loop atl1 sincer
is reset to0 on τ3. But when reasoning context-free, our algo-
rithm infers aquadraticbound forτ2: We assumeζ to be given
as stated in Figure 2. InG(C) κ = r

τ1,0
−−→ k is the only reset

path of length1 ending ink. ThusR(k) = {(τ1, r, 0)}. Our
algorithm from Definition 9 computes:TB(τ1) = TB(τ0) ×
n = n, VB(r) = TB(τ0) × n + TB(τ3) × 0 = n,
TB(τ2) = TB(τ1)×VB(r) = n× n = n2.
We show how our algorithm infers thelinear bound for τ2
when usingresets with context: If we considerκ with contexts,
we getκ1 = 0

τ3,0
−−→ r

τ1,0
−−→ k and κ2 = n

τ0,0
−−→ r

τ1,0
−−→ k.

Note thatκ1 andκ2 aresoundby Definition 10 becauser is
reset on all paths from the target locationl2 of τ1 to the source
locationl1 of τ1 in Example C (namely onτ3). ThusR(k) =
{({τ3, τ1}, 0, 0), ({τ0, τ1}, n, 0)}. We can compute a bound on
the number of times that a sequenceτ1, τ2, . . . τn of transitions
may occur on a run by computingmin

1≤i≤n
TB(τi). Thus, basing

our analysis onR(k) rather thanR(k) we compute:TB(τ2) =
min(TB(τ3),TB(τ1)) × 0 + min(TB(τ0),TB(τ1)) × n =
min(n, 1)× n = n.

5

We have demonstrated that our analysis gains precision when
adding context to our notion of resets. It is, however, not sound
to base the analysis on maximal reset paths (i.e., resets with
maximal context) only: Consider Example B withζ as stated
in Figure 2. There are 2 maximal reset paths ending inj (see
G(B)): κ1 = 0

τ0,0
−−→ j and κ2 = 0

τ0,0
−−→ k

τ2,0
−−→ j. Thus

R(j)′ = {({τ0, τ2}, 0, 0), ({τ0}, 0, 0)} is the set of resets of
j with maximal context. UsingR(j)′ rather thanR(j) our
algorithm computes:TB(τ3) = min(TB(τ0),TB(τ2))× 0 +
TB(τ0)× 0 +TB(τ1)× 1 = TB(τ1)× 1 = n, but n is not a
transition bound forτ3. The reasoning is unsound becauseκ2

is unsoundby Definition 10:k is not reset on all paths from
the target locationl1 of τ2 to the source locationl1 of τ2 in
Example B: e.g., the pathτ2 = l1

u2−→ l1 of Example B does
not resetk.
We base ourcontext sensitivealgorithm on the setR(v) of
optimal reset paths. The optimal reset paths are those that are
maximal within thesoundreset paths (Definition 10).

Definition 11 (Bound Algorithm with Context). Let ζ :
T → V ∪ {1} be a local bound mappingfor ∆P . Let
VB : A 7→ Expr(A) be as defined in Definition 9. We
override the definition ofTB : T 7→ Expr(A) in Definition 9
by stating:

TB(τ) = 1 if ζ(τ) = 1 else
TB(τ) =

∑

κ∈R(ζ(τ))

TB(trn(κ))×max(VB(in(κ)) + c(κ), 0)

+
∑

a∈atm(κ)

Incr(a)

where
TB({τ1, τ2, . . . , τn}) = min

1≤i≤n
TB(τi)

Discussion and Example:The main difference to the definition
of TB(τ) in Definition 9 is that the termIncr(ζ(τ)) is
replaced by the term

∑

a∈atm(κ)

Incr(a). Consider the abstracted

DCP of Example 1 in Figure 1. We have discussed in
Section II-A that r may be incremented onτ1 between
the reset ofr to 0 on τ0 resp. τ4 and the reset ofp to
r on τ2a. The term

∑

a∈atm(κ)

Incr(a) takes care of such

increments which may increase the value that finally flows
into ζ(τ) (in the examplep) when the last transition onκ
(in the exampleτ2a) is executed: We use the local bound
mappingζ = {τ0 7→ 1, τ1 7→ x, τ2a 7→ x, τ2b 7→ x, τ4 7→
x, τ5 7→ x, τ3 7→ p} for Example 1. The reset graph of
Example 1 is shown in Figure 3. We haveR(p) = {0

τ0−→
r

τ2a−−→ p, 0
τ4−→ r

τ2a−−→ p}. Thus our algorithm computes
TB(τ3) =

∑

κ∈R(p)

TB(trn(κ))×max(VB(in(κ))+c(κ), 0)+
∑

a∈atm(κ)

Incr(a) = TB({τ0, τ2a}) × max(VB(0), 0) +

Incr(r) + TB({τ4, τ2a}) × max(VB(0), 0) + Incr(r) =
2× Incr(r) = 2× TB(τ1)× 1 = 2× n (with TB(τ1) = n).
Complexity: In theory there can be exponentially many resets
in R(v). In our experiments this never occurred, enumeration
of (optimal) reset paths did not affect performance.
Further Optimization: We have shown in Section II that
transitionsτ3 of Example 1 has alinear bound, precisely
n. The Bound2n that is computed by our bound algorithm

from Definition 11 is linear but not precise. We compute
2n becauser appears on both reset paths ofp and therefore
Incr(r) = n is added twice. However, there is only one
transition (τ2a) on which p is reset tor and between any
two executions ofτ2a r will be reset to0. For this reason
each increment ofr can only contribute once to the increase
of the local boundp of τ3, and not twice. We thus suggest
to further optimize our algorithm from Definition 11 by
distinguishing if there is more than one way howa ∈ atm(κ)
may flow into the target variable ofκ or not. We divide
atm(κ) into two disjoint setsatm2(κ) = {a ∈ atm(κ) |
more than 1 path froma to target variable ofκ in G(∆P)},
atm1(κ) = atm(κ) \ atm2(κ). We define

TB(τ) = (
∑

a∈
⋃

κ∈R(ζ(τ))

atm1(κ)

Incr(a)) +

∑

κ∈R(ζ(τ))

TB(trn(κ))×max(VB(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

Incr(a)

for ζ(τ) 6= 1. Note that for Example 1atm1(κ) = {r} and
atm2(κ) = ∅ for bothκ ∈ R(p). ThereforeTB(τ3) = I(r) =
n with the optimization.

Theorem 2 (Soundness of Bound Algorithm with Context).
Let∆P(L, T, lb, le) be a well-defined and deterministicDCP

over atomsA, ζ : T 7→ V ∪ {1} be alocal bound mappingfor
∆P , v ∈ V and τ ∈ T . Let TB(τ) andVB(a) be defined as
in Definition 11. EitherTB(τ) = ⊥ or TB(τ) is a transition
boundfor τ . EitherVB(v) = ⊥ or VB(v) is a variable bound
for v.

B. DCPs over non-well-founded domains

In real world code, many data types are not well-founded. The
abstraction of a concrete program is much simpler and more
information is kept if the abstract program model is not limited
to a well-founded domain. Below we extend our program
model from Definition 3 to the non-well-founded domainZ by
adding guards to the transitions in the program. Interestingly
our bound algorithm from Definition 9 resp. Definition 11
remains sound for the extended program model, if we adjust
our notion of alocal transition bound(Definition 12).
We extend the range of thevaluationsValA of A from N

to Z and allow constants to be integers, i.e., we defineA =
V∪C∪Z. We extend Definition 3 as follows: The transitionsT
of a guardedDCP ∆P(L, T, lb, le) are a subset ofL× 2V ×
2DC(A)×L. A sequence(lb, σ0)

g0,u0
−−−→ (l1, σ1)

g1,u1
−−−→ · · · is a

run of ∆P if it meets the conditions required in Definition 3
and additionallyσi(x) > 0 holds for allx ∈ gi. For examples
see Figure 1.

Definition 12 (Local Transition Bound forDCPs with
guards). Let ∆P(L, T, lb, le) be aDCP with guards overA.
Let τ ∈ T andv ∈ V . v is a local boundfor τ if for all finite
runs ρ = (lb, σ0)

τ0−→ (l1, σ1)
τ1−→ · · · (le, σn) of ∆P it holds

that ♯(τ, ρ) ≤ ↓(max(v, 0), ρ).

The algorithms in Sections III-C and IV are based on the
extended program model overZ, it is straightforward to adjust
them forDCPs without guards.

6

C. Determining Local Bounds

We call a path of aDCP ∆P(L, T, lb, le) simple and cyclic
if it has the same start- and end-location and does not visit a
location twice except for the start- and end-location. Given a
transitionτ ∈ T we assign itv ∈ V as local bound if for all
simple and cyclic pathsπ = l1

g1,u1
−−−→ l2

g2,u2
−−−→ ...ln (ln = l1)

of ∆P that traverseτ it holds that (1)∃0 < i < n s.t. v ∈ gi
and (2)∃0 < i < n s.t. v′ ≤ v+ c ∈ ui for somec < 0. Our
implementation avoids an explicit enumeration of the simple
and cyclic paths of∆P by a simple data flow analysis.

IV. PROGRAM ABSTRACTION

In this section we present our concrete program model and
discuss how we abstract a given program to aDCP .

Definition 13 (Program). Let Σ be a set ofstates. The set of
transition relationsΓ = 2Σ×Σ is the set of relations overΣ. A
programis a directed labeled graphP = (L,E, lb, le), where
L is a finite set of locations, lb ∈ L is the entry location,
le ∈ L is the exit location andE ⊆ L×Γ×L is a finite set of
transitions. We writel1

ρ
−→ l2 to denote a transition(l1, ρ, l2).

A norm e ∈ Σ → Z is a function that maps the states to the
integers.

Programs are labeled transition systems over some set of
states, where each transition is labeled by a transition relation
that describes how the state changes along the transition. Note,
that aDCP (Definition 3) is a program by Definition 13.

Definition 14 (Transition Invariants). Let e1, e2, e3 ∈ Σ → Z

be norms, and letc ∈ Z be some integer. We saye′1 ≤ e2+ e3
is invariant for l1

ρ
−→ l2, if e1(s2) ≤ e2(s1) + e3(s1) holds for

all (s1, s2) ∈ ρ. We saye1 > 0 is invariant for l1
ρ
−→ l2, if

e1(s1) > 0 holds for all (s1, s2) ∈ ρ.

Definition 15 (Abstraction of a Program). Let P =
(L,E, lb, le) be a program and letN be a finite set of norms.
A DCP ∆P = (L,E′, lb, le) with atomsN is an abstraction
of the programP iff for each transitionl1

ρ
−→ l2 ∈ E there

is a transition l1
u,g
−−→ l2 ∈ E′ s.t. everye′1 ≤ e2 + c ∈ u is

invariant for l1
ρ
−→ l2 and for everye1 ∈ g it holds thate1 > 0

is invariant for l1
ρ
−→ l2.

We propose to abstract a programP = (L,E, lb, le) to aDCP

∆P = (L,E′, lb, le) as follows: LetN be some initial set of
norms.
1) For each transitionl1

ρ
−→ l2 ∈ E we generate a set of

difference constraintsα(ρ): Initially we setα(ρ) = ∅ for all
transitionsl1

ρ
−→ l2. We then repeat the following construction

until the set of normsN becomes stable: For eache1 ∈ N and
l1

ρ
−→ l2 ∈ E we check whether there is a difference constraint

of form e′1 ≤ e2+c for e1 in α(ρ). If not, we try to find a norm
e2 (possibly not yet inN) and a constantc ∈ Z s.t.e′1 ≤ e2+c

is invariant for ρ. If we find appropriatee2 and c, we add
e′1 ≤ e2+c to α(ρ) ande2 to N . I.e., our transition abstraction
algorithm performs a fixed point computation which might not
terminate if new terms keep being added (see discussion in
next section).
2) For each transitionl1

ρ
−→ l2 we generate a set of guards

G(ρ): Initially we set G(ρ) = ∅ for all transitionsl1
ρ
−→ l2.

For eache ∈ N and each transitionl1
ρ
−→ l2 we check ife > 0

is invariant forl1
ρ
−→ l2. If so, we adde to G(ρ).

3) We setE′ = {l1
G(ρ),α(ρ)
−−−−−−→ l2 | l1

ρ
−→ l2 ∈ E}.

In the following we discuss how we implement the above
sketched abstraction algorithm.

A. Implementation

0. Guessing the initial set of Norms.:We aim at creating
a suitable abstract program for bound analysis. In our non-
recursive setting, complexity evolves from iterating loops.
Therefore we search for expressions which limit the number
of loop iterations. For this purpose we consider conditionsof
form a > b resp.a ≥ b found in loop headers or on loop-
paths if they involve loop counter variables, i.e., variables
which are incremented and/or decremented inside the loop.
Such conditions are likely to limit the consecutive execution
of single or multiple loop-paths. From each such condition we
form the integer expressionb− a and add it to our initial set
of norms. Note that on those transitions on whicha > b holds,
b− a > 0 must hold.
1. Abstracting Transitions.:For a given norme ∈ N

and a transitionl1
ρ
−→ l2 we derive a transition predicate

e′ ≤ e2 + c ∈ α(ρ) as follows: We symbolically executeρ
for deriving e′ from e. In order to keep the number of norms
low, we first try
i) to find a norme2 ∈ N s.t. e′ ≤ e2 + e3 is invariant for
ρ where e3 is some integer valued expression. Ife3 = c

for some integerc ∈ Z we derive the transition predicate
e′ ≤ e2+c. Else we use our bound algorithm (Section III) for
over-approximatinge3 by a constant expressionk ≥ e3 and
infer the transition predicatee′ ≤ e2 + k where we consider
k to be a symbolic constant.
ii) If i) fails, we form a norme4 s.t.e′ ≤ e4+c by separating
constant parts in the expressione′ using associativity and
commutativity of the addition operator. E.g., givene′ = v+5
we sete4 = v and c = 5. We adde4 to N and derive the
predicatee′ ≤ e4 + c.
Since case ii) triggers a recursive abstraction for the newly
added norm we have to ensure the termination of our abstrac-
tion procedure: Note that we can always stop the abstraction
process at any point, getting a sound abstraction of the original
program. We therefore enforce termination of the abstraction
algorithm by limiting the chain of recursive abstraction steps
triggered by entering case ii) above: In case this limit is
exceeded we remove all norms from the abstract program
which form part of the limit exceeding chain of recursive
abstraction steps. This also ensures well-definedness of the
resulting abstract program.
Further note that theDCPs generated by our algorithm are
alwaysdeterministic: For each transition, we get at most one
predicatee′ ≤ e2 + c for eache ∈ N .
2. Inferring Guards: Given a transitionl1

ρ
−→ l2 and a norm

e, we use an SMT solver to check whethere > 0 is invariant
for l1

ρ
−→ l2. If so, we adde to G(ρ).

Non-linear Iterations.: We handle counter updates such as
x′ = 2x or x′ = x/2 as discussed in [16].

7

Succ. 1 n n2 n3 n>3 2n Time TO
Loopus’15 806 205 489 97 13 2 0 15m 6
Loopus’14 431 200 188 43 0 0 0 40m 20
KoAT 430 253 138 35 2 0 2 5,6h 161
CoFloCo 386 200 148 38 0 0 0 4.7h 217

Fig. 4. Tool Results on analyzing the complexity of 1659 functions in the
cBench benchmark, none of the tools inferslog bounds.

V. EXPERIMENTS

Implementation:We have implemented the presented algo-
rithm into our tool Loopus [1]. Loopus reads in the LLVM [15]
intermediate representation and performs an intra-procedural
analysis. It is capable of computing bounds for loops as well
as analyzing the complexity of non-recursive functions.
Experimental Setup:For our experimental comparison we
used the program and compiler optimization benchmarkCol-
lective Benchmark[2] (cBench), which contains a total of
1027 different C files (after removing code duplicates) with
211.892 lines of code. In contrast to our earlier work we
did not perform a loop bound analysis but a complexity
analysis on function level. We set up the first comparison of
complexity analysis tools on real world code. For comparing
our new tool (Loopus’15) we chose the 3 most promising
tools from recent publications: the tool KoAT implementing
the approach of [7], the tool CoFloCo implementing [10]
and our own earlier implementation (Loopus’14) [16]. Note
that we compared against the most recent versions of KoAT
and CoFloCo (download 01/23/15).1 The experiments were
performed on a Linux system with an Intel dual-core 3.2
GHz processor and 16 GB memory. We used the following
experimental set up:
1) We compiled all 1027 C files in the benchmark into the
llvm intermediate representation using clang.
2) We extracted all 1751 functions which contain at least one
loop using the tool llvm-extract (comes with the llvm tool
suite). Extracting the functions to single files guaranteesan
intra-procedural setting for all tools.
3) We used the tool llvm2kittel [3] to translate the 1751 llvm
modules into 1751 text files in the Integer Transition System
(ITS) format read in by KoAT.
4) We used the transformation described in [10] to translate
the ITS format of KoAT into the ITS format of CoFloCo.
This last step is necessary because there exists no direct way
of translating C or the llvm intermediate representation into
the CoFloCo input format.
5) We decided to exclude the 91 recursive functions in the set
because we were not able to run CoFloCo on these examples
(the transformation tool does not support recursion), KoAT
was not successful on any of them and Loopus does not
support recursion.
In total our example set thus comprises 1659 functions.
Evaluation: Table 4 shows the results of the 4 tools on our
benchmark using a time out of 60 seconds. The first col-
umn shows the number of functions which were successfully
bounded by the respective tool, the last column shows the
number of time outs, on the remaining examples (not shown
in the table) the respective tool did not time out but was also

1https://github.com/s-falke/kittel-koat, https://github.com/aeflores/CoFloCo

not able compute a bound. The columnTime shows the total
time used by the tool to process the benchmark. Loopus’15
computes the complexity for about twice as many functions
as KoAT, CoFloCo and Loopus’14 while needing an order of
magnitude less time than KoAT and CoFloCo and significantly
less time than Loopus’14. We conclude that our approach is
both scalable and more successful than existing approaches.
Pointer and Shape Analysis:Even Loopus’15, computed
bounds for only about half of the functions in the benchmark.
Studying the benchmark code we concluded that for many
functions pointer alias and/or shape analysis is needed for
inferring functional complexity. In our experimental compar-
ison such information was not available to the tools. Using
optimistic (but unsound) assumptions on pointer aliasing and
heap layout, our tool Loopus’15 was able to compute the
complexity for in total 1185 out of the 1659 functions in the
benchmark (using 28 minutes total time).
Amortized Complexity:During our experiments, we found
15 examples with an amortized complexity that could only
be inferred by the approach presented in this paper. These
examples and further experimental results can be found on [1]
where our new tool is offered for download.

REFERENCES

[1] http://forsyte.at/software/loopus/.
[2] http://ctuning.org/wiki/index.php/CTools:CBench.
[3] https://github.com/s-falke/llvm2kittel .
[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

analysis of object-oriented bytecode programs.Theor. Comput. Sci.,
413(1):142–159, 2012.

[5] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart
programs. InSAS, pages 117–133, 2010.

[6] A. M. Ben-Amram. Size-change termination with difference constraints.
ACM Trans. Program. Lang. Syst., 30(3), 2008.

[7] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating
runtime and size complexity analysis of integer programs. In TACAS,
page to appear, 2014.

[8] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositionalcertified
resource bounds. PLDI, 2015.

[9] T. Colcombet, L. Daviaud, and F. Zuleger. Size-change abstraction and
max-plus automata. InMFCS, pages 208–219, 2014.

[10] A. Flores-Montoya and R. Hähnle. Resource analysis ofcomplex
programs with cost equations. InAPLAS, pages 275–295, 2014.

[11] T. M. Gawlitza, M. D. Schwarz, and H. Seidl. Parametric strategy
iteration. arXiv preprint arXiv:1406.5457, 2014.

[12] S. Gulwani and S. Juvekar. Bound analysis using backward symbolic
execution. Technical Report MSR-TR-2004-95, Microsoft Research,
2009.

[13] S. Gulwani and F. Zuleger. The reachability-bound problem. In PLDI,
pages 292–304, 2010.

[14] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized
resource analysis.ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

[15] C. Lattner and V. S. Adve. Llvm: A compilation frameworkfor lifelong
program analysis & transformation. InCGO, pages 75–88, 2004.

[16] M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis
for bound analysis and amortized complexity analysis. InCAV, pages
745–761. Springer, 2014.

[17] M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static
analysis for bound analysis and amortized complexity analysis. CoRR,
abs/1401.5842, 2014.

[18] R. E. Tarjan. Amortized computational complexity.SIAM Journal on
Algebraic Discrete Methods, 6(2):306–318, Apr. 1985.

[19] P. Wu, A. Cohen, and D. Padua. Induction variable analysis without
idiom recognition: Beyond monotonicity. InLanguages and Compilers
for Parallel Computing, pages 427–441. Springer, 2003.

[20] F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of
imperative programs with the size-change abstraction. InSAS, pages
280–297, 2011.

8

http://forsyte.at/software/loopus/
http://ctuning.org/wiki/index.php/CTools:CBench
https://github.com/s-falke/llvm2kittel

xnu(int len) {
int beg,end,i = 0;

l1 while(i < len) {
i++;

l2 if (*)

end = i;

l3 if (*) {
int k = beg;

l4 while (k < end)

k++;

end = i;

beg = end;

}
l5 }
}

begin

l1

l2

l3

l4l5

end

ρ0 ≡

b′ = 0
e′ = 0
i′ = 0

ρ1 ≡

i < l

b′ = b

e′ = e

i′ = i+ 1

ρ2b ≡

b′ = b

e′ = e

i′ = i

ρ2a ≡

b′ = b

e′ = i

i′ = i

ρ3a ≡

k′ = b

b′ = b

e′ = e

i′ = i

ρ3b ≡

b′ = b

e′ = e

i′ = i

ρ5 ≡

k ≥ e

e′ = i

b′ = i

i′ = i

ρ6 ≡

b′ = b

e′ = e

i′ = i

ρ4 ≡

k < e

k′ = k + 1
b′ = b

e′ = e

i′ = i

i ≥ l

l0

l1

l2

l3

l4l5

(e − b)′ ≤ 0;
(i − b)′ ≤ 0;
(l − i)′ ≤ l;

(l − i) > 0
(e − b)′ ≤ (e− b)
(i − b)′ ≤ (i− b) + 1
(l − i)′ ≤ (l − i) − 1

(e − b)′ ≤ (e− b)
(i − b)′ ≤ (i− b)
(l − i)′ ≤ (l − i)

(e − b)′ ≤ (i− b)
(i − b)′ ≤ (i− b)
(l − i)′ ≤ (l − i)

(e − k)′ ≤ (e − b)
(e − b)′ ≤ (e − b)
(i− b)′ ≤ (i − b)
(l − i)′ ≤ (l − i)

(e − b)′ ≤ (e − b)
(i − b)′ ≤ (i − b)

(l − i)′ ≤ (l − i)

(e − b)′ ≤ 0
(i − b)′ ≤ 0
(l − i)′ ≤ (l − i)

(e − b)′ ≤ (e− b)
(i − b)′ ≤ (i− b)
(l − i)′ ≤ (l − i)

(e− k) > 0
(e − k)′ ≤ (e − k) − 1

(a) Example 3 (b) LTS of Example 3
(c) AbstractedDCP for Ex-
ample 3

Fig. 5. Example 3 shows the code after which we have modeled Example 1, * denotes non-determinism (arising from conditions not modeled in the analysis)

APPENDIX

A. Full Example

Example 3 in Figure 5 contains a snippet of the source
code after which we have modeled Example 1 in Figure 1.
Example 3 can be found in the SPEC CPU2006 benchmark2,
in function XNU of 456.hmmer/src/masks.c. The outer loop
in Example 3 partitions the interval[0, len] into disjoint
sub-intervals [beg, end]. The inner loop iterates over the
sub-intervals. Therefore the inner loop has an overall linear
iteration count. Example 3 is a natural example for amortized
complexity: Though a single visit to the inner loop can cost
len (if beg = 0 and end = len), several visits can also
not cost more thanlen since in each visit the loop iterates
over a disjoint sub-interval. I.e., the total costlen of the
inner loop is theamortized costover all visits to the inner
loop. To the best of our knowledge our new implementation
Loopus’15 (available at [1]) is the only tool that infers the
linear complexity of Example 3 without user interaction.

1) Abstraction: In Figure 5 (b) the labeled transition system
for Example 3 is shown. We discuss how our abstraction
algorithm from Section IV abstracts the example to theDCP

shown in Figure 5 (c).
Our heuristics add the expressionsl − i and e − k generated
from the conditionsk < e andi < l to the initial set of norms
N . Thus our initial set of norms isN = {l− i, e− k}.

• We check how l − i changes on the transitions
ρ0, ρ1, ρ2a, ρ2b, ρ3a, ρ3b, ρ4, ρ5, ρ6:

– ρ0: we derive(l − i)′ ≤ l (reset), we addl to N

2https://www.spec.org/cpu2006/

– ρ1: we derive(l−i)′ ≤ (l−i)−1 (negative increment)
– ρ2a, ρ2b, ρ3a, ρ3b, ρ4, ρ5, ρ6: l − i unchanged

• We check how l changes on the transitions
ρ0, ρ1, ρ2a, ρ2b, ρ3a, ρ3b, ρ4, ρ5, ρ6:

– unchanged on all transitions

• We check howe − k changes on the transitionsρ3a, ρ4
(k is only defined atl4):

– ρ3a: we derive(e − k)′ ≤ (e − b) (reset), we add
(e − b) to N

– ρ4: we derive (e − k)′ ≤ (e − k) − 1 (negative
increment)

• We check how e − b changes on the transitions
ρ0, ρ1, ρ2a, ρ2b, ρ3a, ρ3b, ρ4, ρ5, ρ6::

– ρ0: we derive(e− b)′ ≤ 0 (reset)
– ρ2a: we derive(e− b)′ ≤ (i− b), we add(i− b) to

N
– ρ5: we derive(e− b)′ ≤ 0 (reset)
– ρ1, ρ2b, ρ3a, ρ3b, ρ4, ρ6:: e− b unchanged

• We check how i − b changes on the transitions
ρ0, ρ1, ρ2a, ρ2b, ρ3a, ρ3b, ρ4, ρ5, ρ6:

– ρ0: we derive(i− b)′ ≤ 0 (reset)
– ρ1: we derive(i− b)′ ≤ (i− b) + 1 (increment)
– ρ5: we derive(i− b)′ ≤ 0 (reset)
– ρ2a, ρ2b, ρ3a, ρ3b, ρ4, ρ6:: unchanged

• We have processed all norms inN

We infer thatρ1 |= (l − i) > 0 andρ4 |= (e − k) > 0.
The resultingDCP is shown in Figure 5(c).

2) Bound Computation:We discuss how our bound algorithm
from Section III infers thelinear bound for the inner loop at

9

l0

l1

l2

l3

l4l5

τ0 ≡

q′ ≤ 0;
r′ ≤ 0;
x′ ≤ l;

τ1 ≡

x > 0
q′ ≤ q

r′ ≤ r + 1
x′ ≤ x− 1

τ2b ≡

q′ ≤ q

r′ ≤ r

x′ ≤ x

τ2a ≡

q′ ≤ r

r′ ≤ r

x′ ≤ x

τ3a ≡

p′ ≤ q

q′ ≤ q

r′ ≤ r

x′ ≤ x

τ3b ≡

q′ ≤ q

r′ ≤ r

x′ ≤ x

τ5 ≡

q′ ≤ 0
r′ ≤ 0
x′ ≤ x

τ6 ≡

q′ ≤ q

r′ ≤ r

x′ ≤ x

τ4 ≡
p > 0
p′ ≤ p − 1

l

x

τ0

00

r00

q

p

τ0τ5

τ2a
τ5τ0

τ3a

DCP for Example 3, variables renamed Reset Graph

Fig. 6.

l4. For ease of readability, we state the abstractedDCP of
Example 3 in Figure 6 renaming the variables by the following
scheme:{p = (e−k),q = (e−b), r = (i−b),x = (l−i)}. On
the right hand side the reset graph is shown. Our Algorithm
from Definition 11 now computes a bound for the example by
the following reasoning:

1) Our algorithm for determining the local bound mapping
(Section III-C) assigns the following local bounds to the
respective transitionsζ(τ0) = 1, ζ(τ1) = ζ(τ2a) =
ζ(τ2b) = ζ(τ3a) = ζ(τ3b) = ζ(τ5) = ζ(τ6) = x,
ζ(τ4) = p.

2) R(p) = {0
τ0,0
−−→ r

τ2a,0
−−−→ q

τ3a,0
−−−→ p, 0

τ5,0
−−→ r

τ2a,0
−−−→

q
τ3a,0
−−−→ p, 0

τ0,0
−−→ q

τ3a,0
−−−→ p, 0

τ5,0
−−→ q

τ3a,0
−−−→ p}

3) We get: TB(τ1) resp. TB(τ2a) resp. TB(τ2b) resp.
TB(τ3a) resp.TB(τ3b) resp.TB(τ5) resp.TB(τ6) =
TB(τ0)× l = l (Definition 11) withTB(τ0) = 1

4) For τ4 we get: TB(τ4) = TB(τ0, τ2a, τ3a) × 0 +
TB(τ1) × 1 + TB(τ5, τ2a, τ3a) × 0 + TB(τ1) × 1 +
TB(τ0, τ3a)×0+TB(τ5, τ3a)×0 = n×1+n×1 = 2n
(Definition 11) withTB(τ1) = n

5) We get the precise boundn for τ4 when applying the
optimization presented in the discussion under Defini-
tion 11: For allκ ∈ R(p) we haveatm1(κ) = {r, q}
and atm2(κ) = ∅. ThereforeTB(τ4) = TB(τ1) ×
1 + TB(τ0, τ2a, τ3a) × 0 + TB(τ5, τ2a, τ3a) × 0 +
TB(τ0, τ3a) × 0 + TB(τ5, τ3a) × 0 = n × 1 = n with
TB(τ1) = n.

10

	I Introduction
	II Motivation and Related Work
	II-A Amortized Complexity Analysis
	II-B Invariants and Bound Analysis
	II-C Related Work

	III Program Model and Algorithm
	III-A Context-Sensitive Bound Analysis
	III-B DCPs over non-well-founded domains
	III-C Determining Local Bounds

	IV Program Abstraction
	IV-A Implementation

	V Experiments
	References
	Appendix
	A Full Example
	A1 Abstraction
	A2 Bound Computation

