arXiv:1508.04958v1 [cs.PL] 20 Aug 2015

Difference Constraints: An adequate Abstraction for
Complexity Analysis of Imperative Programs

Moritz Sinn, Florian Zuleger, Helmut Veith
TU Wien, Austria

Abstract—Difference constraints have been used for termination In this paper, we establish the practical usefulnessaéfs
analysis in the literature, where they denote relational irequalities for bound (and complexity) analysis of imperative programs
of the form 2’ < y + ¢, and describe that the value ofz in the 1) We propose the first algorithm for bound analysis of

current state is at most the value ofy in the previous state . . .
plus some constantc € Z. In this paper, we argue that the DCPs. Our algorithm is based on the dichotomy between

complexity of imperative programs typically arises from cainter ~ increments and resets. 2) We develop appropriate techsique
increments and resets, which can be modeled naturally by for abstracting C programs t®CPs: we describe how to
difference constraints. We present the first practical algathm for extract norms (integer-valued expressions on the program
the analysis of difference constraint programs and descrie how state) from C programs and how to use them as variables in
C programs can be abstracted to difference constraint progams. . . .

Our approach contributes to the field of automated complexiy DCPs. We are_not_ aware of any prewgus implementation of
and (resource) bound analysis by enabling automated amosed D CPs for termination or bound analysis. 3) We demonstrate
complexity analysis for a new class of programs and providig the effectiveness of our approach through a thorough experi
a conceptually simple program model that relates invariant and mental evaluation. We present the first comparison of bound
bound analysis. We demonstrate the effectiveness of our aggach analysis tools on source code from real software projeets (s

through a thorough experimental comparison on real world C g . . o
code: our tool Loopus computes the complexity for considetaly SectionY). Our implementation performs significantly bett

more functions in less time than related tools from the liteature. iN time and success rate.

II. MOTIVATION AND RELATED WORK
. INTRODUCTION A. Amortized Complexity Analysis

Automated program analysis for inferring program comgiexi Example 1 stated in Figufd 1 is representative for a class of
and (resource) bounds is a very active area of researgjbps that we found in parsing and string matching routines
Amongst others, approaches have been developed for afaring our experiments. In these loops the inner loop israt
lyzing functional programs_[14], C# [13], CI[5]. [20]._[16], over disjoint partitions of an array or string, where thetiian
Java [4] and Integer Transition Systemns [4], [7]./[10]. sizes are determined by the program logic of the outer loop.
Difference constraint¢DCs) have been introduced by Ben-For an illustration of this iteration scheme, we refer thader
Amram for termination analysis in_[6], where they denotey Example 3 stated in AppendiX A,which contains a snippet
relational inequalities of the form’ < y + ¢, and describe of the source code after which we have modeled Example 1.
that the value ofr in the current state is at most the valugxample 1 has the lineasomplexity2n, because the inner
of y in the previous state plus some constar Z. We call |oop as well as the outer loop can be iterated at most
a program whose transitions are given by a set of differenggmes (as argued in the next paragraph). However, previous
constraints aifference constraint prograrqDCP). approaches to bound analysis [[13]] [5].1[20],1[16], [4],[7]
In this paper, we advocate the use OfCs for program [10] are only able to deduce that the inner loop can be
complexity and (resource) bounds analysis. Our key insigiérated at most guadraticnumber of times (with loop bound
is that DCs provide anatural abstractionof the standard »2) by the following reasoning: (1) the outer loop can be
manipulations of counters in imperative programs: countgerated at most: times, (2) the inner loop can be iterated at
increments/decrements:= x + c resp.resetsz := y, can be mostn timeswithin one iteration of the outer loop (because
modeled by theDCs 2’ < z+ c resp.z’ < y (see Sectioh IV the inner loop has a local loop boundandp < n is an
on program abstraction). In contrast, previous approathesinvariant), (3) the loop bound? is obtained from (1) and (2)
bound analysis can model either only resets [13], [5], [M4]], by multiplication. We note that inferring the linear comxitg
[7], [10] or increments[[16]. For this reason, we are able @ for Example 1, even though the inner loop can already be
design a more powerful analysis: In Section 1I-A we discusgratedn times within one iteration of the outer loop, is an
that our approach achievesnortized analysigor a new class instance ofamortized complexity analysj48].
of programs. In Section 1148 we describe how our approagh the following, we give an overview how our approach infers
performsinvariant analysisby means of bound analysis. the linear complexity for Example 1:

))) 1. Program Abstraction. We abstract the program to/aCP

Supported by the Austrian National Research Network S1-N@B (RiSE)

of the Austrian Science Fund (FWF) and by the Vienna Sciemck Tech- over Z as shown in FlgurEll. We discuss our algorlthm for
nology Fund (WWTF) through grants PROSEED and ICT12-059. abstracting imperative programs foCPs based on symbolic

http://arxiv.org/abs/1508.04958v1

. . foo(uint n, uint ml
void foo(uint n) { I , (. 4 I
i ' < mn; uint m2) { b
int x = n; img ;= . ,
: _ r < 0; int y = n; lToEySn
int r = 0; l I int x:
li while(x > 0) { 1 €z >0, l if(*), _ L y <y
x =x-1; i = 2 <z-1 ! T0b = Toa = 201
Ts = r<r+1 x = ml; y' <y (l =
r=r + 1; S < l = < m2 y >0,
. L 2 else r=m ,
l2 if (%) | o <z B b mn= y<y-1
int p = r; - o S w x = m2; / o <w42
b= s Nsea= " <r |l while(y > 0) { |z 2 <
I3 while(p > 0) f = T S 2, .
__. =<y P= y—=i lg — I,
r E Ot l4 4—[3 ’ 0 X =x+ 2; } U 4
! _ o<z p>0 int z = x;
} T4= <0 z Sw : z>0
= o< ls while(z > 0) ™=,)
la } } T3= , 2 Z<z-1
p<p-1 z—=; }
Complexity: TB(7s) + TB(13) =n+n =2n Complexity: TB(71) + TB(73) = max(m1,m2) + 3n
Example 1 | abstractedD CP of Example 1 Example 2 | abstractedD CP of Example 2

Fig. 1. Running Examples, * denotes non-determinism fagisiom conditions not modeled in the analysis)

execution in Sectiop IV. B. Invariants and Bound Analysis

2. Finding Local Bounds. We identify p as a variable that

limits the number of executions of transitiop: We have the We explain on Example 2 in Figuiel 1 how our approach
guardp > 0 on 73 andp decreases on each executionrgf Performsinvariant analysisby means of bound analysis. We
We call p alocal boundfor 75. Accordingly we identifyz as first motivate the importance of invariant analysis for boun

a local boundfor transitionsry, T2, Tob, T4, T5. analysis. It is easy to infex as a bound for the possible
3. Bound Analysis. Our algorithm (stated in Sectiopill) umber of iterations of the loop . However, in order to
computedransition boundsi.e., (symbolic) upper bounds onobtain a bound in théunction parametershe difficulty lies

the number of times program transitions can be executed, ddinding an invariant: < expr(n,mi,mz). Here, the most
variable boundsi.e., (symbolic) upper bounds on variable valPrecise invariant: < max(m;, ms) + 2n cannot be computed
ues. For both types of bounds, the main idea of our algorith®¥ Standard abstract domains suchoatagonor polyhedra

is to reasorhow muchand how oftenthe value of the local these domains areonvexand cannot express non-convex
bound resp. the variable value may increase during progr&@htions such asmaximumThe most precise approximation of
run. Our algorithm is based on a mutual recursion betweérn the polyhedra domain ig < 1, +ms+2n. Unfortunately,
variable bound analysis (“how much”, functioiB(v)) and itis well-known that the polyhedra abstract domain d_oe_s not
transition bound analysis (“how often”, functiof"3(r)). scale to larger programs and needs to rely on heuristics for
Next, we give an intuiton how our algorithm computedermination. Next, we explain how our approach computes
transition bounds: Our algorithm computéB(r) = n for invariants using bpund anaIyS|s_ and_d|scuss hoyv our reagoni
7 € {71, T2a, T2b, T4, 75 } because the local boundis initially 1S substanyally different from invariant analysis by abst

set ton and never increased or reset. Our algorithm comput@éerpretation.

TB(73) (3 corresponds to the loop &f) as follows: 73 has Our algorithm computes a transition bound for the loop at
local boundp; p is reset tor on m,; our algorithm detects thatls by TB(m3) = TB(m) x VB(z) = 1 x VB(z) =
before each execution of,, r is reset ta) on eitherry or 74, VB(z) = TB(71) x 2 + max(mi,me) = (n x TB(19)) x
which we call thecontextunder whichr, is executed; our 2 + max(m,mg) = (n x 1) x 2 4+ max(mi,mg) = 2n +
algorithm establishes that between being reset and flowiiag i max(m1,m2). We point out the mutual recursion between
p the value ofr can be incremented up t65(r,) times byl; TB and VB: TB(r3) has called VB(x), which in turn

our algorithm obtains’'B(71) = n by a recursive call; finally, called T5(r;). We highlight that the variable bound B(x)

our algorithm calculate§’B(73) = 0+ TB(r1) x 1 =n. We (corresponding to the invariant < max(m1,mg) + 2n) has
give an example for the mutual recursion betweEf8 and been established during the computation7d$(3).

VB in Section 1[-B. Standardabstract domainssuch asoctagon or polyhedra
We contrast our approach for computing the loop bound pfopagate informatioforward until a fixed point is reached,

I3 of Example 1 with classical invariant analysis: Assumgreedily computing all possible invariants expressible in the
"¢’ counting the number of inner loop iterations (i.e:, abstract domain at every location of the program. In cohtras
is initialized to 0 and incremented in the inner loop). Fo¥ B(z) infers the invariantr < max(ml,m2) + 2n by
inferring ¢ <= n through invariant analysis the invariantmodular reasoningocal informationabout the program (i.e.,
c+z+r <= n is needed for the outer loop, and the invariarihcrements/resets of variables, local bounds of tramsjias
c+z+p <= n for the inner loop. Both relate 3 variables anatombined to alobalprogram property. Moreover, our variable
cannot be expressed as (parametrized) octagons (e.g), [1dQd transition bound analysisdemand-drivenour algorithm
Further, the expressions+ = + r andc + = + p do not performs only those recursive calls that are indeed needed
appear in the program, which is challenging for templatetlasto derive the desired bound. We believe that our analysis
approaches to invariant analysis. complements existing techniques for invariant analysid an

will find applications outside of bound analysis. [8] is restricted to linear bounds, while our approach desiv
polynomial bounds (e.g., Example B in Figuké 2) which
C. Related Work may also involve the mgxmurn operator. An experlmental

comparison was not possible as [8] was developed in parallel
In [6] it is shown that termination of0CPs is undecidable
in general but decidable for the natural syntactic subatdss 1. PROGRAM MODEL AND ALGORITHM
deterministicDCPs (see Definitior B), which is the class of

In this section we present our algorithm for computing worst

DCPs we use in this paper. It is an open question for future . ;
S pap ben g case upper bounds on the number of executions of a given

work whether there is a complete algorithm for bound analy%ransition (transition bound) and on the value of a given

of deterministicDCPs. . . .
: . variable (variable bound). We base our algorithm on the
In [16] a bound analysis based on constraints of the form X N
, : o . abstract program model dDCPs stated in Definitioi13. In
z' < x + c is proposed, where is either an integer or a

symbolic constant. The resulting abstract program modeIS|seCt'0n[E we generalize)CPs and our algorithm to the

strictly less powerful thanDCPs. In [20] a bound analysis non-well-founded domaift.

based on so-callesize-change constraints <y is proposed, Definition 1 (Variables, Symbolic Constants, Atom$By V
where< € {<, <}. Size-change constraints form a strict synwe denote a finite set of Variables. Bywe denote a finite set
tactic subclass oD Cs. However, termination is decidable everof symbolic constantsd =1V UC UN is the set oatoms

for non-deterministic size-change programs and a compI%

algorithm for deciding the complexity of size-change peogs fé/erA is an inequality of forms’ < y+cwithz €V, y € A

has been developed [9]. Because the c?onstramts in [20], [and ¢ € Z. We denote byDC(A) the set of all difference
are less expressive thabiCs, the resulting bound analyses :
onstraints overA.

cannot infer the linear complexity of Example 1 and need 5
rely on external techniques for invariant analysis. Definition 3 (Difference Constraint ProgramA difference
In Section[\Y we compare our implementation against thmnstraint prograniDCP) over A is a directed labeled graph
most recent approaches to automated complexity anal\@js [1AP = (L, T\, I, .), whereL is a finite set oflocations !, € L
[7], [16]. [10] extends the COSTA approach by control flowis the entry location]. € L is the exit location andl’ C
refinement for cost equations and a better support for mulfix 2P¢(A) x I is a finite set of transitions. We write = [to
dimensional ranking functions. The COSTA project (el.g) [4denote a transitiorily, u, l3) € T labeled by a set of difference
computes resource bounds by inferring an upper bound constraintsu € 2P¢(Y) . Given a transitionr =1, = I, € T
the solutions of certain recurrence equations (so-catlest of AP we calll; the source location of and /> the target
equation3relying on external techniques for invariant analysi®cation of 7. A pathof AP is a sequencé, —% [; & ..
(which are not explicitly discussed). The bound analysiiF]n with I; =+ I,,, € T for all i. The set ofvaluationsof A is
uses approaches for computing polynomial ranking funstiothe setVal4 = A — N of mappings fromA to the natural
from the literature to derive bounds for SCCs in isolationumbers witho(a) = a if a € N. A run of AP is a sequence
and then expresses these bounds in terms of the functignoo) % (I1,01) —» --- such thatl, ~% I, 25 --- is
parameters using invariant analysis (see next paragraph). a path of AP and for all ; it holds that (1)o; € Val4, (2)
The powerful idea of expressing locally computed loop baund; 1 (x) < o;(y)+cforall 2’ <y + ¢ € u;, (3)0i(s) = oo(s)

in terms of the function parameters by alternating betweéor all s € C. Givenv € V and! € L we say thatv is
loop bound analysis and variable upper bound analysis rdefinedat [and writev € D(l) if | # [, and for all incoming
been explored in(]7],[[16] (as discussed in the extended vémansitionsl; — [€ T of [it holds that there are € A and
sion [17]) and[[12]. We highlight some important differeacec € Z s.t.v' < a-+c € w.

to these earlier works[[7] computes upper bound invariandsP is deterministic(fan-in-freein the terminology of([6]), if
only for the absolute values of variables; this does, forfor every transitionl; = I, € T and everyv € V there is at
example, not allow to distinguish between variable increthe most onea € 4 andc e Z s.t. v < a-+c € w.

and decrements during the analysis. [17] and [12] do not gi
a general algorithm but deal with specific cases.

&finition 2 (Difference Constraints)A difference constraint

Sur approach assumes the giv&lCP to be deterministic

[19] discusses automatic parallelization of loop itenasiothe We further assume thabCPs arewell-definedLet v € V
P P and! € L, if v is live at [thenv € D(I). Our abstraction

approach builds on summarizing inner loops by rnultiplyir]glgorithm from Sectiol_IV generates only deterministic and
the increment of a variable on a single iteration of a loo\ﬁell-deﬁnedDCPs

W|th_ the loop bm_md. The loop bounds in [19] are restrlcten Definitions td Tl we assumeRCP AP(L, T, Iy, 1,) over
to simple syntactic patterns. X
_ to be given.

The recent paper [8] discusses an interesting alternative f4

amortized complexity analysis of imperative programs: Mefinition 4 (Transition Bound) Let 7 € T, 7 is bounded

system of linear inequalities is derived using Hoare-styléf = appears a finite number of times on any run&P. An

proof-rules. Solutions to the system represent vdilitar expressiorexpr overC UZ is atransition boundor 7 iff 7 is

resource bounds. Interestingly, [8] is able to computeitreal boundedand for anyfinite run p = (I, 00) —% (I1,01) —»
Uz

bound fori; of Example 1 but fails to deduce the bound fofls,02) — ... (l.,0,) of AP it holds thatr appears not
the original source code (provided in Appenfik A).Moregvemore thans(expr) often onp. We say that a transition bound

3

ly ; l
(B) 1‘/§n c b
lb] To = 3<0 © i77 =n
(A) m= YSn = U<n 0= <n
l it <0 _ I, k<0 I > |
TE L o 7= nZ_ x i< 5= L7 <
i <i—1 1o @< A i <j—1 i <i—1 = <
SRS S e I s S R 1] 20 (n K<
| W ka1 i<i K<k la
le - =i <k gt
U''<i-1 =T ST
K<k 25k <k-1
Complexity: TB(t1) + TB(m2) = 2n | Complexity: TB(71) + TB(r2) + TB(r3) = 2n +n? | Complexity: TB(12) 4+ TB(73) = 2n
C:{mo— 1,71 = 4,12 5} C:{ro— 1,71 =i, 70— 1,73 j} C:{ro— 1,71 = i,73— 1,70 k}
TB(m1) =n, TB(m2) =n TB(t1) =n, TB(12) = n, TB(73) = n? Def.[@: TB(r1) = n, TB(12) = n?, TB(13) =n
Def.[Id: TB(11) = n, TB(r2) =n, TB(13) =n

Fig. 2. ExampleDCP’s (A), (B), (C)

expr of 7 is preciseiff there is a runp of AP s.t. 7 appears Definition 8 (Resets and Incrementd)et v € V. We define
oo(expr) times onp. the resetsR(v) and incrementsZ(v) of v as follows:
v) ={(i > lac)eTxAXZ|
vV <a+cEua#v}
(v) ={(1 B1c)eTXZ|v <v+c€uc>0}

We want to infer the complexity of the examples in Figlire 2
(Examples A, B, C), i.e., we want to infer how often location

ll. can be visited duri_ng an execution of the program. iven a pathm of AP we say thatv is reseton = if there
will do so by computing a bound on the number of times - ransition+ on = such that(r, a,c) € R(v) for some

transitionsry, 71, 72 andrs may be executed. In general, thea c AandceZ
complexity of a given program can be inferred by summing '
up the transition bounds for the back edges in the progranExample BZ(k) = {(r,1)} andR(k) = {(70,7n,0)}.

Definition 5 (Counter Notation) Let r € T andv € V. Let "€ We have(7,a, c) € R(v) if variable v is reset to a value
u3 f < a+c when executing the transition Accordingly we have

p = (ly,o0) =% (I1,00) % ---(l,0,,) be a finite run o | EXEC e
AP. By t(r, p) we denote the number of times thabccurs (1,c) € Z(v) if variablev is incremented by a valu€ c when
Jexecuting the transition.

on p. By |(v, p) we denote the number of times that the val
of v decreases om, i.e. [(v,p) = [{i | 0s(v) > 0is1(v)}]. Our algorithm in Definitiorl P is build on anutual recursion
between the two function¥ 5(v) and TB(7), where VB(v)

Definition 6 (Local Transition Bound)Let7 € T'andv € V. infers avariable boundfor v and T5(r) infers atransition
v is alocal boundfor 7 iff on all finite runsp = (Iv,00) — boundfor the transitionr.

(Ii,01) 25 -+ (I, o) of AP it holds thatf(r, p) < (v, p). o _
We call acompletemapping¢ : T — V U {1} a local bound Definition 9 (Bound Algorithm) Let ¢ : 7' — V U {1} be a
mappingfor AP if ¢(7) is a local boundof 7 or ¢((r) = 1 local bound mappingor AP. We definel 55 : A — Ezpr(A)

and 7 can only appear at most once on any path/dP. and T'B : T'+— Euxpr(A) as:
VB(a) =a, ifac A\, else
Example A:i is a local bound forr, j is a local bound for y3(y) = Incr(v) + max (VB(a)+c)

5. Example C:i is a local bound for; and forrs. (La,c)ER(v)
A variablev is alocal transition boundf on any run of AP ;gg:; ; ingf(é@ﬁ 1, else
we can traverse not more often than the number of times the

o . + > TB(t) x max(VB(a) + c,0)
value ofv decreases. |.e., a local boundimits the potential (t.2,0)ER(C(r))
number of executions of as long as the value of does
not increase. In our analysigcal transition boundgplay the Where
role of potential functionsin classicalamortized complexity Incr(v)= 3. TB(r) xc (Incr(v) = 0for Z(v) =)
analysis[18]. Our bound algorithm is based on a mapping (re)eZ(v)
which assigns each transition a local bound. We discuss h®iscussion: We first explain the subroutin@ncr(v): With
we find local bounds in SectidnIIlC. (1,c) € Z(v) we have that a single execution ofincrements
the value ofv by not more thanc. Incr(v) multiplies the
transition bound ofr with the increment for summarizing
the total amount by whiclv may be incremented over all
executions ofr. Incr(v) thus computes a bound on the total
amount by which the value of may beincrementecduring
a program run.

Let v € V. Our algorithm is based on syntacticdistinction The function VB(v) computes a variable bound fer After
between transitions whicimcrementv or resetv. executing a reset transitiqm, a, c) € R(v), the value ofv is

Definition 7 (Variable Bound) An expressiorxpr overCUZ
is a variable boundfor v € V iff for any finite runp =
(lb,Uo) ﬂ) (11,0'1) ﬂ) (12,0'2) u—2) . (le,O'n) of AP and
all 1 <i <n withv e D(l;) it holds thato;(v) < og(expr).

bounded byVB(a) + c. As long asv is notreset its value o

cannot increase by more thaacr(v). ™~ o n_ 0 0

The functionTB(7) computes a transition bound forbased "' 0 . N/ N . TN} 70
r

on the following reasoning: (1) The total amount by which ‘,TO *TO 0= ,1, |- ¢ " TT
the local bound{(7) of transition~ can beincrementedis L (‘; y 72 ' yo g
bounded byIncr({(7)). (2) We consider a res€t,a,c) € j k vor
R(¢(7)); in the worst case, a single executiontofesets the G(A) G(B) G(0) G(Ex1)

local bound({(t) to VB(a) + ¢, addingmax(V5B(a) + ¢,0)
to the potential number of executionsgfin total all T5(t)
possible executions afadd up to75(t) x max(V B(a)+c,0)
to the potential number of executions of

Example A(as defined in Figurgl 2; is resetto 0 on 7, and
incremented byl on 7. ¢ is reset ton on 7. Our algorithm
computesTB(rz) = TB(11) x 1+ TB(19) x 0 = TB(r1) = We explain the notionsoundand optimal in the course of
TB(79) x n = n. Thus the overall complexity of Example Athe following discussion. Figurel 3 shows the reset graphs
is inferred by TB(71) + TB(72) = 2n. of Examples A, B, C and Example 1 from Figurke 1. For a
Example B¢ as defined in Figuriel 2: and! areresetto n on given rese{r, a, c) € R(v), the reset graph determines which
7o. Our algorithm compute§'B(r;) = TB(m) x n =n and atom flows into variabler under which context. For example,
TB(my) = TB(m) x n = n. j is resetto 0 on o andreset considerG(C): When executing the resét,r,0) € R(k)

to k on ,. Our algorithm compute§'B(r3) = TB(r) x 0+ under the contexts, £ is set to0, if the same reset is executed
TB(m) x VB(k). Sincek is resetto 0 on 7y and incremented under the context,, & is set ton. Note that the reset graph

Fig. 3. Reset Graphs, increments @yre not depicted

with & > 1. Letv € V, by R(v) we denote the set of optimal
reset paths ending in.

by 1 on 7y, our algorithm computed’ B(k) = TB(r;) x 1 = does not represeribcrementsof variables. We discuss how
nx 1 =n. Thus TB(r3) = TB(r2) x VB(k) = n x n = we handle increments below.

n?. Thus the overall complexity of Example B is inferred bywe assume that the reset graph is a DAG. We can always
TB(r) + TB(12) + TB(13) =n+n+n? = 2n +n? force the reset graph to be a DAG by abstracting IheP:
Example 2(Figure[1): ¢ = {7,70,,70,,72 — 1,71 — we remove all program variables which have cycles in the
y, 73 — 2}, R(2) = {(m2,2,0)}, Z(x) = {(71,2)}, R(x) = reset graph and all variables whose values depend on these
{(70a,m1,0), (T0,m2,0)}, R(y) = {(70,m,0)}. We have variables. Note that if the reset graph is a DAG, thefét)
stated the computation df B(r3) in Sectior[1I-B. is finite for all v € V.

Termination: Our algorithm does not terminate if recursivdet v € V. Given a reset path: of length & that ends
calls cycle, i.e., if a call toI'B(r) resp. VB(v) (indirectly) in v, we say that(trn(x), in(x), c(x)) is a reset ofy with

leads to a recursive call t@B(7) resp. VB(v). This can be context of lengthk — 1. I.e., R(v) from Definition[8 is the
easily detected, we return the value(undefined). set of context-freeresets ofv (context of length0), because

Theorem 1 (Soundness)Let AP(L,T,l,,1.) be a well- (trn(s), in(x), c(x)) € R(v) iff & ends inv and has length
defined and deterministi®CP over’at’orr;seA Ci T o 1. Our algorithm from Definitioli 19 reasorc®ntext freesince

V U {1} be alocal bound mappinfpr AP,ve Vandr €T. It Uses onlycontext-frearesets. _)
Either TB(r) = L or TB(r) is a transition boundfor 7. Consider Example C. The precise boundfpis n because we
Either VB(v) = L or VB(v) is a variable boundor v. can iteraters only in the first |terat|o!’1 of the loop df sincer
is reset ta0 on 73. But when reasoning context-free, our algo-

- _ rithm infers aquadraticbound forr: We assume to be given
A. Context-Sensitive Bound Analysis as stated in FigurEl 2. 16(C) k = r == £ is the only reset
So far our algorithm reasons about resets occurring onesinglath of lengthl ending ink. ThusR (k) = {(71,7,0)}. Our
transitions. In this section we increase the precision af oalgorithm from Definitior[® computesI’B(r;) = TB(m) x
analysis by exploiting the context under which resets are = n, VB(r) = TB(r) x n + TB(r3) x 0 = n,
executed through a refined notion of resets and incrementsI'B(m2) = TB(r;) x VB(r) =n x n = n?.

Defintion 10 (Reset. Graph) The Reset Graptfor AP L MU o0 0 L0 B on with conten
is the graphG(A,€) with € C A X T x Z x V st g " '

T3,0 Tl,O o To,o T],O
& = {(z,7c,y) | (1,y,¢c) € R(x)}. We call afinite path W€ 9€tw1 =0 —=r —= kandry =n —= r — k.
. TniCn Tn-1,Cn—1 . . Note thatk; and ks aresoundby Definition[I0 because is
K=a, an—1 ...ag in G withn > 0 areset .
n reset on all paths from the target locatigrof ; to the source

pathof AP. We definein(x) = a,, c(k) = ; ¢, trn(k) = |ocationl; of 7, in Example C (namely ons). ThusR(k) =
{0, Tn-1-..,71}, and atm(k) = {an, anj;. ..,ap}. K IS {({3,71},0,0), ({70, 71}, 7,0)}. We can compute a bound on
soundif for all 1 < i < n it holds thata; is reseton all the number of times that a sequenger,, ... 7,, of transitions
paths from the target location af; to the source location of May occur on arun by computingiin T5(7;). Thus, basing
7 in AP. k is optimal if « is sound and there is no soundour analysis oM (k) rather tharR (k) we computeTB(7,) =

Tn+k;Cn+k

reset paths s.t. x is a suffix ofi, i.e., &k = a1 ———— min(TB(73), TB(11)) x 0 + min(TB(r), TB(11)) x n =
Tn4+k—1,Cnt+k— n,Cn n—1,Cn— .
Apphoy R, A, M e, Tnobfnolyag min(n, 1) x n = n.

We have demonstrated that our analysis gains precision wHem Definition [11 islinear but not precise. We compute
adding context to our notion of resets. It is, however, noingb 2n because- appears on both reset pathsmoand therefore
to base the analysis on maximal reset paths (i.e., resets wihcr(r) = n is added twice. However, there is only one
maximal context) only: Consider Example B withas stated transition ¢»,) on which p is reset tor and between any
in Figure[2. There are 2 maximal reset paths ending (see two executions ofr,, will be reset to0. For this reason
G(B)): k1 = 0 700, jandky = 0 700, 4 720, j. Thus each increment of can only contribute once to the increase
R = {({r0,72},0,0),({r0},0,0)} is the set of resets of of the local boundp of 73, and not twice. We thus suggest
4 with maximal context. Using%i(j)’ rather thanR(j) our tO further optimize our algorithm from Definitioh 111 by
algorithm computesTB(r3) = min(TB(m), TB(m)) x 0+ distinguishing if there is more than one way have atm (k)
TB(1o) x 04 TB(r1) x 1 = TB(r) x 1 =n, butn is nota may flow into the target variable of or not. We divide
transition bound for;. The reasoning is unsound because atm(x) into two disjoint setsatma (k) = {a € atm(k) |

is unsoundby Definition[I0: k is not reset on all paths from more than 1 path from to target variable of: in G(AP)},

the target locatiori; of 7 to the source locatioly of 7, in atmi(x) = atm(k) \ atma(x). We define

Example B: e.g., the path, = [; = [; of Example B does TB(r) = (3 Incr(a)) +

not resetk. e U atmi(k)

We base ourcontext sensitivalgorithm on the sefR(v) of remie) ,

optimalreset paths. The optimal reset paths are those that are Ke%%m) TB(trn(k)) x max(VB(in(x)) + ¢(x),0)
maximal within thesoundreset paths (Definition_10). + Y Incr(a)

Definition 11 (Bound Algorithm with Context) Let ¢ : a€atma ()

T — VY U {1} be alocal bound mappingor AP. Let for {(7) # 1. Note that for Example htm,(x) = {r} and
VB : A — Expr(A) be as defined in Definitiohl 9. Weatmz(x) = 0 for bothx € R(p). ThereforeTB(r3) = Z(r) =
override the definition off' 5 : T'— Ezpr(.A) in Definition[d n with the optimization.

by stating: Theorem 2 (Soundness of Bound Algorithm with Context)
TB(r) =1if ((r) =1else Let AP(L,T,lp,1.) be a well-defined and deterministieCP
TB(r)= Y, TB(trn(k)) x max(VB(in(k)) + c¢(x),0) over atomsA4, ¢ : T +— V U {1} be alocal bound mappingpr
KER(C(T)) AP,veVandr €T. Let TB(r) and VB(a) be defined as
+ > Incr(a) in Definition[11. EitherTB(r) = L or TB(r) is atransition
acatm(x) boundfor 7. Either VB(v) = L or VB(v) is avariable bound
where for v.
TB({r1,72,...,Tn}) = 1r<nii£1n TB(7;)

_ _ o ~ B. DCPs over non-well-founded domains
Discussion and Examplefhe main difference to the def|n|_t|on In real world code, many data types are not well-founded. The

of lTB(;)b”lhD?fm't'on @ 'IS that trée te_r(;‘rmi;r(cg)t) 'S; abstraction of a concrete program is much simpler and more
replaced by theterm > Incr(a). Consider the abstracted;c marion is kept if the abstract program model is not tedi

acatm(k)

DCP of Example 1 in Figure]l. We have discussed it a well-founded domain. Below we extend our program
Section[I[-A that may be incremented om; between model from DefinitiorB to the non-well-founded domdairby
the reset ofr to 0 on 7y resp. 7, and the reset op to adding guards to the transitions in the program. Interghtin
7 ON T5,. The term Y Incr(a) takes care of such our bound algorithm from Definitiol]l9 resp. Definitign]11
. _ a€atm(x) : remains sound for the extended program model, if we adjust
increments which may increase the value that finally flow§,r notion of alocal transition boundDefinition [12).
into ((7) (in the examplep) when the last transition O& e extend the range of thealuations Val4 of A from N
(in the examplery,) is executed: We use the local boundq 7 and allow constants to be integers, i.e., we define-
mapping¢ = {70 — 1,71 = &,72a — ,Tep > T, T4 = PYCUZ. We extend Definitiofl3 as follows: The transiticfis
z,75 — a,73 — p} for Example 1. The reset graeh ofof a guardedDCP AP(L,T, 1, 1.) are a subset of x 2V x
Example 1 is shown in Figurel 3. We hat&(p) = {0 — 9Dc(A) o [, A sequencély, oo) 2% (1y,01) L5 ... isa

T2a T4 T2a . ’)
r — p,0 — r —> p}. Thus our algorithm computes yn of AP if it meets the conditions required in DefinitiGh 3

TB(rs) = %;(: TB(trn(k))xmax(VB(in(k))+c(k),0)+ and additionallys;(z) > 0 holds for allz € g;. For examples
KER(p

S Incr(a) = TB({r0,7a}) x max(VB(0),0) + See Figuréll.
a€atm(x) Definition 12 (Local Transition Bound forDCPs with
;DCE(T) + Tf;{m,Tle;}) x Tafgvg(o)’ot)hzéncr@ = guards) Let AP(L,T,1,,1.) be aDCP with guards overA.
x ncr@_‘ X TB(ri) x 1=2xn With TB(1) =n). | at7 7 andv € V. v is alocal boundfor + if for all finite
Complexity: In theory there can be exponentially many resets 0 n .
) .) “funs p = (I, 00) — (l1,01) — -+~ (le, 00) Of AP it holds
in %3(v). In our experiments this never occurred, enumerathﬂatﬁ(T) < L(max(v,0), p)
of (optimal) reset paths did not affect performance. Pl = P
Further Optimization: We have shown in Sectiof] Il thatThe algorithms in Sections TI[HC arld 1V are based on the
transitions 3 of Example 1 has dinear bound, precisely extended program model oVEr it is straightforward to adjust

n. The Bound2n that is computed by our bound algorithmthem for DCPs without guards.

6

C. Determining Local Bounds G(p): Initially we setG(p) = 0 for all transitionsl; 2 I.

We call a path of aDCP AP(L,T,1,,1.) simple and cyclic _Fo_r eac_he €N anlg each transitioh 2 I, we check ife > 0

if it has the same start- and end-location and does not visitSalnvariant forl; = l,. If so, we adde to G(p).

location twice except for the start- and end-location. Giee 3) We setk’ = {I; M Ia |l Ll e E}.

transitionT € T we assign itv € V as local bound if for all In the following we discuss how we implement the above
simple and cyclic paths = I; 2% 1, 2%, 1, (I, =) sketched abstraction algorithm.

of AP that traverser it holds that (1)30 < i <n s.t.v € g;

_and (2)30 <i<nsit vV <v+ cEu for somec < 0. Ou_r A. Implementation

implementation avoids an explicit enumeration of the sampl

and cyclic paths oAP by a simple data flow analysis. 0. G_uessmg the initial set of Norms\We aim _at creating
a suitable abstract program for bound analysis. In our non-

recursive setting, complexity evolves from iterating leop

IV. PROGRAM ABSTRACTION Therefore we search for expressions which limit the number
In this section we present our concrete program model aftiloop iterations. For this purpose we consider conditiohs
discuss how we abstract a given program tH@P. form a > b resp.a > b found in loop headers or on loop-

paths if they involve loop counter variables, i.e., vargbl
which are incremented and/or decremented inside the loop.
Such conditions are likely to limit the consecutive exeauti

of single or multiple loop-paths. From each such conditian w
form the integer expressidn— « and add it to our initial set

Definition 13 (Program) Let 3. be a set ofstates The set of
transition relation§” = 2**% s the set of relations ovet. A

programis a directed labeled grap® = (L, E, l;,), where
L is a finite set oflocations [, € L is the entry location,
lo € L is the exit location andy C L x I'x L is afinite set of ¢ 15:ms Note that on those transitions on which b holds
transitions We writel; 2 [, to denote a transitior{ly, p, l2). b—a >0 must hold. ’
Anorme € ¥ — Z is a function that maps the states to theg Abstracting Transitions.:For a given norme € N

integers. and a transitionl; 2 I, we derive a transition predicate

Programs are labeled transition systems over some seteéof €2 +c¢ € a(p) as follows: We symbolically execute
states, where each transition is labeled by a transitiatiosl for derivinge’ from e. In order to keep the number of norms
that describes how the state changes along the transitite, Nlow, we first try
that aDCP (Definition[3) is a program by Definition 13. i) to find a normez € N s.t.e’ < ey + e3 is invariant for
_ . . p where es is some integer valued expression.ef = c
Definition 14 (Transition Invarlar_lts) Letei,ez,es €X = Z for some integerc € Z we derive the transition predicate
be norms, and Ieie Z be some integer. We say < e2+¢3 ¢/ < ¢, 4 c. Else we use our bound algorithm (Sectiah I11) for
is invariant forly = Iy, if e1(s2) < ea(s1) +es(s1) holds for gyer-approximating; by a constant expression > e; and
all (s1,s2) € p. We saye; > 0 is invariant forly % Iy, if infer the transition predicate’ < e, + k where we consider
e1(s1) > 0 holds for all (s1, s2) € p. k to be a symbolic constant.

Definition 15 (Abstraction of a Program)Let P = 1) Ifi) fails, we form a norme, s.t.¢” < e4 + c by separating
(L, E.ly,1.) be a program and lefV be a finite set of norms. CONStant parts in the expressien using associativity and
A DCP AP = (L, E',l,1.) with atomsN is an abstraction commutativity of the addition operator. E.g., giveh= v +5

of the program iff for each transitionl; % I, € E there W€ Setea = v andc = 5. We addes to N and derive the

H /
is a transitionl; —% I, € E' s.t. everyel < ey +c¢ € u is predicatee” < e, + c. . .
invariant for 1, % I, and for everye; € g it holds thate; > 0 Since case i) triggers a recursive abstraction for the yewl
is invariant for . % 1 added norm we have to ensure the termination of our abstrac-
1 2

tion procedure: Note that we can always stop the abstraction
We propose to abstract a progrén= (L, E,l;,l.) toaDCP process at any point, getting a sound abstraction of thénatig
AP = (L,F,l,l.) as follows: LetN be some initial set of program. We therefore enforce termination of the abstracti
norms. algorithm by limiting the chain of recursive abstractioepst
1) For each transitiori; %> I, € E we generate a set oftriggered by entering case ii) above: In case this limit is
difference constrainta(p): Initially we seta(p) = 0 for all exceeded we remove all norms from the abstract program
transitionsl; 2 1. We then repeat the following constructiorwhich form part of the limit exceeding chain of recursive
until the set of normsV becomes stable: For eaeh<c N and abstraction steps. This also ensures well-definednesseof th
I, & 1, € E we check whether there is a difference constraingsulting abstract program.
of forme} < ea+cfore;y in a(p). If not, we try to find a norm Further note that thedDCPs generated by our algorithm are
e2 (possibly not yet inV) and a constant € Z s.t.e¢}] < ex+c alwaysdeterministic For each transition, we get at most one
is invariant for p. If we find appropriatec; and ¢, we add predicatee’ < e; + ¢ for eache € N.
e}l <es+ctoa(p) andes to N. l.e., our transition abstraction 2. Inferring Guards: Given a transition; 2 1, and a norm
algorithm performs a fixed point computation which might nat, we use an SMT solver to check whether 0 is invariant
terminate if new terms keep being added (see discussionfam I; £ [. If so, we adde to G(p).
next section). Non-linear lIterations.: We handle counter updates such as
2) For each transitiori, 2 I, we generate a set of guardst’ = 2z or ' = z/2 as discussed in [16].

7

— Succ. | 1t n g; fll; i 2" | Tme | T0 | not able compute a bound. The columime shows the total
Toopus1d | 431 | 200 | 188 [43 |0 om0 time used by the tool to process the benchmark. Loopus'15
KoAT 430 | 253 | 138 | 35 | 2 2 | 56h | 161 | computes the complexity for about twice as many functions
CoFloCo | 386 [200 | 148 38 | 0 0 [47h | 217] a5 KoAT, CoFloCo and Loopus’14 while needing an order of

Fig. 4. Tool Results on analyzing the complexity of 1659 tioxs in the magnitude less time than KoAT and CoFloCo and significantly

cBench benchmark, none of the tools infésy bounds. less time than Loopus'14. We conclude that our approach is

both scalable and more successful than existing approaches

Pointer and Shape AnalysisEven Loopus’l5, computed

Implementation: We have implemented the presented algdsounds for only about half of the functions in the benchmark.

rithm into our tool Loopus[1]. Loopus reads in the LLVM [15]Studying the benchmark code we concluded that for many

intermediate representation and performs an intra-prgedd functions pointer alias and/or shape analysis is needed for
analysis. It is capable of computing bounds for loops as wadltiferring functional complexity. In our experimental coarp

as analyzing the complexity of non-recursive functions. ison such information was not available to the tools. Using

Experimental Setup:For our experimental comparison weoptimistic (but unsound) assumptions on pointer aliasing a

used the program and compiler optimization benchn@ok heap layout, our tool Loopus'l5 was able to compute the

lective BenchmarK2] (cBench), which contains a total of complexity for in total 1185 out of the 1659 functions in the

1027 different C files (after removing code duplicates) withenchmark (using 28 minutes total time).

211.892 lines of code. In contrast to our earlier work wAmortized Complexity:During our experiments, we found

did not perform a loop bound analysis but a complexity> examples with an amortized complexity that could only

analysis on function level. We set up the first comparison be inferred by the approach presented in this paper. These

complexity analysis tools on real world code. For comparirgkamples and further experimental results can be foundjon [1

our new tool (Loopus’'l5) we chose the 3 most promisinghere our new tool is offered for download.

tools from recent publications: the tool KoAT implementing

the approach of[]7], the tool CoFloCo implementirig][10] REFERENCES

and our own earlier implementation (Loopus’14)1[16]. Note[1] http://forsyte.at/software/loopus/.

that we compared against the most recent versions of KoAf] http://ctuning.org/wiki/index.php/CTools:CBenich.

!] https://github.com/s-falke/llvm2kittel .

and CoFloCo (download 01/23/1E)The experiments Were [4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. ZanardCost

performed on a Linux system with an Intel dual-core 3.2 analysis of object-oriented bytecode prograniBheor. Comput. Sgi.

. 413(1):142-159, 2012.
GHz processor and 16 GB memory. We used the foIIowm%] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Muliivéénsional

olo|o|nf s

V. EXPERIMENTS

experimental set up: rankings, program termination, and complexity bounds ofvdtart
1) We compiled all 1027 C files in the benchmark into the programs. InSAS pages 117-133, 2010.
llvm intermediate representation using clang [6] A. M. Ben-Amram. Size-change termination with diffecenconstraints.

. , . ACM Trans. Program. Lang. Sys80(3), 2008.
2) We extracted all 1751 functions which contain at least ong| m. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giésérating

loop using the tool llvm-extract (comes with the llvm tool runtime and size complexity analysis of integer programis TACAS

; ; ; ; ; page to appear, 2014.
suite). Extracting the functions to single files guarantaes [8] O. Carbonneaux. J. Hoffmann, and Z. Shao. Compositizesiied

intra-procedural setting for all tools. resource bounds. PLDI, 2015.
3) We used the tool llvm2kitte[[3] to translate the 1751 llvm[9] T. Colcombet, L. Daviaud, and F. Zuleger. Size-changstrabtion and

; ; ; it max-plus automata. IMFCS pages 208-219, 2014.
modules into 1751 text files in the Integer Transition SysteH]O] n Flr(’)res_Momoya and Ff E.a%nle. Resource. analysiscaplex

(ITS) format read in by KoAT. programs with cost equations. WPLAS pages 275-295, 2014.
4) We used the transformation described[in| [10] to translatg] T. M. Gawlitza, M. D. Schwarz, and H. Seidl. Parametricategy

; iteration. arXiv preprint arXiv:1406.54572014.
the ITS format of KoAT into the ITS format of CoFloCo. 12] S. Gulwani and S. Juvekar. Bound analysis using badakvegmbolic

This last step is necessary because there exists no dir§ct Wa' execution. Technical Report MSR-TR-2004-95, Microsofts&ch,
of translating C or the llvm intermediate representatioto in 2009. -

the CoFloCo input format.] SéGeLélv;agrzu 282 FZ.OZlLé)Ieger. The reachability-bound peob In PLDI,

5) We decided to exclude the 91 recursive functions in the gef; 0 gHoffmam K. Aehlig, and M. Hofmann. Multivariate amized
because we were not able to run CoFloCo on these examples resource analysisACM Trans. Program. Lang. SysB4(3):14, 2012.

; ; 5] C. Lattner and V. S. Adve. Livm: A compilation framewoftr lifelong
(the transformation tool does not support recursion), KoAF program analysis & transformation. GO, pages 75-88, 2004,

was not successful on any of them and Loopus does (9§ m. Sinn, F. Zuleger, and H. Veith. A simple and scalatiitis analysis
support recursion. for bound analysis and amortized complexity analysis.CAV, pages

: : 745-761. Springer, 2014.
In total our example set thus comprises 1659 functions. [17] M. Sinn, F. Zuleger, and H. Veith. A simple and scalablatis

Evaluation: Table[4 shows the results of the 4 tools on our ~ analysis for bound analysis and amortized complexity ail\CORR
benchmark using a time out of 60 seconds. The first col- abs/1401.5842, 2014.

" . R. E. Tarjan. Amortized computational complexitglAM Journal on
umn shows the number of functions which were successfu Algebraic Discrete Methods5(2):306-318, Apr. 1985.

bounded by the respective tool, the last column shows the] P. Wu, A. Cohen, and D. Padua. Induction variable amglysithout
number of time outs, on the remaining examples (not shown |fd|om relclzolgmUon: Beyond monotonicity. lbanguages and Compilers
. . . . or Parallel Computing pages 427-441. Springer, 2003.

in the table) the respective tool did not time out but was al$gy £ 7jeger, S. Gulwani, M. Sinn, and H. Veith. Bound asi of

imperative programs with the size-change abstraction.SAS pages
Ihttps://github.com/s-falke/kittel-koat, https://githcom/aeflores/CoFloCo 280-297, 2011.

8

http://forsyte.at/software/loopus/
http://ctuning.org/wiki/index.php/CTools:CBench
https://github.com/s-falke/llvm2kittel

begin
b =0 lo
P= o / (e—b) <0;
xnu (int len) { i i'=0 (e‘_l;)/é(?_z) G—b) <0;
int beg,end,i = 0; end — Iy ‘ ((llii))’ig((ll:ig y =9"<
I, while(i < len) { el I
: L= s _ (Il—1i)>0
1t & =s (e—b) < (e—b)
lo if (%) : reirt (i—b) < (i—b)+1
end = i; 2 v l‘ (I—i) <(—i)—1
. = 2
b e s I TUSeoBl N Goprca-y
Iy while (k < end) I3 Vb (=) < (-1, (1—3) < (-1
s vy (e =)' < (e~ b) s
end = i; ; (e = k) < (e—b)
beg = end; (e=0) < (e—1D)
} G- <oy
I5 } (=9 <(-19)
5 k>e
} _ =i U Iy
ps = b//:Z k<e U
Y pa = Ilf/z:+1) (e—Fk)>0
= 0z (e—k) <(e—k)—1
(a) Example 3 (b) LTS of Example 3 ;o%gte)s;ractedDOP for Ex-

Fig. 5. Example 3 shows the code after which we have modelednigle 1, * denotes non-determinism (arising from condgiont modeled in the analysis)

APPENDIX
A. Full Example

Example 3 in Figurd]5 contains a snippet of the source®
code after which we have modeled Example 1 in Fidgdre 1.
Example 3 can be found in the SPEC CPU2006 benctinark
in function XNU of 456.hmmer/src/masks.c. The outer loop e
in Example 3 partitions the intervgl,len] into disjoint
sub-intervals [beg, end]. The inner loop iterates over the
sub-intervals. Therefore the inner loop has an overallaline
iteration count. Example 3 is a natural example for amodtize
complexity: Though a single visit to the inner loop can cost
len (if beg = 0 and end = len), several visits can also
not cost more tharien since in each visit the loop iterates
over a disjoint sub-interval. l.e., the total coktn of the
inner loop is theamortized cosbover all visits to the inner
loop. To the best of our knowledge our new implementation
Loopus’1l5 (available at [1]) is the only tool that infers the
linear complexity of Example 3 without user interaction.

1) Abstraction: In Figure[% (b) the labeled transition system °
for Example 3 is shown. We discuss how our abstraction
algorithm from Sectiof IV abstracts the example to Ih€P
shown in Figurdb (c).

Our heuristics add the expressians ¢ ande — k generated
from the conditions: < e andi < [to the initial set of norms

N. Thus our initial set of norms i& = {l — i,e — k}. .
« We check how! — i changes on the transitionsWe
P05 P15 P2a> P2bs P3as P3bs P45 P55 P6- The

— po: we derive(l — i)’ < (reset), we add to N

— p1: we derive(l—i)’ < (I—i)—1 (negative increment)
= P24, P2bs P3as P3bs P4, P55 P6: | — i unchanged
We check how [changes on the transitions
P05 P15 P2a> P2b5 P3ay P3by P45 P55 P6-
— unchanged on all transitions
We check howe — k& changes on the transitions,, p4
(k is only defined aty):
— psq: We derive(e — k) < (e — b) (reset), we add
(e—b)to N
— ps: we derive (e — k) < (e — k) — 1 (negative
increment)

« We check howe — b changes on the transitions

P05 P15 P2a> P2b) P3as P3bs P45 P55 P6

— po: we derive(e — b)’ < 0 (reset)

— paq: wWe derive(e — b)’ < (1 —b), we add(: — b) to

N

— ps: we derive(e — b)’ < 0 (reset)

= P1, P2b, P3as P3bs P4, P6i € — b unchanged
We check how: — b changes on the transitions
P05 P15 P2a> P2b) P3ay P3bs P45 P55 P6-

— po: we derive(i — b)’ < 0 (reset)

— p1: we derive(i — b)’ < (i — b) + 1 (increment)

— ps: we derive(i — b)’ < 0 (reset)

= P2a, P2b, P3as P3bs P4, Pei UNChanged
We have processed all norms M
infer thatp; = (I —4) >0 andps |= (e — k) > 0.
resultingDCP is shown in Figuréls(c).

2) Bound ComputationWe discuss how our bound algorithm
2https://www.spec.org/cpu2006/ from Sectior1l] infers thdinear bound for the inner loop at

70

3

&)

]

111
RGN
INIAIA
833
-+ o~

o
7
N — QO

INININIA
8 IR Q

Cc &

p>0
- p<p-1

DCP for Example 3, variables renamed Reset Graph

Fig. 6.

l4. For ease of readability, we state the abstradiedP of
Example 3 in Figurglé renaming the variables by the following
scheme{p = (e—k),q= (e—b),r = (i—b),x = (I—1i)}. On

the right hand side the reset graph is shown. Our Algorithm
from Definition[I1 now computes a bound for the example by
the following reasoning:

1) Our algorithm for determining the local bound mapping

2)

3)

4)

5)

(Sectior 1II=Q) assigns the following local bounds to the

respective transitiong(rg) = 1, {(11) = ((724) =

C(r26) = ((730) = C(m38) = ((75) = ((76) =

¢(1a) =p.

%(p) _ {0 70,0 r T24,0 q T3a,0 p70 75,0 r T24,0
T3a,0 p70 70,0 q T3a,0 70 75,0 q T34,0 p}

We get: TB(ry) resp. TB(72,) resp. TB(rz) resp.
TB(73,) resp. TB(rsy) resp. TB(ts) resp. TB(7s) =
TB(79) x | =1 (Definition[11) with TB(m) = 1

For =, we get: TB(T4) = TB(TO,TQQ,'TBQ) x 0 +
TB(Tl) x 1+ TB(T5,T2a,T3a) x 0+ TB(Tl) x 1+
TB(10,734) X0+ TB(75,73,) x0 =nx1+nx1=2n
(Definition[13) with TB(m) =n

We get the precise bound for =, when applying the
optimization presented in the discussion under Defini-
tion [11: For allx € R(p) we haveatm:(k) = {r,q}
and atmo(k) = 0. Therefore TB(ry) = TB(m) X
1+ TB(TQ,TQG,Tga) x 0 + TB(T5,TQG,73G) x 0 +
TB(To,Tga) x 0+ TB(T5,T3Q) x0=mnx1=mn with
TB(Tl) =n.

10

	I Introduction
	II Motivation and Related Work
	II-A Amortized Complexity Analysis
	II-B Invariants and Bound Analysis
	II-C Related Work

	III Program Model and Algorithm
	III-A Context-Sensitive Bound Analysis
	III-B DCPs over non-well-founded domains
	III-C Determining Local Bounds

	IV Program Abstraction
	IV-A Implementation

	V Experiments
	References
	Appendix
	A Full Example
	A1 Abstraction
	A2 Bound Computation

