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Abstract—Presenting large formal instruction set models as
executable functions makes them accessible to engineers and
useful for less formal purposes such as simulation. However,
it is more difficult to extract information about the behaviour
of individual instructions for reasoning. We present a method
which combines symbolic evaluation and symbolic execution
techniques to provide a rule-based view of instruction behaviour,
with particular application to automatic test generation for large
MIPS-like models.

I. INTRODUCTION

It is a common practice to construct large formal models
of instruction set architectures in the form of executable
functions. Recent examples include an x86 model with system
calls in ACL2 by Goel et al. [1] and the models constructed in
Fox’s L3 domain specific language [2]], which can be translated
into several systems. We have been using the latter in this work
in the HOL4 theorem proving system.

There are several appealing aspects to such models. They
can be used as simulators, existing tests suites can be run
through them for validation, and they are in a form familiar
to engineers. Indeed, L3 models are usually written in a
form close to the pseudocode found in architecture reference
manuals. However, they do not expose the structure normally
found in a rule-based operational semantics, such as stating
the conditions required for an instruction to have well-defined
behaviour as explicit hypotheses.

Our goal is to extract this type of structure from the
executable model for individual instructions, and use it to
extend our previous automated test generation work [3[] to new
models. The core of that work used an existing verification
support library [4]] to provide a rule-based view of instructions
and so obtain the constraints required to execute a randomly
chosen sequence successfully, then express them in terms of
the initial state and use an SMT solver to find such a state.

These step libraries have been constructed for several archi-
tectures and we have successfully used them for test generation
with a model for the ARM Cortex-MO microcontroller and
a simple MIPS model. However, each library requires a
considerable amount of effort, typically over 1000 lines of
code per target, and ongoing maintenance when the model is
altered.

We wanted to extend our MIPS testing to a much more
complete model of the experimental CHERI processor [J3].

CHERI features a hybrid capability system which can improve
security by limiting access to resources while maintaining
compatibility with existing code. The model includes a large
number of new instructions for the additional security features,
more complex representations of state and memory, and full
memory management. It is over twice as large as the plain
MIPS model and no step library has been written for i
Moreover, we also wished to have the option of testing
processor exception handling, which these libraries do not
currently support.

We have constructed a new library to extract rules for
individual instructions similar to those from the step libraries,
but with much greater automation. To achieve this, and to
deal with such a large model, we combine standard symbolic
evaluation with a form of symbolic execution. The symbolic
evaluation provides general computation using rewriting from
the normal HOL4 libraries. The symbolic execution explores
the different possible paths of execution, recording in the
hypotheses the path condition which describes when each can
be reached, and it treats the large state record carefully for
reasonable performance.

Our contributions are to present our new library for ex-
tracting instruction behaviour from these executable models
while maintaining a close, formal, connection to the model;
to discuss its application to automatic test case generation; to
demonstrate that a theorem proving system such as HOL is
a practical setting for symbolic execution; and to show that
these perform well enough for practical use on a realistic
processor model, producing high test coverage. The close
connection between the formal model and the generated tests
is particularly important for CHERI, where some colleagues
are now proving security properties about the model. Our code
is available online]

In Section [IIl we outline the form of the models, the desired
form for expressing the extracted behaviour, and the testing
process. Section [ITI] presents our combination of symbolic
evaluation and symbolic execution, followed by a discussion
of how sound and complete the process is in Section
Then Section [V] describes the application of the process to

LA basic step library for a simplified version of the model was produced
after this paper was written, but it only covers a fraction of the behaviour that
we are interested in testing.

Zhttps://bitbucket.org/bacam/m0-validation
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dfn’ADDI (rs,rt,immediate) =

(Astate.
(let s =
if NotWordvValue (FST (GPR rs state)) then
SND
(raise’ exception
(UNPREDICTABLE "ADDI: NotWordValue")
state)
else state
in
let v = (32 >< 0) (FST (GPR rs s))
+ sw2sw immediate
in

if word_bit 32 v # word_bit 31 v
then SignalException Ov s

else write’GPR (sw2sw ((31 >< 0) v),rt) s))

Fig. 1. HOLA4 version of 32-bit signed immediate add MIPS instruction

testing, and in particular with the MIPS and CHERI models.
We discuss related work in Section and possible further
work in Section [VII

II. BACKGROUND

Fox’s L3 domain specific language [2] provides a natural
environment for writing instruction set architecture specifica-
tions in the form of a function to compute successive states.
The language features support for working with data at the
bit level, including pattern matching for decoding and bit-
field records for registers, exceptions to indicate undefined
behaviour, incrementally defined global processor state and
an instruction abstract syntax datatype automatically derived
from the instruction definition functions. The L3 tool translates
the language into the logics of several proof tools and also
the SML programming language for simulation. L3 models
have been constructed for a number of architectures, including
ARMvV7-A, ARMv6-M, MIPS, CHERI and partial models of
ARMvV8-A and x86-64, and there are several external users of
these models.

The translation to HOL4 must transform several of L3’s
language features into the logic. Figure |1| shows the HOL4
translation of the MIPS 32-bit signed immediate addition
instruction, where the global state has been implemented by
threading a state record throughout the definition, in the state
and s variables. The undefined behaviour when the value of
the rs register cannot be represented in 32 bits is modelled
by the raise’exception function which records the failure in
the state record. Failures are then detected at the end of the
instruction execution rather than using an exception monad to
simplify certain types of reasoning (see [4} §2] for discussion
about this design). The signalException function is a normal
function to set up a processor exception, rather than an L3
exception to indicate undefined behaviour. In this case it is
for an arithmetic overflow, which is detected by performing
a 33-bit addition (where the (32 >< 0) operator extracts the
bottom 33 bits of the 64-bit register). The use of the sw2sw
function in the last line extends the result to 64 bits, ready to
be written to the destination register.

—if word_bit 31 (s.gpr 2w)
then (63 >< 32) (s.gpr 2w) # OxFFFFFFFFw
else (63 >< 32) (s.gpr 2w) # 0w,
s.MEM s.PC = 36w, s.MEM (s.PC + 1lw) = 65w,
s.MEM (s.PC + 3w) = 3w, s.MEM (s.PC + 2w) = 0w,
]
F NextStateMIPS s =
SOME (s with
<|
PC := s.PC + 4w;
gpr := (lw =+ sw2sw ((31 >< 0) (s.gpr 2w) + 3w))

s.gpr|>)

Fig. 2. Step theorem for MIPS 32-bit unsigned immediate addition

Each model has a main function which computes the
next state, combining the parts of the model that perform
instruction fetch, decoding and execution (such as the function
in Figure[I)). The return value of the main function is an option:
either the next state is returned, or nothing is returned if the
model is undefined on the input state.

A. L3 Support Libraries

In our previous work we used pre-existing libraries by Fox
that are part of a system for verifying machine code with
respect to an L3 model [4]. The main interface for this system
is a program logic in the style of separation logic, but we are
interested in the intermediate step library which provides a
more equational view. This library presents the behaviour of
instructions as theorems providing the result of the main next
state function as a series of state updates when a number of
hypotheses hold, roughly:

flags set correctly in state s
s contains instruction in memory
s contains data to be read

Next s = SOME (s with sequence of state updates)

These theorems cut across the model, including decoding,
execution and memory accesses. A MIPS example is shown
in Figure E], which is a 32-bit immediate addition, but unlike
Figure [I] it is unsigned to avoid showing the complexity of
a potential processor exception. Some of the less relevant
details are shown in light grey. The hypotheses include the
processor flags, the unfolded Notwordvalue test to avoid
undefined behaviour, and the presence of the instruction in
memory. The conclusion updates the state, and in particular
the (1w =+ ...) s.gpr updates register 1 with the result.

In general, there may be multiple theorems for an instruction
when there are several branch choices. This MIPS instruction
actually has three variants due to the use of branch delay slots
in the MIPS architecture.

The step libraries are primarily based around symbolic
evaluation under sets of assumptions for each case of a class
of instructions. The main evaluation procedure, which includes



setting up appropriate rewrites for the model’s datatypes and
definitions, and some specialised conversions, is in a common
library used for all architectures. However, the per-model parts
must still contain a substantial amount of information about
the different classes of instruction present in the model, the
different cases of each, and how to combine results about
fetching, decoding and running instructions into a single result.

B. Test generation process

Our automatic test generation system [3]] starts with random
sequences of instructions, typically chosen to be long enough
to exercise the pipeline. It finds an initial state which will
run the sequence, avoiding undefined behaviour and (when
undesired or unsupported) processor exceptions, by solving
constraints derived from the step library information. It then
compares the model’s predicted final state with the result of
an actual execution from the initial state. The process can be
summarised as:

1) Generate instruction sequence

2) Extract instruction behaviour from model

3) Calculate sequence’s constraints and behaviour in terms
of the initial state

4) Solve constraints to build test with an SMT solver

5) Add test harness

The hypotheses from the extracted behaviour are the source
of the constraints, while the conclusions are used to rewrite
them in terms of the initial state of the whole sequence. We
do not need there to be precisely one rule per branch choice
to do this, so we can accept any reasonable partitioning of
instruction behaviour into rules so long as the conclusion is
in the form of a sequence of state updates.

We solve the constraints using an off-the-shelf SMT solver
through an existing translation of a subset of HOL4 terms [6].
To adapt the testing to a new architecture the instruction
generation, behaviour extraction and harness code must be
adapted. This is routine for targets with a suitable szep library,
but for new targets such as CHERI we need a replacement for
the behaviour extraction phase.

The step libraries have a few features that the testing does
not require: there is support for partial instructions (where
some operands are left as variables), it is compatible with the
separation logic library which we do not use, and there is
support for caching the resulting theorems.

III. EXTRACTING BEHAVIOUR

One of our goals is to reduce the amount of user effort
needed to extract instruction behaviour on a new target, so the
new library must require much less model-specific informa-
tion. Thus our replacement library discovers the different cases
for each instruction rather than being provided with them,
using the structure present in the model’s definitions. This
also removes the need to know about the different instruction
classes. To increase automation we process the entire next state
function at once, rather than building up a result from separate
lemmas about the model’s functions for fetching, decoding and
executing instructions.

The threading of the global state record through the defini-
tions by the L3 translation tool provides the structure used to
discover the different cases of each instruction. To get results
like Figure 2] which conclude with a sequence of state updates
we need to break up any conditionals or pattern matches
encountered in this threaded computation, producing a separate
theorem for each path.

Symbolic execution techniques fit this view of the model;
they follow the imperative structure of a program (in our case,
the threaded state) and consider each path in the program
independently, producing a separate result for each one. The
parts of the computation which do not directly modify the
state, such as the calculation of v in Figure E], are left to
symbolic evaluation, by which we mean rewriting the term
under a set of assumptions producing a single equivalent term
rather than a set of possible terms.

We avoid undesirable interactions between the evaluation
and the execution by restricting the evaluation of 1et terms.
There are beneficial interactions where conditionals and pat-
tern matches can be simplified. For example, if we choose
the always-zero register for rs in Figure [I] then evaluation
will dispose of the Notwordvalue test before execution even
considers it. The implementation interleaves the symbolic
evaluation and execution in a single recursive function.

A. Symbolic evaluation

For most of the symbolic evaluation of the model we use
the computeLib call-by-value evaluation library included
in HOL4 [7], appealing to rules for evaluating terms on
bitvectors, arithmetic, pairs and other definitions from standard
HOLA4 theories. It also deals with operations on the model’s
datatypes and certain functions from the model, reusing some
of the utility functions from Fox’s libraries that can generate
rewrites for any model. This is combined with some limited
use of HOL4’s simplifier for more complex rewrites, for
example those which require higher-order matching.

In addition to avoiding evaluation of the let terms that
the symbolic execution will explore, the evaluation must
avoid expensive expansion of terms before there is sufficient
information to reduce them properly. For example, the L3
translator uses a For combinator for loops, but if the number of
iterations is not yet known (because some symbolic execution
of the state is required first) then the standard evaluation rule
will never terminate. We solved this by replacing the ror rule
by a restricted conversion that requires a concrete number for
the loop bound. Similarly, most of the model definitions are
only unfolded by the symbolic execution because they cannot
be usefully evaluated before the state at the point of application
is known.

Our symbolic evaluation also uses the current set of hy-
potheses as rewrite rules, including general user-specified
assumptions about the particular target, such as the processor’s
endianness. The user can provide more specialised rewrite
rules which introduce extra assumptions during evaluation. For
example, we use this to restrict memory accesses to the small
region of the address space that is used by our tests.



B. Symbolic execution

Traditional symbolic execution [8]] requires a symbolic set
of values, symbolic evaluation of expressions, a symbolic
store, and a path condition to record the circumstances which
lead to the part of the program currently being executed so
that incompatible paths later in the execution can be avoided.
The values and evaluation we get ‘for free’ by working in
HOL with the evaluation procedure outlined above. Our initial
treatment of the state was to substitute the entire symbolic
value for the state record every time it was updated. However,
we discovered that the performance was unacceptably poor for
models with large state records such as CHERI. Instead, we
maintain a rewrite for each field of the state which expresses
its current value in terms of the initial state, and add these
rewrites to the symbolic evaluation. In principle we could go
further by using a separate rewrite for each entry of subrecords
and maps in the state, for example, having one rewrite per
register rather than the entire register map, but this has not
been necessary in practice.

To maintain the path condition we add the appropriate
assumption for each branch taken at a case split to the list
of hypotheses. The symbolic evaluation will then use these
assumptions to automatically eliminate incompatible branches
later in the execution, and they may also be used for other
simplification. For example, if a conditional takes one branch
when a variable is zero, then in the execution which takes that
branch the variable will be rewritten to zero throughout.

The symbolic execution procedure is summarised in Fig-
ure 3] where judgements of the form

H,Skt~ (H,T)

mean that under the set of hypotheses H and the per-field state
rewrites S, the execution of term ¢ results in a set of terms
t' paired with hypotheses H’, which may extend H with path
conditions and assumptions from special rewrite rules (such as
limiting the range of memory addresses used). We also write
w and v for terms, x for variables, and ¢ for the names of
constants in the rules.

The L3 translator always places the state record in the
rightmost position of a tuple, so the PAIR and SND rules
merely follow the state, then reconstruct the surrounding
context. The LET rule propogates state updates: for each state
s; found by executing ¢, we form a new set of rewrites, denoted
S <}, which updates the rewrites in S with the changes in s.
This new set is then used for the symbolic execution of w.

Case splits are handled by the COND and CASE rules. In
each branch we add a new hypothesis corresponding to the
guard or pattern match, and then proceed with that branch
in isolation. The actual implementation also replaces the
variables which are bound in patterns with fresh ones to
prevent clashes. In principle, case splitting at every conditional
or pattern match would lead to an explosion in the number of
cases to consider. In practice, many of the cases are eliminated
by the symbolic evaluation due to existing assumptions or the
path condition, and from the remainder most lead to some

H,S+u~s (H' )
—————— PAIR
H,SF (t,u) ~ (H', (t,u))
H,SFt~ (H,t)
SND
H,SF SND t~» (H',SND t')
H,SHt~ (H,(t,s))
Vi. H, S s} - ult;/z] ~ (H!, ul)
LET
H,SF let (z, 8)—t1nu«»U (H!, ub)
(H,t),StFu~ (H u)
(H,—t), S+ v~ (H" V)
CoND
H,Stif t thenuelse v~ (H u')U(H"v)
Vi. (H,pti = 1), S i ~ (H., 1,
b (Hopti= )8 P (L)
H,SFcasetofptléuﬂ...vU(Hl’,u;)
UNDEF
H,SF raise’ exceptiontu~ ()
CT1...Tpyp =1 H SEv~ (H' V)
Vi. H, S F tlur /1, ...y tn /T, 0t Tpi] ~ (HI T App
H, Stcu.. unU«»U (H!,t)

7

Fig. 3. Rules used in symbolic execution

form of undesirable behaviour which is discarded. The UNDEF
rule does this for the L3 exceptions which indicate undefined
behaviour. Extra rules can be added for any other function
in the model; for example, when we are not interested in the
handling of processor exceptions we discard paths where we
reach the signalException function.

Other functions involving the state are handled by the ApP
rule. The state is always passed in the final argument, so we
process it first then unfold the function’s definition. Functions
which do not involve the state are unfolded by the symbolic
evaluation.

Any term that does not fit one of the rules is only run
through the symbolic evaluation.

C. Example

To illustrate the procedure we consider the main definition
for a single instruction on fixed operands,

dfn’ADDI (2w, 1lw,3w) s

which is the 32-bit signed addition of 3 to the contents of
register 2, placing the result in register 1. The APP rule unfolds
the definition, which we saw in Figure |1} The first part of the
let,

if NotWordvalue
then SND

(FST (GPR 2w state))

(raise’ exception
(UNPREDICTABLE
state)

else state

"ADDI: NotWordValue")



is processed recursively, and COND examines each of the
branches separately. The first is discarded by SND and UNDEF
because the processor’s behaviour on a value that cannot be
represented in 32 bits is undefined. The second case is trivial,
except that we now have an extra hypothesis,

—if word_bit 31 (s.gpr 2w)
then (63 >< 32) (s.gpr 2w) # OxFFFFFFFFw
else (63 >< 32) (s.gpr 2w) # Ow

which is the result of evaluating the guard, NotWordvalue (
FST (GPR 2w state)). The same hypothesis is present in the
unsigned case in Figure 2]

In the second part of the 1et the computation of v cannot
change the state, so it is evaluated, leaving us with the final
conditional:

if word_bit 32 ((32 >< 0) (s.c_gpr 2w) + 3w) #

word_bit 31 ((32 >< 0) (s.c_gpr 2w) + 3w)

then SignalException Ov s else

write’GPR
(sw2sw

((31 >< 0)
lw) s

((32 >< 0) (s.c_gpr 2w) + 3w)),

Again, COND considers each branch. For the sake of brevity,
we will not consider the overflow processor exception. In the
second branch, the write’GpPR definition is unfolded and it
continues to the result

dfn’ADDI
[

s with c_gpr :=

(lw =+ sw2sw

((31 >< 0)
s.c_gpr))]

(2w, 1w, 3w) s =

((32 >< 0) (s.c_gpr 2w) + 3w)))

which updates register 1 with the sum, under the two hypothe-
ses,

—if word_bit 31 (s.gpr 2w)
then (63 >< 32) (s.gpr 2w) # OxFFFFFFFFw
else (63 >< 32) (s.gpr 2w) # Ow

—word_bit 32 ((32 >< 0) (s.c_gpr 2w) + 3w) #
word_bit 31 ((32 >< 0) (s.c_gpr 2w) + 3w)

which ensure the argument can be represented in 32 bits and
that there is no overflow, respectively.

To illustrate how the state updates S < s are calculated,
suppose that we start out with an unchanged initial state, so,
and want to update it with the result above. The initial set of
field rewrites S will be:

s.c_gpr = s0.c_gpr
s.c_state = sO.c_state

The new set of rewrites reflects the updates to each field. In
our case only the register field c_gpr is affected:

(1w =+ sw2sw (...))
sO0.c_state

s.c_gpr = s0.c_gpr

s.c_state =

Note that the previous rewrite is applied, replacing s.c_gpr
with s0.c_gpr, so that it is expressed in terms of the initial
state.

IV. SOUNDNESS, INCOMPLETENESS AND COMPLETENESS

The correctness of the extracted behaviour with respect to
the model is ensured by construction because every stage of
the process produces a theorem witnessing it. In particular, for
each rule of the symbolic execution

H, Skt~ (Ht)
the system generates a theorem for each result:
H-t=t.

However, these theorems are generated dynamically, so any
bug in the implementation will only be detected during sym-
bolic execution.

This shows that the results will be sound, but we also
wish to know whether they will be complete, that is whether
the procedure finds all of the relevant behaviour. It must be
incomplete in the sense that some behaviour is intentionally
excluded; undefined behaviour is not useful for testing, the
tests must respect restrictions on endianness and memory
layout to run on the test system, and we only wish to explore
processor exceptions in a controlled manner.

In principle we could codify all of the undesirable behaviour
and construct an additional overall theorem stating that under
only basic assumptions either one of the conclusions from the
extracted behaviour will be reached, or one of the undesirable
situations will. We believe it would be feasible to construct
such a theorem because the intermediate results required
would be of a similar size and number to the actual results
we already compute. However, it would require considerable
effort to add the code to compute this theorem, and, as before,
it would only detect failure at runtime.

Less formally, we can compare our method with the step
libraries. These are primarily intended for verification, and
some of them deliberately restrict the supported behaviours
even further. For example, the ARMv7-A step library requires
all word loads to be aligned, even though the architecture
permits unaligned loads in some circumstances. This is added
by an explicit assumption in the model-specific part of the step
library. While such restrictions can be useful for simplifying
verification they also illustrate how easily behaviour can be
accidentally excluded. In contrast, our library systematically
explores the model with fewer user-provided assumptions, so
accidentally missing behaviour is less likely. Thus we believe
the procedure is complete for a model specialised to any
particular processor, fixing details such as endianness and
available memory.

V. APPLICATION TO TESTING

To use the library with an instruction set model we still
need to provide some model-specific information, such as
identifying the functions which raise L3 exceptions and pro-
cessor exceptions, the standard set of assumptions, specialised
rewrites, and the definitions which should not be unfolded
(typically to enable a rewrite). For example, one use of model-
specific rewrites is to avoid accessing hardware resources that
are present in the model for simulation, such as serial ports.



There is a bootstrapping problem for the more complex
models. In simple models such as the MO microcontroller
that we previously worked with, instructions can be injected
into memory by adding hypotheses for each byte of each
instruction. More complex models feature address translation
and different memory representations. For example, in the
CHERI model memory is represented in chunks that contain
either a capability record or a raw capability-sized bitvector.
Rather than writing a function to generate suitable assumptions
for each model by hand, we use the procedure above to
generate a theorem about the behaviour of the model’s Fetch
function, then build a rewrite from it which will ensure
that the desired instruction is loaded. The behaviour of the
instruction can then be extracted from the next function if we
add the rewrite to the set used by the symbolic evaluation.
This approach has the advantage that it is relatively robust to
changes in the model.

The first model the procedure was applied to was the plain
MIPS model. This has a step library which we could use
for comparison during development and for the performance
comparisons below. We then moved on to our main target of
interest, the large CHERI model. We had already tested the
plain MIPS model against the CHERI hardware design, but
CHERI has a considerable number of new instructions without
a corresponding step library. Moreover, the instructions have
a large number of security checks that result in processor
exceptions, so in addition to checking fault-free instruction
sequences we also generated tests where one of the instructions
in the middle of the sequence exercised one of its exceptional
behaviours, extracted in the same way.

Testing with the plain MIPS model had already detected
bugs in the model and the hardware design. Extending testing
to CHERI using our library not only produced tests that would
detect those bugs, but also found problems in areas that were
not supported by the step library; in particular, in the model
store conditional instructions did not check enough of the
supplied address, and several instructions wrote back results
incorrectly when a processor exception was signalled.

We have been able to track changes to the model with very
few adjustments. For example, a new instruction will need to
be added to the instruction generator, but not the behaviour
extraction library. Moreover, when we first targeted the test
system at CHERI the most labour intensive model-specific
work was adapting the test harness construction code which
initialises the test state, because the model-specific part of our
behaviour extraction library is so small.

A. Performance

Our main goal is the batch production of tests, so we could
accept a large increase in the test generation time. We have
not yet explored opportunities to accelerate the process, such
as replicating the feature in the step libraries to extract the
general behaviour of an instruction and cache it for future use
with a range of different operands. Nonetheless, we generated
500 8-instruction tests for the plain MIPS model using both
the step library and our library to compare the libraries and to

3000
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Branches covered

0 500 1000 1500 2000 2500

Number of 13-instruction tests

Fig. 4. Cumulative coverage graph

determine whether behaviour extraction is a bottleneck in test
generation.

While the median behaviour extraction time increased con-
siderably from 0.23 seconds to 3.16 seconds, it still represents
a small fraction of the overall time for test generation, whose
median increased from 16.98 seconds to 19.15 seconds. Thus
improving our library would not make a huge difference to the
rate of test generation unless substantial improvements were
made elsewhere. Moreover, the model-specific code for plain
MIPS for our library is an order of magnitude smaller than
that for the original step library.

This is still true with the larger CHERI model. While the
median behaviour extraction times are much greater, around
30 seconds for 8-instruction tests, they are still only a third
of the total test generation time, and sufficient for batch test
generation.

B. Coverage

Following the production of a large batch of CHERI tests
for use against the hardware design, we wished to check
how much of the model’s instruction behaviour was actually
exercised and whether any bugs in the behaviour extraction
were causing cases to be missed. The testing system was set
to produce 13 instruction tests, where the middle instruction
raises a processor exception and all other instructions do not.

We measured the branch coverage by building the SML sim-
ulator version of the L3 model and using the MLton compiler’s
coverage support. To see if we had generated enough tests
to demonstrate the available coverage we produced a graph
showing the cumulative branch coverage of the model, shown
in Figure [ The flattening of the curve suggests that additional
random tests would add little to the overall coverage.

To get a more qualitative idea of how good the coverage
is we manually examined the branches in the instruction def-
initions that were not covered after 2000 testf] The branches
that were not covered fell into two groups: those which are
impossible due to undefined behaviour or an unnecessary
default case in a complete pattern match; and those which

3Examining the model as a whole is not appropriate due to the amount of
code that is outside of the scope of the tests, such as serial ports, interrupts,
full address translation, instruction encoding, and disassembly.



testing did not reach by pure chance, which were almost all
due to the very large number of security checks in the new
CHERI instructions. We know that the latter group were due
to chance because the same checks in other instructions were
tested; if we made the random test generation more targeted
it should be possible to cover these cases without greatly
increasing the number of tests. There was one other case
amongst the branches that were not covered: a trap instruction
that had accidentally been omitted in the instruction generation
phase, which was easily corrected.

VI. RELATED WORK

Automated conversions between functional semantics and
more structured operational semantics has been studied in
many forms. Note that the output of our system is not
structured to the same extent as a Plotkin-style structured
operational semantics [9]; while we do produce rules with
stylised conclusions, separate hypotheses, and where we have
one rule for each behaviour, we do not break the execution
down into a set of intuitive judgements and build up behaviour
in derivation trees. Instead, we provide monolithic rules where
everything is described in basic terms, slicing across the entire
model. For our automated testing this is quite reasonable
because we will eventually present constraints derived from
the rules to an SMT solver which has no direct knowledge of
the model.

General purpose tools for converting or reasoning about
functional semantics are more structured. The Function mech-
anism for Coq [10] generates an inductive relation for the
graph of a function, together with induction and inversion
principles. The relation does split out the different behaviours
of the function, but there is a relation for every function,
which would be difficult to use on a model with hundreds of
definitions. Similarly, Owens et al. [11] recently advocated us-
ing functional definitions for programming language semantics
when suitable induction principles are generated. In their case
their principles came from HOL4’s mechanism for defining
recursive functions.

There are other functional semantics for instruction sets
where rules have been manually specified for each instruction,
and proved as lemmas. Srivas and Miller [12]] did this when
verifying the microcode for the AAMPS processor, staying
close to the pseudocode initially, then deciding to derive rules,
saying:

They were more readable, simpler to validate, and
were closer to what a user wanted to know in the first
place. They also made it possible to specify a small
portion of the next_macro_state function, i.e.,
to specify one instruction or part of an instruction at
a time.
However, this is exactly the type of work we wish to automate.
Similarly, Jensen et al. [13] formalised a subset of the x86
architecture in Coq for verifying machine code programs
where they proved manually specified separation logic rules.

Fox’s libraries [4]], which we described in Section fit

in between these completely manual rules and our almost

automatic system. The results differ from ours in several ways:
they must correspond closely to the accompanying program
logic library, work with partially specified operands, cache
results, and produce one rule per branching choice, rather than
partitioning the behaviour according to the structure of the
definition. It may be possible to adapt our library to cover
some of these points, but we leave that to future work.

There is also a body of work on translating from rule-based
relational semantics to functions, such as Isabelle’s predicate
compiler [14] and a similar feature for Coq by Tollitte et
al. [13)]. This is an attractive way to animate semantics which
have been presented relationally, as is common for many
programming languages. Indeed, Lochbihler and Bulwahn
have done this for a Java-like language [16]. However, if we
were to rewrite our model like this we would lose the close
correspondence to the designers’ pseudocode. Transformations
in this direction do have the advantage that they can produce
several functions, depending on which parameters of the
relation are chosen as inputs and outputs of the generated
function.

Turning our attention to the techniques involved, symbolic
evaluation is widely used with executable models. Fox’s li-
braries provide one example. Moore [17] advocates the use
of symbolic evaluation of a machine model for exploring the
behaviour of assembly programs, which he calls symbolic
simulation. Having demonstrated that an example program
can be simulated in ACL2 despite only partially specifying
the input, Moore suggests that this is reasonably accessible to
engineers and that a special purpose user interface would aid
adoption.

Symbolic execution has a long history of use in testing,
early work by King [8] used it for interactive testing, while
Boyer et al. [18] primarily generated test cases. It is now
commonly used for automatic test case generation on large
programs using concolic testing [19], where the symbolic
execution follows the same path as the concrete execution
of a test case, and part of the resulting path condition is
negated to force the solver to find a test case which explores
a new branch without searching through the full space of
paths. Our library is closer to Boyer et al. because we explore
all of the well-defined paths for a single instruction during
symbolic execution, but leave the test case generation to a later
phase of the testing process that uses the entire instruction
sequence. In contrast, concolic methods have been used for
single instruction simulator testing by Wagstaff et al. [20] for
high coverage, and similar methods by Martignoni et al. [21]]
for cross-testing.

VII. FURTHER WORK

The most straightforward area of possible work is to use the
library in test generation for other L3 models; partly to test
these models, and partly to identify any remaining aspects of
the library that are too reliant on the particular models above.
This would still require some manual effort for each model
to construct the instruction generator and the production of
harness code.



One danger with other L3 models is that they may make
greater use of looping constructs. The plain MIPS and CHERI
models use no recursion, have FOR loops with statically
known iteration counts, and do not have more than one well-
defined path inside a loop (which prevents the number of cases
exploding). While other models may be similar, it is possible
that difficult loops may appear occasionally. In fact, there is
one in the CHERI model’s address translation but it does not
affect our testing because it is not used for the parts of memory
that our tests run in. The loop tests each TLB entry, resulting in
an exponential number of paths, although the surrounding code
restricts the well-defined paths to one per entry. To tackle these
issues we could manually prove that the loop can be replaced
with a simpler form, or attempt a general solution, perhaps by
analysing the loop body separately and adding more structure
to the output.

We could also investigate adding more of the features from
Fox’s library, as described above. The exact requirements for
interfacing with his program logic libraries are unclear, and
it may be that our results are not sufficiently idiomatic to
be compatible. Support for partially specified instructions and
caching seem more feasible, and would improve performance.

A more ambitious task would be to apply the same approach
to an instruction set modelling language which supports some
weak memory model, both to test the sequential behaviour of
such models, and to investigate automatic test generation for
multicore architectures.

VIII. CONCLUSION

We have constructed a library which uses symbolic execu-
tion in a theorem prover to extract rule-based descriptions of
processor behaviour from L3 executable instruction set models
with minimal user-provided information about the model. The
structure of the results can be used to drive an automatic
test generation system, and the soundness of the procedure is
ensured by the HOL4 theorem proving system. The resulting
system has been successfully used with a large model of the
CHERI experimental MIPS-like processor.
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