
Run-Time Managed Mobile Application Execution
Michele Zanella, Giuseppe Massari and William Fornaciari

Dipartimento di Elettronica,
Informazione e Bioingegneria Politecnico di Milano

Milan, Italy
Email: {michele.zanella, giuseppe.massari,william.fornaciari}@polimi.it

Abstract—Achieving an optimal management of the energy
budget of mobile devices, while matching the applications per-
formance requirements is always a challenging task. In our
research, we are exploring the possible benefits of driving run-
time management strategies, from an application perspective, by
integrating the programming model with the run-time system
and exploiting suitable API for explicit application requirements
specification.

Index Terms—Mobile Computing, Power, Performance, Run-
time Management, Resource Management, Mobile Programming

I. INTRODUCTION AND RELATED WORKS

While mobile computing devices offer always richer func-
tionality and capabilities [1], [2], the energy budget manage-
ment still represents the upper bound to the exploitation of
further performance rooms. Moreover, new paradigms such
as Fog and Edge computing [3]–[5], are starting integrating
mobile devices as source/target nodes of the infrastructure,
for both sensing and computational purposes [6]–[9]. This
requires to carefully take into account power consumption and
performance requirements of mobile applications, as well as
to provide isolation, for separating the applications from the
execution of external offloaded tasks.

From the energy efficiency standpoint, different solutions
have been proposed, both hardware and software, to improve
battery duration [10], [11]. At this regard, various solutions
focus on improving an efficient usage of power-hungry com-
ponents such as Wi-Fi, 3G and GPS. Other approaches operate
on the backlight level of the display by reducing it with-
out affecting the perceived gameplay quality [12]. Moreover,
different power-saving applications, like SetCPU [13], have
been developed. They apply different system-wide profiles on
the basis of the actual device condition (e.g., battery level).
However, such profiles are typically static, which means they
do not capture the specific usage patterns.

On the hardware side, it is worth noticing that in the
latest years, heterogeneous multi-cluster architectures, such
as ARM big.LITTLE and DynamIQ, integrated low-power
cores and high-performance ones on the same die, enabling
the possibility of reducing power consumption or boosting
performance, according to the current workload [14]. For in-
stance, most of the OS kernels provides a set of CPU governors
(i.e., interactive, performance, ondemand. . .) with a dynamic

Fig. 1. Adaptive Execution Model

behaviour, although they do not take into account feedback
and time varying requirements coming from applications.

Currently, the Android power management is based on
a native power driver at kernel-level [15], to control the
peripherals’ states, and the Application Framework, through
which application can acquire a “wake lock”, when required,
to prevent the system from switching off components [11].
Unfortunately, this approach does not allow us to integrate the
power management actions into a fine-grained resource man-
agement strategy, based on the current user-level requirements
of each single application.

In our research, we aim at exploring possible benefits
coming from adapting the run-time management strategies
(DVFS, task scheduling, resource partitioning) to the current
application requirements. This is implemented by exposing a
suitable API, through which the application can specify its
performance (or power saving) goals to the operating or run-
time system. This, will tune the amount of assigned resources
(e.g, number of CPU cores), or a hardware configuration (e.g,
CPU operating point) accordingly. Our approach follows an

2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC)

978-1-7281-1796-6/19/$31.00 ©2019 IEEE 74

interesting work [16] where the presented framework can
detect the state of a game application to infer the current
performance requirement. Despite this work, however, we are
able to provide a full integration with the application so that
the resource manager can detect directly the run-time status
of the application and negotiate the requirements, as well as
having a finer control over device’s resources.

The rest of the paper is organized as following: Section II
discusses our approach and the design of the solution, while
a preliminary experimental evaluation is presented in Section
III. Finally, Section IV draws a roadmap for on-going and
future works, concluding the paper.

II. RUN-TIME ADAPTIVE APPLICATION EXECUTION

In this work, we extend the Barbeque Run-Time Resource
Manager (BarbequeRTRM) framework [17], to properly sup-
port Android based scenarios. We introduce an infrastructure
on top of the native implementation of the resource manager,
to effectively integrate it in the Android environment. In
Figure 1, we sketch the concept behind the run-time managed
application execution proposed by the framework. This allows
us to implement mobile applications that:

1) Are aware of the assigned resources, such that they can
properly configure themselves accordingly;

2) Can notify the run-time about dynamically changed
performance requirements (e.g., explicit power-saving or
boots mode).

This defines what we called Adaptive Execution Model
(AEM). A managed execution flow in which application and
resource manager interacts, such that the former can adapt
itself to the current status of the device (e.g., system-level
power saving mode) or the latter can take into account the
explicit application requirements. The resource manager will
therefore assign resources based on the current system status
(e.g. battery level, temperature, etc. . .) and the time varying
applications and user requirements.

The Figure 1 shows the Run-Time Library (RTLib), between
the application and the resource manager. A suitable wrapper
has been implemented in the application library to make the
run-time API available also to Android applications. The API
included in the library is based on the idea of implement-
ing an application-specific class (C++/Java) derived from the
BbqueEXC. An instance of such a class spawns a control
thread, in charge of synchronizing the application execution
and the resource management actions, by calling the objects’
methods (on- prefix) accordingly. Looking at the Figure 1,
it should be immediate to notice how this follows the already
consolidated programming approach to Android application
development. In detail, the onSetup method will contain
initialization code. In the onConfigure the application can
check the amount of CPU, memory and network bandwidth as-
signed by the BarbequeRTRM and configure itself accordingly
(as in Lines 29 and 31 of Listing 1), while the onRun includes
the core of the processing. In particular, the implementation
of the onMonitor method, can include (1) the setting of
the application performance goal (i.e, the throughput), or (2)

BarbequeRTRM

Android OS

RTLib

Java RTLib

BarbequeService

CustomService

Activity A

Memory

Network

GPU

LITTLE

big

c1 c2 c3 c4 c5 c6 c7 c8

cgroupcpufreqdrivers

Resource AllocationPower Management

Application
Framework

API

App<1>
App<n>

Performance
requirements/status

Device

Fig. 2. Overview of the management framework and Android API

an explicit constraint on the resource allocation (as in Line
42 of Listing 1). In this regard, the application can come
with a set of predefined resource assignment configurations,
called Application Working Modes (AWM). In general, the
application’s description consists of a xml file (called recipe
in BarbequeRTRM jargon) containing information related to
set of preferred resources (e.g., type of processors, memory
and peripherals. . .), QoS requirements (e.g., completion time,
frame per seconds, network bandwidth. . .) and power profiles
(i.e., energy-saving, balanced, boost).

At run-time, the application can set an upper bound (e.g.
“use at most 2 CPU cores” or “bound the network bandwidth
utilization”), triggered by an explicit interaction with the
user (application settings), to reduce the power consumption
according to the actual user requirements. This application
execution follows a control loop, in which it can re-enter the
configuration step onConfigure, in case of resource assign-
ment changes, an continue the execution until the suitable exit
condition is not verified.

Figure 2, instead, provides an overview of the integra-
tion of the BarbequeRTRM in the Android system. For the
RTLib-based interaction between application and resource
manager, a Java service-based wrapper is provided [18].
In order to be run-time adaptive, the application must
implement a CustomService, which extends the basic
BarbequeService, as shown in Listing 1. This provides
wrappers, binders and messengers interfaces towards the other
activities of the application. Then, the CustomService has

2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC)

75

1 import bbque.rtlib.RTLib;
2

3 public class CustomService
4 extends BarbequeService {
5

6 @Override
7 public void onCreate(){
8 ...
9 rtlib = RTLib.init(APP_NAME);

10 mEXC = new CustomEXC(
11 APP_EXC_NAME,APP_NAME,rtlib);
12 ...
13 }
14

15 protected class CustomEXC
16 extends AndroidBbqueEXC {
17

18 @Override
19 public void onRun()
20 throws RTLibException{
21 /* Workload */
22 }
23

24 @Override
25 protected void onConfigure(
26 int awm_id)
27 throws RTLibException {
28 ...
29 freq = getAssignedResources(
30 RTLibResourceType.FREQ);
31 cpu_quota=getAssignedResources(
32 PROC_ELEMENT);
33 ...
34 }
35

36 @Override
37 protected void onMonitor()
38 throws RTLibException {
39 ...
40 RTLibConstraint constraint =
41 new RTLibConstraint(...);
42 setAWMConstraints(constraint);
43 }
44 }

Listing 1. Example of BarbequeRTRM API in Android applications.

to implement the AndroidBbqueEXC’s callbacks through a
CustomEXC (line 15), which is the Android equivalent of the
BbqueEXC class previously introduced. On the other side, the
native BarbequeRTRM daemon uses OS-level frameworks and
third-party libraries to enforce resource management actions.
For instance, Linux frameworks like cpufreq and cgroup
are currently exploited to set CPU operating points, reserve
CPU time quota or cores. In order to evaluate both application
requests and device constraints for an effective resources
management, the framework allows us to implement device-
specific policies, as already shown in [19].

III. EXPERIMENTAL EVALUATION

We performed a preliminary experimental evaluation, in
order to have a proof-of-concept of the system prototype.
For the experimental scenario, we executed the Image Effect

AWM Cluster Freq(KHz) Power(W) Perf(fps)
1 big 2,362 3.09 2.79
2 big 2,112 2.78 2.50
3 big 1,805 2.58 2.13
4 big 1,421 2.53 1.74
5 big 903 2.25 1.13
6 LITTLE 1,844 2.58 1.37
7 LITTLE 1,709 2.52 1.21
8 LITTLE 1,402 2.07 0.86
9 LITTLE 999 2.23 0.65

10 LITTLE 533 2.21 0.31

TABLE I
THE SET OF PROFILED AWM. POWER AND PERFORMANCE COLUMNS ARE

MEAN VALUES.

AWM Cluster Freq(KHz) Power(W) Perf(fps)
1 big 2,362 3.09 3.79
3 big 1,805 2.58 0.82
8 LITTLE 1,402 2.07 1.25

10 LITTLE 533 2.21 0.51

TABLE II
THE SET OF PROFILED AWM APPLIED DURING A DYNAMIC EXECUTION.

POWER AND PERFORMANCE COLUMNS ARE MEAN VALUES.

benchmark, from the MobileXPRT2015 [20] suite, on a Hikey
960 development board, equipped with a 8-core big.LITTLE
processor and Android OS 8.0. The ”big” cluster is represented
by a 2.4 GHz quad-core A73 CPU, while a 1.8 GHz quad-core
A53 represents the low-power ”LITTLE” cluster. In particular,
the two CPU clusters have 5 DVFS operational points in
the specific frequency range of each cluster, which is [903-
2362] MHz for the ”big” one and [533-1844] MHz for the
”LITTLE”.

During the evaluation we followed a two-steps approach.
First, we profiled the entire execution of the benchmark in
terms of (a) performance, expressed as the number of edited
photos per second, and (b) power consumption of the board.
This in order to define a set of AWMs with respect to the target
device. For each AWM, we then reported the frequency setting,
the average system power consumption and the performance
estimation, as shown in Table I. The next step involved the pro-
filing of the benchmark execution, where the application varied
its requirements at run-time, simulating the user intervention.
In this case, the Figure 3 shows the application varying the
AWM setting and the related variation of performance and
power consumption, as detailed in Table II. In this regard,
we developed a sample policy that chooses different AWMs
within a constrained range, set by the maximum throughput
required by the user. In this sense, if in a specific moment we
do not need to run the application at the topmost performance
level, and we want to save some power, we can explicitly
negotiate the AWM assignment with the resource manager.
In fact, in the execution of our sample, we can observe how
the initial AWM setting (AWM1) led the device to consume
a lot of power, while the application performance were above
the required level. After a new negotiation, the resource
manager reassigned a less power consuming AWM10. Later, a

2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC)

76

0 20 40 60 80 100
Time (s)

0

1

2

3

4

5
P
e
rf

o
rm

a
n
ce

 (
FP

S
)

0 20 40 60 80 100
Time (s)

0

1

2

3

4

5

P
o
w

e
r

(W
)

AWM1

AWM10 AWM3 AWM8

Fig. 3. Benchmark’s performance and system’s power consumption. The
frames represent the execution profile of different AWM setting.

new change in the application requirements (boost), triggered
the assignment of AWM3. Finally, a further scale down of
requirements led to the last AWM reassignment (AWM8). In
summary, thanks to this run-time managed execution model,
the application can cooperatively reduce the device power
consumption, allowing us to go beyond the usual system-wide
low-power mode setting. Finally, as we can observe, the AWM
are built through offline profiling. Future works will go in
the direction of dynamically binding resource assignment and
explicit application requirements at run-time.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, we shown an alternative approach to power
saving with respect to setting a system-wide low power
consumption mode. This may be driven by the application
themselves, in cooperation with a run-time resource manager
(the BarbequeRTRM). To this aim, we introduced a program-
ming model to develop adaptive and reconfigurable mobile
applications. To prove the potentiality of our approach, we
performed a preliminary evaluation on a real Android-based
board using a benchmark application, suitably integrated with
the proposed programming model.

The following steps of the research will move our focus
in three directions: (a) building an experimental setup with
different devices to better assess potential of the framework;
(b) developing and validate novel QoS and energy aware
management policy, that could adapt the resource assignment
and power configuration, on the basis of both the application
requirements and the current energy budget of the device;
(c) considering a further exploitation of the OS platform
framework for a improved management of the device.

V. ACKNOWLEDGMENTS

This work has been partially funded by H2020-FETHPC
projects: MANGO (n.671668) and RECIPE (n.801137).

REFERENCES

[1] ARM, “big.little technology: The future of mobile,” 2013.
[2] Y. Wang, I.-R. Chen, and D.-C. Wang, “A survey of mobile

cloud computing applications: Perspectives and challenges,” Wireless
Personal Communications, vol. 80, no. 4, pp. 1607–1623, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s11277-014-2102-7

[3] F. B. et al., “Fog computing and its role in the internet of things,” in
Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, ser. MCC ’12. New York, NY, USA: ACM, 2012, pp. 13–
16.

[4] C. Puliafito, E. Mingozzi, and G. Anastasi, “Fog computing for the inter-
net of mobile things: Issues and challenges,” in 2017 IEEE International
Conference on Smart Computing (SMARTCOMP), May 2017, pp. 1–6.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[6] M. Zanella, G. Massari, A. Galimberti, and W. Fornaciari, “Back
to the future: Resource management in post-cloud solutions,”
in Proceedings of the Workshop on INTelligent Embedded
Systems Architectures and Applications, ser. INTESA ’18. New
York, NY, USA: ACM, 2018, pp. 33–38. [Online]. Available:
http://doi.acm.org/10.1145/3285017.3285028

[7] C. Xian, Y. Lu, and Z. li, “Adaptive computation offloading for energy
conservation on battery-powered systems,” in 2007 International Con-
ference on Parallel and Distributed Systems, Dec 2007, pp. 1–8.

[8] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation offloading
from mobile devices into the cloud,” in 2012 IEEE 10th International
Symposium on Parallel and Distributed Processing with Applications,
July 2012, pp. 784–791.

[9] J. I. Benedetto, A. Neyem, J. Navon, and G. Valenzuela, “Rethinking
the mobile code offloading paradigm: From concept to practice,” in
2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), May 2017, pp. 63–67.

[10] Google, “Android power management,” 2016, retrieved Feb 14, 2019
from https://source.android.com/devices/tech/power/mgmt.

[11] S. K. Datta, C. Bonnet, and N. Nikaein, “Android power management:
Current and future trends,” in Enabling Technologies for Smartphone
and Internet of Things (ETSIoT), 2012 First IEEE Workshop on. IEEE,
2012, pp. 48–53.

[12] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L. Ananda,
M. C. Chan, and R. K. Balan, “Adaptive display power management
for mobile games,” in Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’11.
New York, NY, USA: ACM, 2011, pp. 57–70. [Online]. Available:
http://doi.acm.org/10.1145/1999995.2000002

[13] M. Huang, “Setcpu,” 2015, retrieved Apr 17, 2019 from
https://www.setcpu.com/documentation.html.

[14] ARM, “Energy aware scheduler,” 2016, retrieved Feb 14, 2019 from
https://developer.arm.com/open-source/energy-aware-scheduling.

[15] S. K. Datta, “Android stack integration in embedded systems,” in Inter-
national Conference on Emerging Trends in Computer & Information
Technology, Coimbatore, India, 2012.

[16] B. Dietrich and S. Chakraborty, “Lightweight graphics instrumentation
for game state-specific power management in android,” Multimedia
Systems, vol. 20, no. 5, pp. 563–578, Oct 2014. [Online]. Available:
https://doi.org/10.1007/s00530-014-0377-x

[17] P. Bellasi, G. Massari, and W. Fornaciari, “Effective runtime
resource management using linux control groups with the
barbequertrm framework,” ACM Trans. Embed. Comput. Syst.,
vol. 14, no. 2, pp. 39:1–39:17, Mar. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2658990

[18] BOSP, “The barbequertrm android api,” 2019, retrieved Feb 14, 2019
from https://bosp.deib.polimi.it/doku.php?id=docs:rtlib:newandroidapp.

[19] M. Zanella, G. Massari, and W. Fornaciari, “Enabling run-time
managed distributed mobile computing,” in Proceedings of the 9th
Workshop and 7th Workshop on Parallel Programming and RunTime
Management Techniques for Manycore Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms, ser.
PARMA-DITAM ’18. New York, NY, USA: ACM, 2018, pp. 39–44.
[Online]. Available: http://doi.acm.org/10.1145/3183767.3183778

[20] A. Morgan, “Benchmark selection guide, vol.1,” 2015, retrieved Feb 14,
2019 from https://bit.ly/2X2sPys.

2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC)

77

