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§Sustainable Artificial Intelligence, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Barcelona, Spain
¶Department of Automation, Production and Computer Sciences, IMT Atlantique, Inria, LS2N, Nantes, France

e-mail: {vperifan, npavlidi}@ee.duth.gr

Abstract—Cellular traffic prediction is a crucial activity for op-
timizing networks in fifth-generation (5G) networks and beyond,
as accurate forecasting is essential for intelligent network design,
resource allocation and anomaly mitigation. Although machine
learning (ML) is a promising approach to effectively predict
network traffic, the centralization of massive data in a single
data center raises issues regarding confidentiality, privacy and
data transfer demands. To address these challenges, federated
learning (FL) emerges as an appealing ML training frame-
work which offers high accurate predictions through parallel
distributed computations. However, the environmental impact of
these methods is often overlooked, which calls into question their
sustainability. In this paper, we address the trade-off between
accuracy and energy consumption in FL by proposing a novel
sustainability indicator that allows assessing the feasibility of ML
models. Then, we comprehensively evaluate state-of-the-art deep
learning (DL) architectures in a federated scenario using real-
world measurements from base station (BS) sites in the area of
Barcelona, Spain. Our findings indicate that larger ML models
achieve marginally improved performance but have a significant
environmental impact in terms of carbon footprint, which make
them impractical for real-world applications.

Keywords—5G/6G, Federated learning, Machine learning, Cel-
lular traffic prediction, Sustainable AI

I. INTRODUCTION

The advent of fifth-generation (5G) networks has brought
forth a plethora of increasingly communication-dependent
applications [1], including autonomous driving [2], health-
care [3] and real-time recommender systems [4]. To address
the increasing complexity faced by 5G communications and
beyond, network traffic forecasting emerges as an essential
tool for proactively managing and operating networks.

Machine learning (ML) holds a great potential to undertake
the network traffic forecasting task, as it may offer real-time
and highly accurate predictions [5], [6]. More specifically,
Deep Learning (DL) techniques such as Long Short-Term
Memory (LSTM) networks [7] and transformers [8], [9] have
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shown remarkable performance in cellular traffic prediction.
However, deploying such DL algorithms often face limitations
in aggregating data from diverse sources due to regulatory
restrictions, high bandwidth requirements and business com-
petitiveness issues [10]–[12]. These issues are particularly
stressed in traditional centralized ML settings, which struggle
to cope with massively distributed data due to privacy concerns
and communication overheads.

As a result, edge computing and distributed ML have
garnered considerable attention in the recent years [13], as
they improve privacy and address energy-related issues by
reducing data movement and using hardware with limited
resources [14]. Among several distributed ML mechanisms,
Federated Learning (FL) [15] emerges as a popular solution
for collaboratively training ML models without requiring raw
data exchange. FL effectively tackles challenges related to
multi-operator collaboration and multi-domain (geographical)
problems within a single operator [16], which makes it an
appealing tool to realize traffic forecasting in future com-
munications networks. Furthermore, FL holds the promise of
enhanced accuracy and reduced environmental impact since it
avoids heavy communication overheads and additional energy
costs, such as cooling energy, incurred in big data centers [17].

The foreseen benefits of FL are however threatened by the
rapid increase in data volumes and the adoption of large-
scale deep learning models, which demand substantial storage
capacity and network bandwidth, while the accuracy improve-
ments from these complex models often come at a significant
environmental cost [18]–[20]. Several studies also demonstrate
that, despite the advances of large models with respect to their
accuracy, they do not significantly surpass simpler models in
the domain of time series forecasting [8], [9].

In this paper, we assess the environmental impact of training
DL models for network traffic forecasting in a federated
setting. By examining the trade-off between accuracy and
energy consumption, we aim to provide valuable insights
and raise awareness regarding the environmental implications
posed by the development and deployment of distributed AI
technologies in communications systems.
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Our main contributions are summarized as follows:
1) We introduce a generic FL framework, which we use to

compare the state-of-the-art DL architectures for cellular
traffic forecasting.

2) We present a novel indicator to assess the sustainability
of ML models, which we use to showcase the trade-off
between energy consumption and predictive accuracy.
While we employ the proposed indicator specifically
for cellular traffic forecasting, its applicability can be
extended to numerous other applications.

3) We evaluate the performance of the considered DL mod-
els using real-world traffic measurements collected from
cellular Base Stations (BSs), in the area of Barcelona
(Spain) between 2018 and 2019.

The rest of this paper is organized as follows. Section II
presents the related literature on federated cellular traffic
prediction and sustainability assessment of ML models. Sec-
tion III outlines the problem statement, describes the models
used and introduces the sustainability indicator. Section IV
presents and discusses the experimental results. Section V
summarizes the findings and provides final remarks.

II. RELATED WORK

A. Federated Learning for Cellular Traffic Prediction
The number of 5G connections is estimated to reach 5

billion (109), by 2030 [21], hence traffic prediction will
be of utmost importance for designing and optimizing next
generation communications systems. The diverse and complex
patterns of human mobility contribute to traffic variations
among BSs, emphasizing the need for reliable predictive
models. Traffic characteristics can exhibit significant changes
between weekdays, weekends and social events [22], making
traffic forecasting and infrastructure planning challenging.

Recent advances leverage DL approaches to predict traffic
demands [11], [23]. More recently, research efforts have
shifted towards the decentralization of ML operations, offering
improvements regarding scalability through decentralized ML
model training frameworks such as FL. FL can potentially
boost the collaboration among network operators withholding
private data which they are reluctant to share, but which if
used would lead to powerful and robust traffic predictors [24].

In [24], the authors designed a client-shifted FL algorithm
with a dual aggregation scheme using call detail records
(CDR) collected in Italy between 2013 and 2014 [25]. Using
the same dataset, Nan et al. [7] trained a federated LSTM
model using a regional aggregation algorithm. Similarly,
in [26], the authors used the aforementioned dataset and
employed a federated meta-learning approach. Subramanya et
al. [10] compared several models, including LSTM, CNN-
LSTM and LSTM-LSTM for time-series forecasting in 5G
networks using a private dataset from a commercial network
operator. In [12], the authors presented several models for
federated traffic prediction and demonstrated that advanced
aggregation algorithms do not significantly outperform the
FedAvg baseline [15], owing to the influence of non-IID data
in cellular traffic data.

In contrast to previous works, which focused on the now
obsolete CDR data (SMS, voice calling, Internet) [7], [24],
[26], in this paper, we use a more recent dataset that comprises
real measurements from Long Term Evolution (LTE) BSs.
This dataset contains contemporary information accounting
for the current usage of cellular networks. Moreover, we
build upon the models used in [10] by incorporating state-
of-the-art transformer-based models. Finally, we extend the
work from [12] by designing a sustainability indicator for
federated settings that considers both the training and inference
phases, both critical for the adoption of ML solutions in
communications systems.

B. Sustainability of Machine Learning

Several studies have explored the sustainability of ML from
various perspectives, offering insights and recommendations
for reducing the environmental impact of ML algorithms [27].
Wu et al. [18] investigated the carbon footprint throughout the
entire life-cycle of ML, showing that carbon emissions primar-
ily originate from the training and inference stages. In [28],
the authors measured the energy consumption associated to
the training and inference of multi-layer perceptron (MLP)
models, showing that significant energy saving of up to 50%
could be achieved by reducing the number of hidden layers
and units, with a minimal drop in accuracy ranging from 1-2%.
Additionally, Savazzi et al. [17] showed that carbon emission
reduction can be achieved using FL instead of centralized ML.
Lastly, Guerra et al. [29] compared the environmental impact
of FL, gossip FL and blockchain-based FL, raising several
open issues regarding the environmental aspects of training
models using distributed approaches.

In contrast to existing research on ML sustainability, we
focus on the emissions of FL when applied to cellular traffic
forecasting. Furthermore, we quantify the trade-off between
ML model accuracy and emissions, especially with regard
to large-sized models like transformers. Our research goes
beyond MLPs [28] and focuses on several DL models applied
in a real-world scenario. Ultimately, our goal is to contribute
to the promotion of sustainable AI practices [30].

III. METHODOLOGY

In this section, we present the problem formulation for
cellular traffic prediction and discuss the FL scenario. Ad-
ditionally, we provide an overview of the ML models used.

A. Problem Statement and FL Formulation

We consider a cellular network with N BSs connected
to a common edge server. At every timestep t, each BS k

obtains a vector of d measurements, denoted by x
(k)
t ∈ Rd.

At timestep T , each BS k predicts its multivariate target
measurements y

(k)
T ∈ Rd′

, where d′ denotes the number of
measurements to be predicted, using a sliding window of
last W local measurements X

(k)
T−W :T−1 ∈ RW×d, where

X
(k)
T−W :T−1 =

[
x
(k)
T−W x

(k)
T−W+1 · · · x

(k)
T−1

]
. A common

neural network model f(·) is utilized for generating predic-
tions, i.e., ŷ(k)T = f(X

(k)
T−W :T−1), aiming at minimizing the
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Fig. 1. Federated learning-based traffic prediction in cellular networks.

prediction error while considering the energy consumption.
The specific input and output values in the considered scenario
are presented is Section IV-A.

We utilize two widely adopted metrics to quantify prediction
error for time series forecasting: i) the normalized root mean
squared error (NRMSE) and ii) the mean absolute error
(MAE). In our setting, given m different target observation
samples, MAE and NRMSE for BS k are defined as follows:

MAE(k) =
1

md′

m∑
i=1

∥ŷ(k)T+i − y
(k)
T+i∥1, (1)

NRMSE(k) =
1

y(k)

√∑m
i=1∥ŷ

(k)
T+i − y

(k)
T+i∥22

md′
, (2)

where y(k) = 1
md′

∑m
i=1 y

(k)
T+i. The goal is to minimize the

average of NRMSE(k) and MAE(k), respectively, across all
the BSs.

To develop a common model that can predict measurements
at each BS while benefiting from the training data of all
the BSs, we employ an FL-based training strategy whereby
the server orchestrates the model training process. In each
federated round, the server distributes the current global model
to the edge devices. Each device feeds its local dataset to
the ML pipeline and locally trains the received model for
a number of local epochs. After local training, the updated
model parameters are sent back to the server. The server
aggregates the received model weights to create the new global
model. The entire process repeats for multiple rounds until the
global model converges.

In our learning scenario, we consider that each BS of a given
area is associated with a Local Neighborhood Server (LNS)
that collects data within its coverage. The LNS has sufficient
resources to perform model training and orchestrate resource
allocation at the monitored BSs. In this sense, each LNS serves
as an FL node, communicating with the central server and
performing local training and inference operations. Figure 1

Algorithm 1 Federated Learning for Cellular Traffic Forecast-
ing with the FedAvg Algorithm.
Input: Base stations BSs = {BS1, BS2, ..., BSn}. R is the
number federated rounds, E is the number of local epochs, B
is the batch size, η is the learning rate and ∇L is the gradient
optimization objective.
Output: Model weights w.

1: Initialize w0.
2: for each round r = 1, 2, ...,R do
3: {BSr} ← select round participants from BSs at

random without replacement.
4: Transmit global model wr−1 to LNSs that monitor

each base station k ∈ {BSr}
5: for each base station k ∈ {BSr} in parallel do
6: wk

r ← LocalTraining(k, wr−1)
7: end for
8: nr ←

∑
k∈{BSr} nk

9: wr+1 ←
∑

k∈{BSr}
nk

nr
wk

r

10: end for
11: function LOCALTRAINING(k,w) ▷ run on LNS

monitoring BS k.
12: B ← split local dataset into batches of size B.
13: for each local epoch e = 1, 2, ..., E do
14: for batch b ∈ B do
15: w ← w − η∇L(w; b)
16: end for
17: end for
18: return w to server.
19: end function

provides an overview of the overall envisioned federated traffic
prediction framework. Algorithm 1 summarizes the federated
learning operations using the FedAvg algorithm [15]. In our
experimental study, the terms LNS and BS are equivalent and
will be used interchangeably throughout the paper, as each
LNS serves as the processing unit for each BS.

We develop a generic training methodology for accurate and
energy-aware prediction of cellular traffic at each LNS. To
achieve this, we assess different time series prediction models
f(·) and monitor their associated energy consumption.

B. Machine Learning Models

To explore the trade-off between predictive accuracy and
energy consumption, we adapt state-of-the-art DL models
to the federated setting. We start with a vanilla LSTM as
a baseline and then train encoder-decoder architectures as
in [10]. In addition, we explore additional models by in-
tegrating three transformer-based architectures, which have
been widely adopted in various domains including time series
forecasting [8], [9]. In particular, the following models are
utilized:

1) LSTM: The input series are fed into a single LSTM
layer with 128 hidden units. The last output sequence
by the LSTM layer is forwarded to a fully-connected
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layer of 128 units. The resulting hidden representation
is then passed to the output layer to obtain the prediction.

2) CNN-LSTM: The input series are passed through two
one-dimensional convolutional layers with 32 channels
and a kernel size of 1. The output of the CNN model is
then processed by a single LSTM layer of 128 units and
further processed through a fully-connected layer as for
the previous model.

3) LSTM-LSTM: This architecture comprises two models,
the LSTM encoder and the LSTM decoder. The input
series are fed into the LSTM encoder with 128 units,
which generates interpreted sequences that capture de-
pendencies from the input domain and hidden represen-
tations. These encoded sequences are then forwarded to
the LSTM decoder with 128 units, followed by a fully-
connected layer of 128 units.

4) BasicTransformer: This architecture contains the en-
coder part of a transformer [31]. The input series are
passed to a fully-connected layer of 128 units. The
resulting hidden representation is then fed into 2 trans-
former blocks. Each transformer block applies multi-
head attention using 8 heads, capturing complex de-
pendencies throughout the input sequences. The output
of the attention mechanism is normalized and further
forwarded to a feed-forward neural network (FFNN)
with 2 hidden layers, each comprising 128 units. Finally,
the output is normalized and a fully-connected layer
outputs a prediction.

5) Transformer: This architecture extends the previous
model by including a decoder sub-model. In this case,
the output of the encoder and specifically, the last hidden
representation, is fed into a fully-connected layer with
128 units. After that, 2 transformer blocks apply multi-
head attention to the sum of the hidden representation
obtained from the fully-connected layer and the entire
output of the encoder. Transformer blocks are identical
to the ones from the BasicTransformer. Finally, a fully-
connected layer takes the last hidden representation ob-
tained after applying multi-head attention and generates
a prediction.

6) Transformer-LSTM: This architecture enhances the
previous Transformer model by including an additional
LSTM layer. More specifically, the input series are pro-
cessed by the encoder, which output is forwarded to an
LSTM layer of 128 units. The last output sequence from
the LSTM layer, along with the entire encoder’s output,
are fed to the decoder, which generates predictions.

C. Attention Mechanism

Given the ability of attention mechanisms to focus on
specific parts of features and subsequently lead to higher
predictive accuracy [8], [9], [31], we also integrate an attention
mechanism to models 1) to 3). Note that transformer-based
models 4) to 6) directly utilize self-attention mechanism, so
additional attention is not required. More precisely, in the
LSTM model, attention is applied to the output sequences

obtained from the LSTM, i.e., before the final fully-connected
layer. In the CNN-LSTM model, the attention is integrated
after LSTM’s operation. Lastly, in the LSTM-LSTM model,
attention is incorporated into the encoder’s output.

The attention mechanism considered in this work takes the
final hidden states generated by an LSTM layer and repeats
them for the specified window (W = 10 in our case). The
repeated hidden states and the LSTM’s output sequence are
concatenated to the last dimension and then forwarded to
a fully-connected layer, followed by a tanh activation. The
resulting transformation of the hidden states undergoes a dot
product operation with a learnable vector v. Finally, softmax is
applied to normalize the attention weights, which represent the
importance of hidden features in the LSTM’s output sequence.
The entire process can be summarized as

Attention(h, out) = softmax (v · e) , (3)

where

e = tanh (FC (Concat (Repeat (h, timesteps) , out))) , (4)

where h and out represent the LSTM’s outputs, v is a
learnable weight vector, FC denotes a fully-connected layer
and · represents matrix multiplication. In the remainder of
this paper, models with the integrated attention mechanism
are denoted with the suffix ‘-A’, e.g., LSTM with attention is
denoted as LSTM-A.

D. Sustainability Indicator

The absence of standardized indicators for evaluating ML
sustainability poses challenges to performing fair comparisons
among different algorithms. To address this issue, we propose
a novel metric that considers both predictive accuracy and
environmental impact. More specifically, we consider the
following aspects:

1) Accuracy on unseen data, measured by the prediction
error.

2) Computational efficiency with respect to the energy
consumed in Watt hours (Wh).

3) Communication efficiency, quantified by the data size to
be transmitted in kilobytes (kB).

We select these aspects since accuracy indicates the training
and inference reliability; computational efficiency is associated
with energy consumption and environmental implications;
communication efficiency relates to throughput and bandwidth
requirements. These factors are crucial for assessing the sus-
tainability of FL applications.

The sustainability indicator, denoted as S, provides a com-
prehensive evaluation of a model’s sustainability throughout
the training and inference phases. The formula for calculating
S is as follows:

S = STr × SInf, (5)

where STr and SInf represent the attained trade-off between
accuracy and energy consumption during the training and
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inference phases, respectively. The indicator for training can
be calculated using the following equation:

STr = (1 + EVal)
α × (1 + CTr)

β × (1 +DS)γ , (6)

where EVal is the validation error (in this work, we consider
MAE), CTr represents the total energy consumed for model
training in Wh and DS is the data size to be transmitted to
the central server in kB. Under the FL setting, DS represents
the model size that is transmitted per federated round, while
in a centralized scenario, it represents the raw dataset size.
Note that, in this work, we solely focus on FL. The exponents
denote the importance of each value, with α + β + γ = 1. It
should be clarified that a simple weighted average was not used
due to the lack of normalization across the different scales,
which could lead to misleading outcomes. As for the rationale
behind STr, a lower value indicates better computational and
communication efficiency relative to accuracy. An ideal model
has EVal = CTr = DS = 0 and STr = 1.

During inference, the following formula is utilized:

SInf = (1 + ETest)
α′
× (1 + CInf)

β′
(7)

where ETest is the error observed in unseen test data (e.g.,
based on MAE) and CInf is the energy consumed for pre-
dictions. The communication cost during the inference phase
is not considered as each client holds its own model locally.
Since the number of times that an FL client employs the model
for generating predictions is specific to the implementation,
we measure these values in terms of predictions per 1.000
samples. Note that, in the considered scenario, each BS uses
the model every two minutes, resulting in 720 predictions per
day. In this service, the operator is interested in knowing the
predictions of the model’s output variables to implement its
network management optimization solutions. Similar to ST,
α′+β′ = 1 and, the lower the value of SInf, the better the trade-
off between computational efficiency and predictive accuracy.

IV. RESULTS

In this section, we outline the experimental setup and
present the results focusing on the predictive accuracy and
energy consumption. Finally, we delve into the sustainability
aspects of the considered models, examining their viability
through the sustainability indicator proposed in this paper.1

A. Dataset and Experimental Details

The datasets were collected from three locations in
Barcelona, Spain, representing different zones: touristic, en-
tertainment and residential areas. The datasets ensure user
anonymity and offer accurate information about the network
utilization, allowing the extraction of detailed traces from indi-
vidual communications. The datasets have been pre-processed
to include aggregated statistics for every two-minute interval.
Table I reports the minimum and maximum values for each
location and type of measurement. In particular, the three

1The code is available at https://github.com/vperifan/
federated-Time-Series-Forecasting/.

locations are treated as distinct nodes under FL and each site
has the following characteristics:

• ElBorn: 5.421 samples, collected from 2018-03-28
15:56:00 to 2018-04-04 22:36:00.

• LesCorts: 8.615 samples, collected from 2019-01-12
17:12:00 to 2019-01-24 16:20:00.

• PobleSec: 19.909 samples, samples, collected from 2018-
02-05 23:40:00 to 2018-03-05 15:16:00.

Following the analysis by [12], the distributions and the
number of observation significantly vary among these locali-
ties, resulting in non-IID data distribution. For the experimen-
tal evaluation, we use the standard 60/20/20 train, validation
and test split per base station.

For each site, the eleven features given in Table I are used as
input to the ML models with a window of W = 10. The goal is
to predict the next timestep’s five features: uplink and downlink
traffic (Down and Up), the radio network temporary identifiers
(RNTI Count) and the resource blocks for downlink and uplink
(RB Down and RB Up). We employ 50 federated rounds
with 3 local epochs per site, optimizing the MAE for the five
target values. The energy consumption per considered model is
measured using CodeCarbon,2 a tool that monitors the energy
consumed either in GPU or CPU during the training. The
experiments were conducted on a workstation running Ubuntu
22.04 with 64 GB memory and an Intel Xeon 4210R CPU and
RTX A6000 GPU.

B. Forecasting Error

The results per area considering the validation and test
NRMSE and MAE of the forecasting task are presented in
Table II. The following observations are made per BS:

• ElBorn: In terms of validation and test MAE, LSTM-
LSTM-A and Transformer are the top performing models.
Although vanilla LSTM demonstrates the lowest NRMSE
on the validation set, Transformer-LSTM performs the
best on test NRMSE.

• LesCorts: Interestingly, simpler models yield better re-
sults for this particular BS. The LSTM model achieves
the highest score considering the validation MAE, while
the addition of attention mechanism enables the LSTM-A
model to achieve the best scores on both the test MAE,
validation NRMSE and test NRMSE.

• PobleSec: A significant distinction is observed between
the validation and test scores for this BS. In terms of vali-
dation MAE and NRMSE, the LSTM model demonstrates
the best performance. However, the Transformer model
shows superior predictive accuracy when considering the
test NRMSE and MAE.

Regarding the federated model that achieves the lowest
average errors, its performance depends on whether we con-
sider the validation or test set. On the validation set, the
vanilla LSTM model shows slightly lower errors than state-
of-the-art Transformers, displaying the best accuracy. For
instance, the LSTM obtains 1.2% more averaged validation

2https://github.com/mlco2/codecarbon
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TABLE I
DATASET STATISTICS

Area Down Up RNTI Count MCS Down MCS Down Var MCS Up MCS UP Var RB Down RB Down Var RB Up RB Up Var
(×109) (×109) (×104) (×101) (×102) (×101) (×102) (×10−1) (×10−7) (×10−1) (×10−7)

ElBorn Min 0.005 0.0 0.035 0.193 0.337 0.0 0.0 0.009 0.182 0.0 0.0
Max 1.887 0.673 4.373 1.653 1.009 3.100 2.410 6.706 1.581 2.236 0.681

LesCorts Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 0.297 1.058 2.135 1.616 0.993 3.100 1.477 1.241 0.522 2.314 0.940

PobleSec Min 0.008 0.0 0.056 0.086 0.152 0.0 0.0 0.015 0.231 0.0 0.0
Max 2.286 0.625 1.619 1.619 0.969 3.050 1.823 7.398 1.801 4.458 1.026

TABLE II
RESULTS ON TRAFFIC FORECASTING ON VALIDATION/TEST SETS AND MODEL SUSTAINABILITY.

Model Area NRMSE MAE (×106) ETr (Wh) EInf (Wh) Size (KB) STr(×103) SInf(×103) S(×107)
LSTM ElBorn 0.3925 / 0.8909 3.5868 / 8.9698

LesCorts 0.3142 / 0.2702 2.9398 / 3.2382 10.2346 0.0350 292.9 2.3050 2.7564 0.6353
PobleSec 1.1091 / 0.8597 7.5419 / 9.8139

LSTM-A ElBorn 0.3946 / 0.8619 3.5857 / 8.9025
LesCorts 0.3026 / 0.2599 2.9501 / 3.2111 14.2425 0.0437 425.7 2.8854 2.7622 0.7970
PobleSec 1.1570 / 0.8488 7.5707 / 9.8169

CNN-LSTM ElBorn 0.4198 / 0.8967 4.0138 / 9.8041
LesCorts 0.3298 / 0.2775 3.0930 / 3.2873 12.8932 0.0439 342.5 2.6440 2.8290 0.7480
PobleSec 1.1498 / 0.8450 7.6466 / 9.9082

CNN-LSTM-A ElBorn 0.4342 / 0.8814 4.0801 / 9.7783
LesCorts 0.3194 / 0.2694 3.1196 / 3.2618 15.8389 0.0501 475.3 3.1426 2.8300 0.8894
PobleSec 1.1748 / 0.8450 7.6173 / 9.8418

LSTM-LSTM ElBorn 0.4260 / 0.8965 3.6611 / 9.2160
LesCorts 0.3272 / 0.2822 3.0237 / 3.2961 13.1634 0.0450 821.9 3.5211 2.7941 0.9838
PobleSec 1.1415 / 0.8543 7.7067 / 9.9019

LSTM-LSTM-A ElBorn 0.4062 / 0.8922 3.5585 / 8.9310
LesCorts 0.3187 / 0.2726 2.9646 / 3.2280 16.3795 0.0577 954.8 3.9356 2.7843 1.0958
PobleSec 1.1294 / 0.8649 7.6249 / 9.8291

BasicTransformer ElBorn 0.4147 / 0.8372 3.7374 / 8.8270
LesCorts 0.4054 / 0.3380 3.1668 / 3.3568 25.2506 0.0851 814.9 4.3251 2.8149 1.2175
PobleSec 1.2533 / 0.8356 7.7016 / 9.7230

Transformer ElBorn 0.4071 / 0.8328 3.5790 / 8.7340
LesCorts 0.3611 / 0.3041 3.0631 / 3.2598 39.5148 0.1233 1628.3 6.2182 2.8443 1.7687
PobleSec 1.2355 / 0.8299 7.5964 / 9.6134

Trasformer-LSTM ElBorn 0.4045 / 0.8321 3.6243 / 8.7798
LesCorts 0.3357 / 0.2835 3.0506 / 3.2620 42.6441 0.1671 2217.3 7.0643 2.9061 2.0530
PobleSec 1.2490 / 0.8338 7.6149 / 9.6667

MAE than Transformer. However, on the unseen test set, both
the Transformer and Transformer-LSTM models demonstrate
the lowest error outperforming the vanilla LSTM by 2% and
1.5%, respectively. The higher error on the test set for models
such as the LSTM is attributed to the presence of overfitting,
which affects their generalization capability. It is worth noting
that there is no single model that performs best across all areas
and metrics, indicating that the optimal model depends on the
target area and the specific metric that is prioritized.

In Fig. 2, we show the averaged MAE (across all areas)
on the validation and test sets per model. As mentioned
earlier, LSTM performs the best on the validation set, while
Transformer and Transformer-LSTM show superior accuracy
on the test set. These observations align with related works on
time series forecasting, demonstrating that advanced models
may not systematically outperform simpler ones [8], [9].

C. Energy and Communication Costs

In ML pipelines, energy is consumed during both the
training and inference phases [18]. In centralized settings, the
training phase is typically performed once, while inference
is repeated multiple times, when a client queries the trained
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Fig. 2. MAE per model on the validation and test sets.

6



0 10 20 30 40

LSTM

LSTM-A

CNN-LSTM

CNN-LSTM-A

LSTM-LSTM

LSTM-LSTM-A

BasicTransformer

Transformer

Transformer-LSTM

Energy consumed during training

0.00 0.05 0.10 0.15

Energy consumed during inference

Fig. 3. Total energy consumed (Wh) per model over 50 federated rounds.
Training (left) and inference of 1.000 samples (right) costs are included.

model for predictions. In edge computing scenarios, frequent
training is also needed due to real-time data collection, posing
environmental constraints.

Communication costs are also relevant in both centralized
and federated scenarios due to data collection and exchange
of model weights. However, centralized scenarios involve
additional costs such as cooling energy, while FL mitigates
environmental costs by only transferring a small amount of
data per federated round. This offers an advantage to FL com-
pared to centralized learning regarding network throughput and
latency, especially in large-scale scenarios. It also implies the
assumption that, when transmitting larger models in the FL
scenario, a greater environmental impact is anticipated.

The model sizes that define the amount of data that needs
to be transmitted per model broadcast, which quantifies the
communication costs in an FL scenario, are presented in
Table II (in column Size). As expected, integrating attention
mechanisms leads to larger model sizes. Simpler models such
as LSTM and CNN-LSTM have the smallest sizes, while
Transformer-based models, exhibit much higher sizes. For
instance, the Transformer model [31] is 5.6 times larger than
the vanilla LSTM model. However, even the largest model
(the Transformer-LSTM at 2217.3 KB) is still small enough
in absolute terms to allow the FL methods to be usable in our
scenario, since transferring this amount of data per BS per
120 seconds should be insignificant in comparison to the link
capacities involved.

In addition to the communication costs, we quantify the
energy consumed during training and inference, which is
depicted in Fig. 3 (also ETr and EInf, respectively, in Table II),
using the CodeCarbon library. These values illustrate the
total energy consumption (in Wh) per ML model during
the federated training and inference phases. Specifically, for
the inference phase, we consider the energy consumed for
making 1.000 predictions. This quantification shows that more
complex models like Transformers entail a higher energy cost.
In particular, the BasicTransformer model consumes more
than twice of the energy than the vanilla LSTM during the
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Fig. 4. Trade-off between the test MAE and energy consumption (Wh) of
each considered model.

training phase, while the Transformer and Transformer-LSTM
models have approximately five and seven times higher en-
ergy consumption, respectively. The CNN-LSTM and LSTM-
LSTM models show significantly lower environmental impact
compared to Transformers, but their energy is higher than
the vanilla LSTM. It is worth noting that the inclusion of
attention mechanisms increases the model complexity, size and
energy consumption. Regarding the energy consumed during
inference, we observe a similar behavior, where larger models
consume significantly more energy compared to simpler ones.
Overall, we conclude that more complex model architectures
result in higher energy consumption during both the training
and the inference phases, which can have a significant CO2

footprint and overall environmental impact.

D. Sustainability Evaluation

This section presents an evaluation of the considered models
using the sustainability indicator proposed in Section III-D.
The formula in Eq. (5) takes into account the energy con-
sumption during both the training and inference phases as
well as the additional communication costs incurred during
the exchange of model parameters between the server and FL
nodes. The resulting values for each model under consideration
are presented in Table II (STr, SInf and S). It is important to
note that all the factors in Eq. (6) and (7) are equally weighted.

The resulting sustainability values reveal that more complex
models such as those based on encoder-decoder or Trans-
former architectures exhibit poorer performance in terms of
sustainability, both during training and inference. This can
be attributed to their larger model sizes and higher energy
consumption. Although these models demonstrate slightly
better results in terms of prediction error, such a marginal
advantage does not outweigh the significantly better results
achieved by much simpler models in terms of sustainability.
For instance, the resulting S of the Transformer model is about
3, 2.5 and 2 times higher than the vanilla LSTM, CNN-LSTM
and LSTM-LSTM models, respectively.

Figure 4 illustrates the trade-off between test MAE and
energy consumption (in Wh) during the training phase of
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each respective model. This figure demonstrates that, although
larger models such as Transformers lead to lower test MAE
than simpler models such as the vanilla LSTM, the required
energy for training them is the highest among models, making
them less suitable when energy consumption is considered as
an aspect for evaluating the overall performance.

V. CONCLUSION

In this paper, we have investigated the sustainability and
predictive performance of state-of-the-art DL models for fed-
erated cellular traffic forecasting. We have introduced a novel
sustainability indicator for evaluating energy consumption with
respect to accuracy, which enables convenient comparisons
across various ML models in different experimental scenarios.
We have shown that increasingly large and complex models
provide very limited accuracy gains but have an enormous as-
sociated increase in energy consumption compared to simpler
models. In the future, we aim to study the convergence speed
of different models and extend the introduced sustainability
indicator to capture aspects such as robustness. To demonstrate
the generalization and scalability of federated learning, we
will also evaluate an extensive and diverse set of clients and
datasets. Finally, we will explore the trade-off between model
selection and accuracy for each federated client and apply
regularization techniques to improve model robustness.
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