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Federated Bayesian Network Ensembles
Florian van Daalen, Graduate Student Member, IEEE, Lianne Ippel, Andre Dekker, and Inigo Bermejo

Abstract—Federated learning allows us to run machine learning algorithms on decentralized data when data sharing is not permitted
due to privacy concerns. Ensemble-based learning works by training multiple (weak) classifiers whose output is aggregated. Federated
ensembles are ensembles applied to a federated setting, where each classifier in the ensemble is trained on one data location. In this
article, we explore the use of federated ensembles of Bayesian networks (FBNE) in a range of experiments and compare their
performance with locally trained models and models trained with VertiBayes, a federated learning algorithm to train Bayesian networks
from decentralized data. Our results show that FBNE outperforms local models and provides a significant increase in training speed
compared with VertiBayes while maintaining a similar performance in most settings, among other advantages. We show that FBNE is a
potentially useful tool within the federated learning toolbox, especially when local populations are heavily biased, or there is a strong
imbalance in population size across parties. We discuss the advantages and disadvantages of this approach in terms of time
complexity, model accuracy, privacy protection, and model interpretability.

Index Terms—Federated Learning, Bayesian network, privacy preserving, Federated Ensembles, Ensemble Learning
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1 INTRODUCTION

Federated learning allows machine learning algorithms
to be applied to decentralized data when data sharing is
not an option due to privacy concerns [1]. Traditionally
federated learning approaches train a model iteratively on
local data [2]. The local results are then averaged back into
a single global model. Privacy is preserved using epsilon-
differential privacy [3], homomorphic encryption [4], and
multiparty computation (MPC) [5] during this process. The
specific techniques used, depend on the way the data is split
across the various parties. If the data is split horizontally, i.e,
each party has data belonging to a different population but
the attributes are the same, simpler techniques can be used.
While this approach yields good results in many cases, it
suffers from several limitations.

A major downside is that it does not explicitly consider
heterogeneity across different data sites. That is, it assumes
that the data is independent and identically distributed
(IID) over the various parties. However, in practice, feder-
ated environments will often be subject to local biases. For
example, a common scenario where federated learning is
implemented is when multiple hospitals combine their data
to build a joint model [6]. These hospitals may have very
different population sizes, which may cause the final model
to overfit on the biggest hospital. Additionally, the hospitals
might have biases in their populations: e.g., an urban and
a rural hospital will have different patient populations.
Furthermore, the hospitals may even be on opposite sides
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of the globe, adding further biases into the distribution
due to cultural, socio-economic, and many other factors.
Simply averaging over these diverse populations may result
in models that fit neither population, or it may result in
the model overfitting on one particular population, while
ignoring others.

If the data is split vertically, , i.e. when different parties
have different variables about the same population, it may
be possible that there are dependencies between the parties.
For example, if one party is a general practitioner (GP) and
the other party is the specialist clinician, the GP might have
referred the patient to the specialist and there will be a
dependency between the two datasets. The GP might, for
example, have started treatment based on the data he has,
which will influence the data the specialist receives.

These diverse types of bias may create problems when
using the traditional federated learning approach. An al-
ternative is the use of federated ensembles, ensembles of
classifiers, each of which has been trained on the local data
of each party in a federated setting [7]. Ensemble based
learning works by combining multiple (weak) classifiers
which work together to jointly produce classifications us-
ing various voting schemes [8]. It relies on a diverse set
of classifiers, under the assumption that if one classifier
makes a mistake the other classifiers will correct it. This
allows ensembles to achieve a high performance, even when
the individual classifiers are weak. A major advantage of
ensemble learning is that it can deal with non-IID data [9].
It can even take advantage of the dependencies by using
(dynamically) weighted voting schemes. For example, an
ensemble of experts can weigh the votes of classifiers trained
on a similar population, or trained on specific sub-tasks,
more strongly [10], [11].

Current research into federated ensembles is limited [7].
There is only a small body of current work specifically
looking into federated ensembles. There are still several
general open questions, mainly:

1) How to share class labels in a privacy preserving
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manner in a vertically distributed setting.
2) How to detect and exploit the subtle biases and

dependencies that exist across parties.
3) How to determine correlations between the various

attributes split across parties.

In addition to these general questions, there is also room
for exploring different types of ensembles, using different
base-classifiers. In this article, we will explore the use of
federated ensembles consisting of Bayesian networks (BN).
We will compare these ensembles with VertiBayes [12], a
federated implementation of BNs, as well as with a BN that
was centrally trained. We will compare the various options
in terms of technical complexity, training time required,
privacy protection, and model performance.

2 METHODS

2.1 Bayesian networks
Bayesian networks (BN) are widely used probabilistic
graphical models consisting of a directed acyclic graph (the
structure) where each node represents a variables and arcs
represent conditional dependencies and a set of conditional
probability distributions (the parameters), one per node [13].
Their ability to combine existing expert knowledge with
data has given them great utility and popularity. In addition,
their graphical representation and probabilistic reasoning
makes them relatively intuitive to understand models for
non-technical personnel. This makes them especially useful
in scenarios where non-technical personnel need to be able
to understand the models, for example when models are
used to inform clinical decisions.

2.2 VertiBayes
VertiBayes [12] is an implementation of BN learning al-
gorithms in a federated environment. It works both in
vertical and horizontally distributed scenarios, as well as
in a hybrid scenario. In addition to this, it can deal with
missing data [14], [15]. Furthermore, it includes a federated
implementation of the K2 algorithm [16], allowing it to learn
a network structure on the fly. Lastly, VertiBayes includes
several validation methods, of various computational com-
plexity, that can be used to validate the model in a privacy
preserving manner. This makes it an appropriate tool in a
federated setting where data quality across parties may not
be guaranteed.

It has a similar performance compared to a centrally
trained model. In addition, it provides the same privacy
guarantees as the n-party scalar product protocol [17] used.
However, it is considerably more time consuming to train a
model using VertiBayes than it is to train a model centrally.
The time complexity mostly depends on the number of
probabilities that need to be calculated during parameter
learning.

2.3 Federated Bayesian Network Ensembles
Federated Bayesian Network Ensembles (FBNE) are an en-
semble learning approach where the base classifier consists
of Bayesian networks. Each data owner within the federated
setting makes their own Bayesian network based on locally

available data. This local data is only enriched with the
class label (should this not be available locally) in a privacy
preserving manner using VertiBayes. The local classifiers
can then be used in an ensemble to classify a new individual.

It is possible to use FBNE in a horizontally split, verti-
cally split and hybrid settings. In the case of a hybrid split,
one may decide to build the models purely based on local
data, or to allow the hybrid variables to also utilize the
data available at other data parties. For example, if party
1 contains attribute A & B, and party 2 contains attributes B
& C, we can choose to either build a model using only the
data available locally at party 1, or to build a model which
also includes the data party 2 has regarding attribute B. In
addition, it is possible with the use of predefined structures
to mix and match variables from various parties to create
the optimal ensemble.

2.3.1 Privacy risks
The privacy risks posed by FBNE are the same as those
posed by VertiBayes. That is to say, there are no major
risks during training. However, the BNs themselves do still
contain information. The structure and CPDs included in the
BNs will be revealed if they are published. The published
networks can be used to predict missing values in a dataset
by a third party. This is inherent to how BNs work and as
such is unavoidable. An ensemble of BNs poses a similar
risk.

2.3.2 Runtime advantages
FBNE are significantly faster than VertiBayes as the majority
of the calculations can be done locally. This minimizes the
use of complex MPC needed to preserve privacy.

2.3.3 Performance advantages and disadvantages
FBNE may outperform a single model. The ensembles may
catch local biases that are lost when only a single model
is built. Furthermore, by using weighted voting it becomes
possible to create a mixture of experts. This is especially
advantageous if it is known that the various data parties
have biases in their data. For example, in a scenario where
hospitals work together to build an ensemble it may be
useful to weigh the votes if one hospital specializes in a
certain type of patient.

2.3.4 Interpretability
Ensembles are generally less interpretable than a single clas-
sifier. However, Bayesian networks are highly interpretable.
While it is not possible to directly detect interactions across
the various individual classifiers within the ensemble it is
possible to use the individual classifiers to guide research
into variable interactions in a smart manner. For example, by
comparing the sparsity of the local networks to determine
if certain variables are actually of interest to the outcome
variable. In addition to this, it can be possible to use expert
knowledge to deduce possible interactions. For example
take the following toy examples shown in figure 1.

In addition to these two models, expert knowledge indi-
cates that poverty increases the likelihood of smoking. Based
on this expert knowledge and the local models that were
created it can be deduced that the global structure might be
similar to the network shown in figure 2
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Fig. 1: Two local networks based on locally available data

Fig. 2: Global network created by combining the two local
models from figure 1 while utilizing expert knowledge.

Furthermore, it should be noted that it is possible to ap-
ply feature selection across ensembles using wrapper-based
approaches. By utilizing this type of feature selection, it may
be possible to detect mediating effects between attributes.

3 EXPERIMENTS

We ran a range of experiments to assess the performance
of FBNE1. We used the following datasets: Iris [18], Autism
[19], Asia [20], Diabetes [21], Alarm [22] and Mushroom [23].

The Iris dataset contains 5 attributes and contains 150
individuals. It contains no missing values. The Autism
dataset has 20 attributes and contains 704 individuals. The
Asia dataset contains 10.000 individuals and 8 attributes.
The Alarm dataset also contains 10.000 individuals and 37
attributes. The Diabetes dataset contains 768 individuals
and 9 attributes. The mushroom dataset has 23 attributes
and contains 8124 individuals.

Each dataset was tested with varying levels of missing
values (no missing values, 5%, 10%, 30% missing at random
) We tested the following federated split scenarios:

• Vertical split with the attributes split randomly be-
tween parties. Each party has at least 2 local at-

1. An implementation of FBNE can be found in the following git
repository: https://github.com/MaastrichtU-CDS/bayesianEnsemble

Fig. 3: Horizontally split data

Fig. 4: Vertically split data

tributes. This was done for a setting with 2 and a
setting with 3 parties.

• Horizontal split with the samples split randomly
between parties. Each party has at least 50 records.
Again this was done for a setting with 2 and a setting
with 3 parties.

– Additionally the horizontal splits were tested
at varying levels of bias. To induce this bias we
would make it more likely for individuals of a
certain label to be put in a specific data station,
e.g. individuals with the class label “true” are
more likely to be put in party 1, individuals
with class label “false” are more likely to be
put in party 2. In the case of non-binary labels,
such as for the Iris dataset, the bias would be
created by piting label 1 against the rest. The
following levels of bias were introduced: no
bias, 75%, 85%, and 95% bias.

• Hybrid split. The attributes are randomly split in
two, the samples in one of these splits is then ran-
domly split in two again. This results in 3 parties in
total, each with at least 2 local attributes and 50 local
records.

An illustration of the various data splits can be found in
section 4 and fig. 4.

https://github.com/MaastrichtU-CDS/bayesianEnsemble
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Fig. 5: Hybrid split data

Each of these scenarios was run 10 times for each dataset.
It should be noted that not every dataset could be used in
every scenario. For example, the Iris dataset only contains
5 attributes and thus cannot be used in a 3-party vertically
split scenario.

In addition to these random splits, an experiment was
also run where data was manually split in a “realistic” man-
ner in a vertical setting based on expert knowledge. These
experiments attempt to represent a realistic split where dif-
ferent parties collected different types of data. For example,
the Autism data set contains attributes representing answers
to a questionnaire, and some general personal attributes
such as age, sex, and country of residence. This data was
split in such a way that one party had the questionnaire
answers, and the other party had the remaining attributes.
As mentioned above, horizontal bias is addressed separately
in the horizontal experiments.

We compared the performance of FBNE with VertiBayes
as well as a centrally trained Bayesian network. In addition,
the performance of the local models on their local data is
used as a baseline, after all if the local model already creates
a sufficiently strong classifier there is no need for a federated
model. The performance was measured by calculating the
AUC using a 10-fold cross validation.

In all cases both structure and parameters were learnt.
Continuous variables were discretized into intervals that
contained at least 10% of the total population.

4 RESULTS

A selection of the results can be seen in tables tables 1
and 2 and section 4. The selected results illustrate the
general trends seen across all experiments. The remaining
experimental results can be found in the appendix.

In all tables the highest AUC is indicated in green, the
second highest in yellow.

4.1 Runtime
The training process for FBNE is consistently faster than
VertiBayes in every experimental setting and for every

dataset used. However, it should be noted that the dif-
ferences vary widely and depend on the dataset. These
differences are mainly driven by the different network struc-
tures. FBNE has the advantage that most calculations can be
done locally. During our experiments FBNE was faster than
VertiBayes by a factor that ranged from twice as fast to fifty
times as fast. It should be noted that it is difficult to predict
per scenario how large the processing speed gains will be as
it is difficult to predict the resulting network structure.

4.2 Performance
FBNE largely shows the same performance as VertiBayes,
scoring similar AUC’s. However, it should be noted that for
specific datasets, and for specific data-splits, the ensembles
can perform significantly better. With the largest difference
being nearly a 0.1 difference in AUC.

In addition to outperforming VertiBayes by a relevant
margin in specific scenarios, the following general trends
were visible in our experiments. First, FBNE performs very
well in scenarios with no missing data. FBNE achieved
the highest AUC in 80% of the scenarios with no missing
data. However, VertiBayes performs better in scenarios with
missing values. VertiBayes achieved the highest AUC in
roughly 70% of the scenarios.

Another interesting trend that is visible in our experi-
ments is that in horizontally split scenarios the local models
can perform well if the local data quality is high, occasion-
ally performing similarly to the federated and centralized
models. However, it should be noted that this is rare.

It is important to note that neither approach was op-
timized, and better models can potentially be created. For
example, a network structure generated using expert knowl-
edge, as opposed to using an automatic approach like
the K2 algorithm, may result in better Bayesian networks.
Both VertiBayes and FBNE could benefit from such expert
knowledge. In addition, weighted voting, and especially
dynamically weighted voting, can improve the performance
of FBNE.

5 DISCUSSION

Our experiments show that FBNE can be a suitable solution
in certain scenarios. In this section we will take a deeper
dive into the differences between FBNE and VertiBayes.

5.1 Runtime
The reduced training time that was observed during the
experiments is a strong advantage in favor of the federated
ensembles, especially in time critical applications or in cases
when MPC solutions such as VertiBayes are too time con-
suming. FBNE has this advantage due to the fact that the
vast majority of calculations can be done locally and thus
requires far fewer computationally difficult operations than
VertiBayes does.

In addition to the improved runtime already observed
here, it should be noted that our implementation of the
ensembles has not been fully optimized. There is room
for further improvements, especially with respect to par-
allelization, which will further increase the gap in terms of
runtime. However, since the goal of this study was to simply
explore the potential of FBNE, not to provide an optimized
implementation, this will not a part of this study.
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TABLE 1: Experimental results vertically split 2-party scenarios where attributes were randomly split across parties. ’*’
Indicates the best performing model, ’†’ indicates the second best performing model.

AUC
Name Missing Data Level FBNE Party 1 Party 2 Central VertiBayes
Alarm

population size: 10000 0 0,888* 0,793† 0,675 0,789 0,789

Asia
population size: 10000

0 0,996* 0,918 0,886 0,995† 0,991
0.05 0,742† 0,694 0,696 0,735 0,776*
0.1 0,622† 0,594 0,591 0,615 0,677*
0.3 0,418 0,401 0,415 0,42† 0,581*

Autism
population size: 704

0 0,909† 0,803 0,824 0,824 0,93*
0.05 0,8† 0,71 0,727 0,735 0,853*
0.1 0,737† 0,67 0,672 0,675 0,834*
0.3 0,531† 0,484 0,497 0,498 0,716*

Diabetes
population size: 768

0 0,811* 0,744 0,69 0,78 0,808†
0.05 0,757† 0,658 0,684 0,723 0,772*
0.1 0,693† 0,597 0,624 0,668 0,767*
0.3 0,452† 0,418 0,406 0,44 0,667*

Iris
population size: 150

0 0,94* 0,882 0,908† 0,885 0,75
0.05 0,892* 0,833 0,789 0,877† 0,787
0.1 0,782* 0,702 0,705 0,706† 0,701
0.3 0,658† 0,6 0,606 0,673* 0,607

Mushroom
population size: 8124 0 0,999* 0,987† 0,898 0,999* 0,986

TABLE 2: Experimental results vertically split 2-party scenarios where attributes were manually split across parties to
simulate a realistic biased split. ’*’ Indicates the best performing model, ’†’ indicates the second best performing model.

AUC
Name Missing Data Level FBNE Party 1 Party 2 Central VertiBayes

Autism
population size: 704

0 0,889* 0,832 0,720 0,851† 0,834
0.05 0,789* 0,726 0,669 0,738 0,780†
0.1 0,728† 0,678 0,599 0,689 0,743*
0.3 0,497† 0,491 0,379 0,497† 0,625*

Iris
population size: 150

0 0,940* 0,845 0,888 0,912† 0,748
0.05 0,887* 0,635 0,872 0,878† 0,736
0.1 0,774* 0,640 0,696 0,699† 0,671
0.3 0,654† 0,477 0,664 0,667* 0,622

Mushroom
population size: 8124 0 0,992* 0,880 0,987 0,987† 0,987†

5.2 Performance

FBNE largely showed the same performance as VertiBayes,
however, in specific scenarios it significantly outperformed
VertiBayes. With the largest difference being nearly a 0.1
difference in AUC. This does indicate that FBNE are poten-
tially very useful in the right situation. However, it is very
difficult to determine when this is the case without simply
training the FBNE.

Two trends were visible with respect to the performance
differences. First, FBNE performs very well in scenarios
with no missing data. However, VertiBayes performs better
in scenarios with missing values. There are two plausible
reasons that explain why VertiBayes performs better in these
scenarios. The first explanation is that FBNE did not have
a large, or diverse, enough ensemble in the experimental
scenarios to work properly. Ensemble learning relies on
a diverse set of classifiers which can correct each other’s
mistakes, with only 2 or 3 models in our scenarios the en-
sembles may not be able to do this consistently. The second
possible explanation is that the synthetic data generation
step within VertiBayes allows it to bootstrap itself for an
improved performance.

Another interesting trend that is visible in our experi-
ments is that in horizontally split scenarios the local models
occasionally perform well when local data is of a high

quality, especially when the local population is not biased
in any way. This reminds us that it is always important
to ask if a federated model is truly necessary. Building a
federated model is only worthwhile if the data added from
other parties adds extra information. But if your local data
is already sufficiently large, and representative of the true
population, then a federated model may not be needed.
However, if the local data is small, or biased in some way,
then a federated approach is needed.

It is important to note that neither approach was op-
timized, and better models can potentially be created.
For example, both VertiBayes and FBNE can benefit from
improvements, such as using expert knowledge to build
the optimal structures. In addition to improvements that
could be applied to both approaches, weighted voting, and
especially dynamically weighted voting, can improve the
performance of FBNE.

5.3 Privacy concerns & disclosure control
Our implementation of FBNE uses VertiBayes at its core. As
such, the privacy guarantees are largely the same. However,
there are two aspects in which they potentially differ from
VertiBayes:

1) The classification of individuals, and evaluation of
the model.
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TABLE 3: Experimental results hybrid split 3-party scenarios where only locally available data was used in the local model.
’*’ Indicates the best performing model, ’†’ indicates the second best performing model.

AUC
Name Missing Data Level FBNE Party 1 Party 2 Party 3 Central VertiBayes

Asia
population size: 10000

0 0,996* 0,928 0,940 0,938 0,995† 0,987
0.05 0,742 0,689 0,670 0,670 0,746† 0,789*
0.1 0,627† 0,611 0,596 0,595 0,624 0,668*
0.3 0,418† 0,400 0,406 0,407 0,418† 0,568*

Autism
population size: 704

0 0,911* 0,805 0,821 0,820 0,833† 0,826
0.05 0,803† 0,707 0,718 0,719 0,741 0,932*
0.1 0,739† 0,671 0,667 0,665 0,698 0,891*
0.3 0,537† 0,473 0,493 0,493 0,491 0,783*

Diabetes
population size: 768

0 0,814* 0,700 0,734 0,735 0,776† 0,781
0.05 0,749† 0,685 0,657 0,656 0,726 0,753*
0.1 0,694† 0,633 0,596 0,607 0,676 0,740*
0.3 0,452† 0,420 0,407 0,409 0,440 0,691*

Iris
population size: 150

0 0,952* 0,912† 0,888 0,894 0,885 0,700
0.05 0,886* 0,784 0,849 0,853 0,874† 0,805
0.1 0,798* 0,725 0,730 0,725 0,688 0,642
0.3 0,633† 0,603 0,575 0,582 0,669* 0,610

TABLE 4: Experimental results horizontally split 2-party scenarios where records are randomly split across parties. ’*’
Indicates the best performing model, ’†’ indicates the second best performing model.

AUC
Name Missing Data Level FBNE Party 1 Party 2 Central VertiBayes

Asia
population size: 10000

0 0,996* 0,995† 0,995† 0,995† 0,988
0.05 0,740 0,741† 0,741† 0,740 0,765*
0.1 0,624† 0,623 0,623 0,624† 0,670*
0.3 0,416 0,418† 0,418† 0,415 0,568*

Autism
population size: 704

0 0,868* 0,777 0,774 0,847† 0,834
0.05 0,787* 0,464 0,464 0,737 0,781†
0.1 0,691† 0,466 0,463 0,691† 0,746*
0.3 0,534† 0,392 0,413 0,492 0,628*

Diabetes
population size: 768

0 0,781† 0,500 0,500 0,781† 0,782*
0.05 0,725 0,480 0,480 0,729† 0,752*
0.1 0,671 0,447 0,447 0,680† 0,736*
0.3 0,441† 0,431 0,437 0,437 0,648*

Iris
population size: 150

0 0,957* 0,903 0,898 0,925† 0,782
0.05 0,877† 0,829 0,837 0,879* 0,759
0.1 0,790* 0,749 0,774† 0,7049566 0,675
0.3 0,611† 0,494 0,533 0,677* 0,609

Mushroom
population size: 8124 0 0,988* 0,988* 0,988* 0,987† 0,987†

2) The consequences of having multiple networks.

With FBNE, the individual classifiers can create their
classifications fully locally at the party they belong to
given that required attributes for each local model should
be available locally. These individual classifications can
be combined using homomorphic encryption, resulting in
a final classification which can be shared. For example,
estimated probabilities can be weighted according to the
voting power of a particular classifier, then encrypted us-
ing an additive homomorphic encryption scheme, and all
encrypted weighted probabilities are summed. The sum is
then decrypted and divided by the total weight to get the
weighted average probabilities, which determine the final
classification. Combining the votes in this way prevents
any local data from being shared and allows FBNE to be
evaluated without the need of the homomorphic encryption
and a privacy preserving n-scalar product protocol [17] or
other more complex evaluation methods that VertiBayes
needs [?]. This is a strong advantage when new samples
need to be classified or predicted in a federated manner.

The other aspect in which FBNE differs from VertiBayes
is that the end-result consists of multiple networks instead

of one. Ensembles might provide a minor advantage with
respect to privacy in this case. In both cases it is possi-
ble to learn dependencies between attributes and certain
statistics about the training set, based on the CPDs and
network structures. Similarly, based on local, incomplete
data, the network can be used to predict missing values.
These are unavoidable consequences of using Bayesian net-
works. However, because FBNE has the information split
up over multiple networks, it will be difficult to do this for
every attribute. It is very difficult to determine any relation
between two attributes when those two attributes are split
over two Bayesian networks, as discussed in section 2.3.4.
This provides some additional privacy protection compared
to a single network.

5.4 When should FBNE be preferred over VertiBayes

Due to the significant advantage in terms of runtime it may
be beneficial to use FBNE as an exploratory first step before
deciding if using VertiBayes is worth it. This naı̈ve approach
will already provide reasonable results.

The general advantages of each approach can be found
in table 5.
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TABLE 5: Comparison of main features of FBNE and Vert-
iBayes

FBNE VertiBayes
Faster More complete view of depen-

dencies between attributes
Slightly better privacy guaran-
tees

Easier to understand & interpret
than an ensemble

Possible to capture biases in lo-
cal population

May outperform FBNE when
the ensemble is too small or not
diverse enough

Can easily classify new samples
in a privacy preserving manner

In addition to these advantages which hold in general,
one of the two may perform better depending on how
the data happened to be split. However, there is currently
no good way to predict which approach will achieve the
highest accuracy.

6 CONCLUSION

In this article, we have proposed the use of Federated
Bayesian Network Ensembles (FBNE) and assessed their
usefulness in a battery of experiments. We have shown
the approach performs well in a range of situations and
datasets, often achieving similar results when compared
to VertiBayes, an alternative federated method. FBNE are
significantly faster than VertiBayes, provide slightly better
privacy guarantees, and are easier to use in a scenario where
future classifications will also be done in a federated setting.
On the other hand, VertiBayes results in more interpretable
models and makes it easier to determine the dependencies
between variables split over multiple sites.

The notable advantage in terms of runtime does mean
that it is easily possible to use FBNE as an initial exploratory
option. Since it is currently not possible to preemptively de-
termine which approach will result in the highest accuracy,
using this naive approach and simply training both models
might be the best course of action for now. Additionally, this
means it can be very useful when exploring new federated
datasets.

6.1 Future work
We would like to explore ways to determine which ap-
proach is more effective as it would be highly beneficial
to be able to know beforehand if an ensemble-based ap-
proach will outperform a single model. Additionally, we
would like to run experiments to discover if (dynamically)
weighted voting could be used to significantly improve the
performance of the ensembles. Lastly, it would be extremely
valuable if these experiments could be run on real use cases.
This would allow the experiments to work with realistic
biases and remove the need to artificially create these biases
in our experimental setup. Resulting in much more realistic
experimental scenarios.
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TABLE 6: Experimental results vertically split 3-party scenarios where attributes were randomly split across parties. ’*’
Indicates the best performing model, ’†’ indicates the second best performing model.

AUC
Name Missing Data Level FBNE Party 1 Party 2 Party 3 Central VertiBayes
Alarm

population size: 10000 0 0,884* 0,790 0,669 0,561 0,790† 0,790†

Asia
population size: 10000

0 0,997* 0,824 0,873 0,902 0,996† 0,986
0.05 0,739† 0,657 0,651 0,664 0,736 0,750*
0.1 0,622† 0,607 0,519 0,583 0,621 0,704*
0.3 0,418† 0,380 0,394 0,407 0,417 0,569*

Autism
population size: 704

0 0,934† 0,784 0,787 0,740 0,832 0,977*
0.05 0,797* 0,742 0,664 0,434 0,732 0,780†
0.1 0,734* 0,686 0,605 0,447 0,694 0,730†
0.3 0,497† 0,492 0,388 0,369 0,489 0,627*

Diabetes
population size: 768

0 0,801* 0,659 0,647 0,675 0,789† 0,783
0.05 0,753* 0,654 0,630 0,598 0,728 0,740†
0.1 0,695† 0,613 0,614 0,560 0,678 0,804*
0.3 0,445† 0,407 0,383 0,382 0,438 0,552*

Mushroom
population size: 8124 0 0,989* 0,818 0,987 0,589 0,988† 0,987

TABLE 7: Experimental results vertically split 3-party scenarios where attributes were manually split across parties. ’*’
Indicates the best performing model, ’†’ indicates the second best performing model.

AUC
Name Missing Data Level FBNE Party 1 Party 2 Party 3 Central VertiBayes

Autism
population size: 704

0 0,920* 0,843 0,730 0,811 0,830† 0,829
0.05 0,797* 0,742 0,664 0,434 0,732 0,780†
0.1 0,734* 0,686 0,605 0,447 0,694 0,730†
0.3 0,497† 0,492 0,388 0,369 0,489 0,627*

Mushroom
population size: 8124 0 0,991* 0,881 0,986 0,680 0,988† 0,986

TABLE 8: Experimental results hybrid split 3-party scenarios where hybrid split attributes can fully incorperated into the
local models. ’*’ Indicates the best performing model, ’†’ indicates the second best performing model.

AUC
Name Missing Data Level FBNE Party 1 Party 2 Party 3 Central VertiBayes

Asia
population size: 10000

0 0,996† 0,885 0,929 0,929 0,995† 0,999*
0.05 0,743 0,709 0,717 0,722 0,745† 0,766*
0.1 0,623† 0,612 0,554 0,555 0,619 0,669*
0.3 0,419† 0,401 0,410 0,412 0,419† 0,567*

Autism
population size: 704

0 0,903* 0,807 0,817 0,822 0,849† 0,847
0.05 0,793* 0,724 0,710 0,715 0,753 0,777†
0.1 0,740† 0,671 0,667 0,671 0,682 0,749*
0.3 0,527† 0,481 0,493 0,493 0,503 0,747*

Diabetes
population size: 768

0 0,811* 0,731 0,695 0,700 0,779† 0,776
0.05 0,692† 0,604 0,608 0,607 0,673 0,734*
0.1 0,755* 0,670 0,670 0,673 0,726 0,752†
0.3 0,456† 0,416 0,403 0,404 0,439 0,697*

Iris
population size: 150

0 0,939* 0,889† 0,879 0,886 0,883 0,771
0.05 0,892* 0,783 0,835 0,830 0,876† 0,736
0.1 0,788* 0,702 0,719 0,724† 0,713 0,704
0.3 0,653† 0,588 0,595 0,599 0,662* 0,611
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TABLE 9: Experimental results horizontally split 3-party scenarios where records are randomly split across parties. ’*’
Indicates the best performing model, ’†’ indicates the second best performing model.

AUC
Name Missing Data Level FBNE Party 1 Party 2 Party 3 Central VertiBayes

Asia
population size: 10000

0 0,995* 0,995* 0,995* 0,995* 0,995* 0,987
0.05 0,741† 0,741† 0,741† 0,741† 0,730 0,763*
0.1 0,623† 0,623† 0,623† 0,623† 0,618 0,674*
0.3 0,418† 0,418† 0,418† 0,418† 0,417 0,568*

Autism
population size: 704

0 0,889* 0,836 0,836 0,836 0,838† 0,829
0.05 0,794* 0,736 0,736 0,736 0,754 0,780†
0.1 0,724† 0,687 0,687 0,687 0,688 0,749*
0.3 0,544† 0,493 0,494 0,493 0,494 0,625*

Diabetes
population size: 768

0 0,775 0,780† 0,780† 0,780† 0,786* 0,778
0.05 0,730† 0,727 0,727 0,727 0,720 0,753*
0.1 0,674† 0,673 0,673 0,673 0,667 0,733*
0.3 0,448† 0,439 0,437 0,438 0,439 0,648*

Iris
population size: 150

0 0,960* 0,896 0,897† 0,890 0,890 0,761
0.05 0,875 0,876 0,877† 0,875 0,879* 0,768
0.1 0,826* 0,703 0,703 0,703 0,709 0,676
0.3 0,632 0,666* 0,666* 0,666* 0,664† 0,626
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TABLE 10: Experimental results horizontally split 2-party scenarios where records are randomly split across parties. Varies
levels of bias were introduced in this experiment where the level of bias corresponds to the probability of an individual with
first class label to be assigned to party 1. ’*’ Indicates the best performing model, ’†’ indicates the second best performing
model.

AUC
Name Bias Level Missing Data Level Ensemble Party 1 Part 2 Central VertiBayes

Asia
population size: 10000

0.75

0 0,995† 0,995† 0,995† 0,996* 0,987
0.05 0,743† 0,741 0,741 0,742 0,765*
0.1 0,624† 0,623 0,623 0,624† 0,670*
0.3 0,419† 0,419† 0,418 0,417 0,568*

0.85

0 0,996* 0,995† 0,995† 0,996* 0,986
0.05 0,741† 0,741† 0,741† 0,737 0,763*
0.1 0,622 0,623 0,623 0,628† 0,671*
0.3 0,419 0,419 0,419 0,420† 0,568*

0.95

0 0,995† 0,995† 0,995† 0,996* 0,986
0.05 0,741 0,741 0,741 0,742† 0,764*
0.1 0,624 0,623 0,623 0,627† 0,669*
0.3 0,420† 0,419 0,419 0,418 0,567*

Autism
population size: 704

0.75

0 0,876* 0,500 0,780 0,845† 0,835
0.05 0,786* 0,488 0,487 0,748 0,780†
0.1 0,708† 0,501 0,487 0,698 0,749*
0.3 0,535† 0,380 0,456 0,500 0,627*

0.85

0 0,880* 0,500 0,770 0,848† 0,835
0.05 0,779* 0,464 0,464 0,731† 0,779*
0.1 0,722† 0,445 0,450 0,688 0,746*
0.3 0,527† 0,427 0,454 0,493 0,630*

0.95

0 0,898* 0,534 0,500 0,830 0,834†
0.05 0,779* 0,464 0,512 0,736† 0,779*
0.1 0,724† 0,443 0,528 0,675 0,747*
0.3 0,512† 0,430 0,450 0,499 0,629*

Diabetes
population size: 768

0.75

0 0,778 0,500 0,500 0,787* 0,780†
0.05 0,737† 0,480 0,480 0,731 0,753*
0.1 0,676† 0,447 0,447 0,674 0,736*
0.3 0,430 0,405 0,359 0,445† 0,645*

0.85

0 0,781* 0,500 0,500 0,776† 0,781*
0.05 0,730† 0,480 0,480 0,730† 0,754*
0.1 0,675† 0,447 0,447 0,678 0,736*
0.3 0,412 0,349 0,406 0,444† 0,645*

0.95

0 0,772 0,500 0,500 0,786* 0,780†
0.05 0,581 0,480 0,499 0,732† 0,754*
0.1 0,530 0,447 0,459 0,672† 0,737*
0.3 0,354 0,370 0,346 0,442† 0,646*

Iris
population size: 150

0.75

0 0,942* 0,876 0,735 0,890† 0,767
0.05 0,870† 0,727 0,782 0,875* 0,760
0.1 0,802* 0,588 0,703 0,718† 0,669
0.3 0,608 0,544 0,611 0,676* 0,607

0.85

0 0,950* 0,782 0,692 0,896† 0,779
0.05 0,870† 0,625 0,793 0,879* 0,766
0.1 0,746* 0,604 0,712 0,710 0,678
0.3 0,636† 0,478 0,571 0,669* 0,600

0.95

0 0,915* 0,560 0,653 0,895† 0,780
0.05 0,800† 0,497 0,688 0,873* 0,771
0.1 0,752* 0,504 0,641 0,710† 0,667
0.3 0,633† 0,469 0,480 0,673* 0,608
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TABLE 11: Experimental results horizontally split 3-party scenarios where records are randomly split across parties. Varies
levels of bias were introduced in this experiment where the level of biass corresponds to the probability of an individual
with first class label to be assigned to party 1. ’*’ Indicates the best performing model, ’†’ indicates the second best
performing model.

AUC
Name Bias Level Missing Data Level Ensemble Party 1 Party 2 Party 3 Central VertiBayes

Asia
population size: 10000

0.75

0 0,996* 0,995† 0,995† 0,995† 0,995† 0,988
0.05 0,740 0,741 0,741 0,741 0,745† 0,766*
0.1 0,622 0,623 0,623 0,623 0,624† 0,668*
0.3 0,419† 0,418 0,418 0,418 0,418 0,569*

0.85

0 0,996* 0,995† 0,995† 0,995† 0,996* 0,986
0.05 0,741† 0,741† 0,741† 0,741† 0,740 0,769*
0.1 0,625 0,623 0,623 0,623 0,628† 0,671*
0.3 0,419† 0,418 0,418 0,418 0,417 0,568*

0.95

0 0,995† 0,995† 0,995† 0,995† 0,996* 0,987
0.05 0,743 0,741 0,741 0,741 0,745† 0,762*
0.1 0,622 0,623 0,623 0,623 0,623† 0,671*
0.3 0,419† 0,418 0,418 0,418 0,416 0,569*

Autism
population size: 704

0.75

0 0,911* 0,836 0,836 0,836 0,843† 0,833
0.05 0,797* 0,736 0,736 0,736 0,732 0,776†
0.1 0,728† 0,687 0,687 0,687 0,700 0,746*
0.3 0,541† 0,493 0,494 0,494 0,491 0,627*

0.85

0 0,905* 0,836 0,836 0,836 0,832 0,842†
0.05 0,810* 0,736 0,736 0,736 0,732 0,785†
0.1 0,739† 0,687 0,688 0,687 0,687 0,744*
0.3 0,541† 0,493 0,494 0,494 0,492 0,623*

0.95

0 0,899* 0,836 0,836 0,836 0,844† 0,835
0.05 0,785* 0,736 0,736 0,736 0,745 0,780†
0.1 0,720† 0,687 0,687 0,687 0,677 0,745*
0.3 0,490 0,494 0,494 0,494 0,495† 0,630*

Diabetes
population size: 768

0.75

0 0,788* 0,780 0,780 0,780 0,779 0,786†
0.05 0,760† 0,727 0,727 0,727 0,727 0,761*
0.1 0,690† 0,673 0,672 0,672 0,680 0,743*
0.3 0,430 0,437 0,438† 0,438† 0,434 0,653*

0.85

0 0,785* 0,780† 0,780† 0,780† 0,776 0,777
0.05 0,745† 0,727 0,727 0,727 0,726 0,747*
0.1 0,674 0,673 0,673 0,673 0,676† 0,737*
0.3 0,394 0,437 0,438 0,439† 0,438 0,648*

0.95

0 0,752 0,780† 0,780† 0,780† 0,782* 0,780†
0.05 0,631 0,727 0,727 0,727 0,723† 0,755*
0.1 0,564 0,672 0,673 0,673† 0,668 0,740*
0.3 0,353 0,438 0,438 0,438 0,443† 0,649*
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