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Abstract—With the rapid development and integration of 
artificial intelligence (AI) methods in next-generation networks 
(NextG), AI algorithms have provided significant advantages for 
NextG in terms of frequency spectrum usage, bandwidth, latency, 
and security. A key feature of NextG is the integration of AI, i.e., 
self-learning architecture based on self-supervised algorithms, to 
improve the performance of the network. A secure AI-powered 
structure is also expected to protect NextG networks against 
cyber-attacks. However, AI itself may be attacked, i.e., model 
poisoning targeted by attackers, and it results in cybersecurity 
violations. This paper proposes an AI trust platform using 
Streamlit for NextG networks that allows researchers to evaluate, 
defend, certify, and verify their AI models and applications 
against adversarial threats of evasion, poisoning, extraction, and 
interference. 

Index Terms—Artificial Intelligence, Cybersecurity, Next Gen- 
eration Networks, Streamlit 

 
I. INTRODUCTION 

Next-generation networks (NextG or 5G and beyond) have 
become more popular as a new version of mobile communica- 
tion in recent years after 1G-2G in the early 1990s, 3G in the 
early 2000s, and 4G in the 2010s. These networks can support 
high-speed data transmission with low latency for real-time 
data transmission, i.e., 5G offers a data transmission speed 
of 20 times faster than 4G networks and delivers less than 
a millisecond of data latency [1], [2]. The main difference of 
NextG is to use advanced communication methods, millimeter- 
wave massive multiple-input multiple-output (MIMO) [3], 
beamforming [4], [5], and intelligent reflection surfaces (IRS) 
[6]. 6G is one of the NextG networks following 5G, which 
promises 100 times faster mobile data speeds with lower 
latency than the 5G network, i.e., approximately 1 Tbps 
and 1 ms, respectively. In the near future, NextG will be 
used in the connectivity of cars, drones, mobile devices, the 
Internet of Things (IoT) devices, homes, and many more. 
The key component of NextG is the integration of AI, i.e., 
self-learning architecture based on self-supervised algorithms, 
to improve the performance of the network for tomorrow’s 
cellular systems [7], [8]. Using AI algorithms provides novel 
solutions for massive MIMO systems involving a large number 
of antennas and beam arrays. For example, a beam codeword 
consists of analog phase-shifted values applied to the antenna 

elements to form an analog beam in [9], base beam selection 
with deep learning algorithms is proposed for using channel 
state information for the sub-6 GHz links. In the literature, 
most studies have focused on the communication methods 
to increase cellular technologies’ performance but usually 
ignored the security and privacy issues and the integration 
of currently emerging AI tools into NextG. The study in 
[10] discusses key trends and AI-powered methodologies for 
6G network design and optimization. A secure AI-powered 
structure is expected to protect NextG networks against cyber- 
attacks. However, AI itself may be attacked, i.e., the model 
poisoning by attackers resulting in cybersecurity violations. 
With the use of AI algorithms in NextG’s physical layer 
functions, such as channel estimation, modulation recognition, 
and channel state information (CSI) feedback, the physical 
layer faces new challenges prone to adversarial attacks. The 
study in [11] indicates that an adversarial attack may have a 
destructive effect on DL-based CSI feedback, and transmitted 
data can be easily tampered with adversarial perturbation by 
malicious attackers due to the broadcast nature of wireless 
communication. These examples can be extended with other 
use cases using AI algorithms for NextG networks, e.g., the 
mmWave beam prediction for several base stations (BSs) with 
multiple users using deep learning algorithms. The integration 
of AI algorithms for 5G and beyond technologies can lead to 
potential security problems if not addressed properly. Mainly, 
most studies focus on building ML algorithms for NextG 
communication problems. However, there are limited studies 
focusing on the security threats against AI models used in 
NextG networks. The future of wireless communication will 
utilize more AI capabilities. The attack against AI models 
is different from well-known wireless physical layer security. 
The purpose of the attack on wireless physical layer security 
is to make the transmitted signal non-predictive to decrease 
the secrecy capacity. This paper proposes a Streamlit-based 
platform to address security concerns and improve AI trust- 
worthiness in NextG networks. The developed platform allows 
researchers, engineers, and testers to evaluate and verify their 
AI models. The source code is available from GitHub 1. 

 
1https://github.com/muratkuzlu/NextG AI Trust Platform 



II. THE PROPOSED INTERACTIVE ARTIFICIAL 
INTELLIGENCE (AI) TRUST PLATFORM 

The architecture of the proposed interactive Artificial Intelli- 
gence (AI) trust platform is shown in Fig. 1. The architecture 
includes the following steps: (1) Application Selection, (2) 
Load Data, (3) Load Model, (4) Fine-Tuning for Hyperpa- 
rameters, (5) Attack Power, (6) Attack Model, (7) Model(s) 
Training and Evaluation, and (8) Applying Mitigation Method. 

1) Application Selection: The framework will support 
beamforming, channel estimation, intelligent reflecting 
surface (IRS), and spectrum sensing. The proposed 
architecture in this paper allows only beamforming 
applications for now. Other applications will be added 
in the future. 

2) Load Data: The first step is to acquire data from publicly 
available data resources or manual user upload. The 
platform reads data through the Streamlit server and 
loads the local server for further analysis. The platform 
allows uploading file(s) in CSV and MAT format. 

3) Load Model: The platform allows users to load their 
AI-powered models and store them on a local server for 
prediction. The platform also hosts pre-trained models 
for next-generation network applications. 

4) Fine-Tuning for Hyperparameters: The performance of 
AI-powered models significantly depends on model hy- 
perparameters. A grid search method determines the 
best hyperparameters for each possible combination. 
However, it requires more computing processes. Hyper- 
parameters are used to tune the model parameters, such 
as the learning rate, epoch and batch size, the optimizer, 
etc. 

5) Attack Power Selection: The attack power decides the 
level of generated adversarial examples for AI-powered 
models. The platform offers four attack power levels: 
none, low, medium, and high. None means that an 
adversarial attack will not be applied to the model(s). 

6) Applying Adversarial Attack: The platform hosts four 
widely used popular adversarial attack models, i.e., Fast 
Gradient Sign Method (FGSM), Basic Iterative Method 
(BIM), Projected Gradient Descent (PGD), Momentum 
Iterative Method (MIM). 

7) Model(s) Training and Evaluation: The AI-powered 
models for next-generation network applications are 
trained and evaluated. The main objective of this step is 
to train the selected model(s) and to measure the model 
performance against adversarial attacks with and without 
adversarial training in terms of model accuracy, i.e., the 
Mean Average Error (MAE), the Mean Squared Error 
(MSE) and the Root Mean Squared Error (RMSE). 

8) Applying Mitigation Method: The framework hosts ad- 
versarial training and defensive distillation mitigation 
methods. They are widely recommended defense tech- 
niques, which generate adversarial instances using the 
gradient of the victim classifier and then re-training the 
model with the adversarial instances. 

 

 
 

Fig. 1. The architecture of the proposed interactive Artificial Intelligence (AI) 
trust platform 

 
 

The proposed platform focuses on AI-powered models for 
next-generation network applications and hosts four types 
of adversarial attacks (FGSM. BIM, PGD, and MIM) and 
two mitigation methods (adversarial training and defensive 
distillation) in the current version. 

III. ADVERSARIAL MACHINE LEARNING ATTACKS AND 
MITIGATION METHODS HOSTED BY PLATFORM 

In this section, a brief overview of the adversarial machine 
learning attacks (FGSM, BIM, PGD, MIM), and mitigation 
methods (adversarial training and defensive distillation) hosted 
by the platform will be presented. 

A. Adversarial Machine Learning Attacks 
Adversarial machine learning attacks generate adversarial 

samples close to real data to manipulate the trained model 
outputs. The attacker tries to generate a perturbation to the 
adversarial examples, which would affect the prediction phase 
of the machine learning model. Adversarial machine learning 
attacks work well if the attacker has access to the training 
data. Methods for constructing adversarial examples can be 
categorized into two groups: gradient-based and content-based 
attacks, respectively. In this study, gradient-based attacks were 
chosen as adversarial attacks because of their simplicity and 
variety. The adversarial attacks used in the proposed platform 
are briefly explained as follows: 

• Fast Gradient Sign Method (FGSM): The FGSM attack 
was proposed in [12] and the first attack using the 
gradient of the loss function. It was proposed using a 
one-step gradient-based method. This method consists 
of adding a small perturbation to the input example to 
manipulate the output of the machine learning model. 

• Basic Iterative Method (BIM): The BIM attack was 
proposed in [13] as an iterative extension of the FGSM 
attack. The BIM attack applies a small perturbation to 
the input example multiple times. 
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• Projected Gradient Descent (PGD): The PGD attack 
was introduced in [14]. It is also an iterative extension 
of the FGSM and similar to the BIM. However, PGD 
starts the search for the adversarial example randomly, 
then runs iterations to find an adversarial example with 
the greatest loss with a smaller perturbation. 

• Momentum Iterative Method (MIM): The MIM attack 
was proposed in [15] as an extension of the BIM. 
This attack improves BIM’s convergence to stabilize the 
gradient’s direction at each step. 

B. Mitigation Methods 

used to apply for defensive distillation. The steps for defensive 
distillation are described as follows: 

1) Train the teacher model: The teacher model is trained 
using the original training data. 

2) Generate the soft probabilities: The output of the teacher 
model can be used to generate the soft probabilities. The 
soft probability is defined as qi = softmax(zi), where zi 
is the output of the i-th neuron. 

3) Train the student model: The student model is trained 
using the output of the teacher model, i.e., the soft 
probabilities. The objective function for the student 
model is defined as L(f, X, Y ) =

   N  L(f, qi, yi). 
AI-powered models are vulnerable to adversarial machine 

learning attacks. Fortunately, the mitigation methods can 
improve the robustness of models. The mitigation methods 

Here, X is the training set, Y 
the output of the i-th neuron. 

i=1 
is the labels, and qi is 

used in this study, i.e., Adversarial training and defensive 
distillation, will be briefly explained. 

1) Adversarial Training: Adversarial training is a widely 
used method to improve the robustness of a machine learning 
model. Adversarial training creates adversarial examples using 
the gradient of the victim classifier and then re-trains the model 
with the adversarial instances and their respective labels. The 
objective is to train the model with adversarial examples closer 
to real data to be less sensitive to perturbations. The following 
steps are used to apply for adversarial training. The steps for 
adversarial training are described as follows: 

• Define the loss function: The loss function for a single 
training example is defined as L(f, x, y) = I[y  f (x)]. 
Here, y is the ground truth label, and f (x) is the 
predicted label. The objective of the loss function is to 
minimize the error in the prediction. The loss function for 
multiple training examples is defined as L(f, X, Y ) = 

IV. CASE STUDY AND DEMONSTRATION 

A. Dataset Description and Case Study 
Streamlit-based AI trust platform evaluates the security 

of beamforming AI models. The beamforming is the radio 
frequency (RF) management, which provides wireless signal 
connection towards specific receivers for faster and more 
reliable communication. It also reduces interfering signals 
with more focused beamed signals instead of omnidirectional 
broadcasting. Many factors affect the beamforming prediction, 
such as the users’ locations, BSs, and any obstacles. A DL 
model is developed to study the reflections and diffractions 
of the pilot signal generated using DeepMIMO-based beam 
patterns. The proposed DL-based beamforming prediction 
comprises two states, i.e., training and prediction. 

In the training stage, pilot signals are used to outline the 
estimation of channels. The uplink training pilot sequences 
are sent from the user to the BSs for each beam coherence 

N 
i=1 L(f, xi, yi). Here, N is the number of training time. BSs responsibility is to merge training pilot sequences 

examples. 
• Generate adversarial examples: The adversarial example 

is generated using the gradient of the loss function with 
respect to the input example. The adversarial example 
is defined as xadv = x + ϵ  sign( xL(f, x, y)). Here, 
ϵ is the perturbation magnitude, x is the input example, 
and xL(f, x, y) is the gradient of the loss function with 
respect to the input example. 

• Train the model: The model is trained on the original 
training examples as well as the generated adversarial 
examples. The objective function for the model is defined 
as L(f, X, Y ) =   N  L(f, xi, yi) + α  N  L(f, xi + 
ϵ sign( xL(f, xi, yi)), yi). Here, X is the training set, 
Y is the labels, and α is the weighting parameter. 

2) Defensive Distillation: Defensive distillation is another 
widely used method to improve the robustness of a machine 
learning model. There are two models involved in defensive 
distillation. The first model is the teacher model, which is 
used to train the second model, i.e., the student model. The 
teacher model is trained using the original training data, and 
the student model is trained using the output of the teacher 
model. Defensive distillation aims to train the student model 
to be less sensitive to perturbations. The following steps are 

on RF beamforming vector. Each pilot sequence of uplink data 
is synchronously sent to BSs to be used for channel estimation 
and precoding. These sequences are then utilized as inputs for 
the DL model to estimate the achievable rate for each RF 
beamforming vector. 

The RF beamforming vectors are estimated using the trained 
DL-based model in the prediction phase. Similar to the training 
phase, each user sends an uplink pilot sequence to the BSs, 
where all coming sequences are combined and sent to the 
cloud. These sequences are fed to the DL model to predict 
the best beamforming vectors using maximum achievable rates 
for each BS. Then, predicted beamforming vectors are used to 
estimate the effective channel. 

B. Demonstration 
AI trust platform dashboard consists of two parts: (1) 

Settings and (2) Experimental results. The settings part in- 
cludes all parameters from load model, load data, fine-tuning, 
attack power selection, to attack model and mitigation model 
selection, as shown in Figure 2 (left side). This section 
demonstrates the visualization of experimental results based 
on the settings. The pre-trained model and input/output dataset 
are loaded, and all settings are selected by the user before 



 

 
 

Fig. 2. The demonstration of the experimental results 
 
 

running the experiment. In this experiment, the beamforming 
application is selected along with all possible attack power 
levels (All), the attack model (FGSM), and the mitigation 
method (Adversarial Training). Experiential results are shown 
in Figure 2 (right side). The results are given as a table and 
a figure. The platform also allows exporting results as a CSV 
file. According to the results, the AI-powered beamforming 
model used in NextG networks is vulnerable to adversarial 
attacks. The model becomes more vulnerable to high attack 
power. On the other hand, FGSM is not a powerful attack 
on the model due to its simplicity. Fortunately, the mitigation 
methods, i.e., defended models, can help the improvement of 
the model’s robustness under FGSM attacks. The figure shows 
that MSE values are much lower than the undefended results, 
i.e., without a mitigation method. 

V. CONCLUSION 

This paper proposes a Streamlit-based AI trust platform 
for NextG networks focusing on beamforming applications to 
improve AI trustworthiness. The platform hosts well-known 
adversarial machine learning attacks, such as FGSM, BIM, 
PGD, and MIM, along with the mitigation methods, i.e., ad- 
versarial training and defensive distillation. It is expected that 
researchers and engineers can test and evaluate their models 
in terms of performance and robustness against adversarial 
attacks. By using Streamlit library, the process of creating 
a web-based platform for any AI model makes it flexible 
and interactive. A user can load data and models through 
the platform and select any adversarial attack, mitigation 
method, and attack power level. The platform dashboard shows 
the results, i.e., the model’s vulnerability, based on the user 
selection. The authors are planning to extend the platform 

to other AI-powered NextG applications, such as channel 
estimation, spectrum sensing, and IRS, and make it more 
flexible and interactive. 
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