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Abstract—The fifth and sixth generations of wireless commu-
nication networks are enabling tools such as internet of things
devices, unmanned aerial vehicles (UAVs), and artificial intel-
ligence, to improve the agricultural landscape using a network
of devices to automatically monitor farmlands. Surveying a large
area requires performing a lot of image classification tasks within
a specific period of time in order to prevent damage to the farm
in case of an incident, such as fire or flood. UAVs have limited
energy and computing power, and may not be able to perform
all of the intense image classification tasks locally and within
an appropriate amount of time. Hence, it is assumed that the
UAVs are able to partially offload their workload to nearby multi-
access edge computing devices. The UAVs need a decision-making
algorithm that will decide where the tasks will be performed,
while also considering the time constraints and energy level of
the other UAVs in the network. In this paper, we introduce a
Deep Q-Learning (DQL) approach to solve this multi-objective
problem. The proposed method is compared with Q-Learning and
three heuristic baselines, and the simulation results show that our
proposed DQL-based method achieves comparable results when
it comes to the UAVs’ remaining battery levels and percentage
of deadline violations. In addition, our method is able to reach
convergence 13 times faster than Q-Learning.

Index Terms—Smart farm, Multi-access edge computing, Un-
manned aerial vehicle, Deep Reinforcement Learning.

I. INTRODUCTION

Smart agriculture has emerged as an efficient way to manage
large farmlands. It uses a collection of Internet of things
(IoT) devices as sensors to monitor the land and the envi-
ronmental changes, and utilizes artificial intelligence (Al) to
make precise farming decisions. The sensors are deployed in
various locations across the farm, they collect information
from their surroundings, and then forward the information
toward a server. The Al agent then uses the information from
the server to make informed decisions in order to take actions
to protect or improve the efficiency of the farm. To provide the
promised bandwidth and ultra-low latency specifications, 5G
and 6G networks will depend on unmanned aerial vehicles
(UAVs) as a source to provide untethered and ubiquitous
mobile connectivity and computing services through the air
and reach remote rural areas.

An example of an Al-based technique that can aid in the
decision-making process for farms, is image classification. It
can be used to detect pests, monitor crop growth, or detect
fires. In [[1], Aldabbagh et al. proposed a Deep Learning
algorithm to identify the growth stages of chili plants. They

used a dataset of chili plant images in various growth stages
to train a Deep Neural Network (DNN). Similarly in [2], Yu
et al. used image classification to identify pest infestations
on crops from images that were captured by UAVs. With the
introduction of smart agriculture, farmers can use IoT devices
with sensors, such as cameras, to monitor their crops and
use machine learning-based image classification algorithms,
to monitor pests, fires, and the growth stages of crop.”

Accurate image classification is a computationally intensive
task because it may require running a DNN. Even though the
IoT devices are necessary for providing regular updates on
the farm, they are limited in computing capacity. As a result,
they do not have the required capacity to perform the image
classification tasks in a timely manner and will need to offload
it to a nearby device in order to complete the task. This is
crucial because the farm environment can change quickly and
failing to respond to the changes within a certain time frame
can cause detrimental damages. For example, a fire can cause
minimal damage if it is detected and put out early. However,
a farmer can lose a substantial amount of crops if the fire has
not been detected for several minutes.

A network consisting of UAVs with mounted base stations
and Multi-Access Edge Computing (MEC) devices has been
proposed to aid in farm monitoring tasks in the literature. Zhao
et al. [3] used such a network in order to monitor a farm. The
UAVs and MEC are both equipped with a processing unit that
is capable of performing image classification tasks. The base
stations on the UAVs allow the IoT devices to connect with
more processing units that are able to perform the intensive
image classification tasks. The tasks can be forwarded to a
UAV or to a MEC device. The objective of [3] is to optimize
the delay of the data processing and transmission by finding
the optimal resource allocation and UAV trajectory.

With a three-dimensional range of motion, UAVs offer
a wide range of services. They can provide line of sight
connectivity between the IoT devices, and other UAVs or
MEC devices. They can also provide computing capabilities.
However, UAVs are limited by their battery capacities, If the
UAV is performing too many image classification tasks, their
hover time will be greatly reduced. [4]] and [5] both proposed
that in a 5G and beyond network, MEC devices can alleviate
the UAV’s workload while also improving the task’s latency.

In this paper, we are using Deep Q-Learning (DQL) to
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improve the performance of the algorithms found in [6].
Similarly, we consider a smart farm with IoT cameras, UAVs,
and a MEC server. Our objective is to find a task offloading
solution that is both energy efficient and that respects the
deadlines of the tasks. In a nutshell, the objectives of this study
are: 1) to find a task scheduling policy that will: elongate the
UAVs’ hover times, and minimize the number of tasks that do
not meet their deadlines, and 2) to decrease the convergence
time to the optimal solution. We compare our DQL-based
solution with several benchmarks including Q-learning and
heuristic algorithms. We show that DQL outperforms the
benchmark solutions.

The rest of this paper is organized as follows. Section II
introduces the related works. Section III describes the problem
and the system model. Section IV describes the proposed
method and baseline algorithms. Section V describes the
simulation results and analysis. Finally, Section VI is the
conclusion and discussion of future works.

II. RELATED WORK

Using reinforcement learning (RL) to manage wireless
network resources in order to optimize performance is widely
studied across many different applications. In [7]], Elsayed et
al. surveyed the challenges and opportunities of Al in 5G
and 6G networks. They introduced multiple applications for
RL in wireless networks such as energy management and
radio resource allocation. They also identified that using Al
for energy efficiency would be essential in 6G. Furthermore,
Khoramnejad et al. [8] proposed a deep RL approach to
solve a joint optimization problem consisting of maximizing
computation and minimizing energy consumption for a 5G
and beyond network through offloading. Their network also
makes use of MEC servers as a processing unit to assist
their network in computing-intensive tasks. Likewise, Akbari
et al. [9] introduced a deep RL algorithm in an industrial
IoT environment. The algorithm aimed to find an optimal
placement and scheduling policy for virtual network functions
in order to minimize end-to-end delay and cost.

There have been several studies using UAVs in a smart farm.
Lottes et al. [10] detailed how UAVs can be used to capture
aerial images, and image classification is used to identify the
crops and weeds in the field. In the survey paper [11], Islam
et al. introduced the idea of using UAVs to spray pesticide,
and discussed the trade-off between latency and battery usage.

The usage of both UAVs and MEC devices is beneficial
for applications in 5G and beyond networks. In [12f], Zeng
et al. provided a survey on the benefits and challenges of
integrating UAVs in a 5G and beyond network. Fonseca et
al. discussed the challenges for the network operators when
UAVs are integrated into a network [13]. [4], [[14], and [5]]
have provided extensive surveys on the use of UAVs with MEC
for different applications such as space-air-ground networks,
and emergency search and rescue missions. In addition, Hu et
al. [15] discussed using UAVs to provide connectivity for 6G
internet of vehicles applications.

The existing approaches to optimize energy consumption
and latency for UAVs are not limited to smart farm scenar-
ios. For instance, Yang et al. [16] aimed to reduce power
consumption by optimizing the following parameters “user
association, power control, computation capacity allocation
and location planning”. In [17], Zhou et al. considered a net-
work that consists of satellites, UAVs, terrestrial base stations,
and IoT devices. They used deep RL as a task scheduling
solution that minimizes processing delay while considering
the UAVs’ energy constraints. Alternatively, Ghdiri et al. [[18§]]
used clustering and trajectory planning in order to optimize
energy efficiency and tasks’ delay time. Additionally, Yao et
al. [[19]] used a game theory solution for the task offloading
problem in a UAV swarm scenario. Although we are exploring
a similar problem we focus on jointly solving the energy and
task latency optimization problem through DQL.

III. SYSTEM MODEL

Our network consists of a set of UAVs, j € J. They can
communicate with IoT devices z € Z, other UAVs, and a
set of MEC servers [ € L. Every UAV has a battery with a
maximum capacity of Tf . Both UAVs and MEC devices have
processing capabilities, j' € J T, where they can process the
IoT devices’ tasks.

As displayed in Fig. [1] at time ¢ € 7T, the IoT devices can
offload K types of tasks to a UAV (oszt). Each task type has
a predefined deadline aﬁ, and the amount of time it takes for
the processing unit to execute such a task aft. The goal of
this paper is to find a scheduling algorithm for each UAV to
assign each task to a processing unit in a way such that the
tasks can be completed before their deadline, and the UAVs’
hover time will be maximized [6]. These two objectives are
combined to form our multi-objective maximization problem,

Maximize:

. 1-Ww
W*?lelr}'ff: 6 E Vjt, (1)
Jj€T
teT

where W refers to the importance of the maximizing hover
time objective, Tf} refers to a UAV’s remaining battery level,
v;y refers to the number of deadline violations that have
occurred, and © refers to the scaling factor used to normalize
v. The first goal is to maximize the lowest remaining battery
level, in order to extend the UAV network’s hover time.

The UAV’s remaining battery level Tf, can be calculated
as follows, ‘

YE =Y — (Y0 +Th+7T))«T

c I
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JjET

teT

t'eT
where Y77 is the battery capacity, T is the amount of
energy required for the UAV to hover, Tﬁ is the amount of
energy the antenna requires to transmit a signal, T§, is the
amount of energy consumed by the processing unit in idle
mode, 7 is the simulation time, and ch, is the amount of
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Fig. 1. Overview of smart farm network

energy consumed by the processing unit while the processing
unit is performing a task. Finally, p;¢;/+ is a binary decision
variable that equals one if processing unit j' processes a task.

The processing unit delay Aj; is the total number of times
that a task must remain in the processing unit’s queue plus the
task’s processing delay aﬁ. Processing unit delay is given by,

N [p;j,t,*(t/)—tJrOzﬁ , 3)

where pjt ¢ 1s a binary decision variable that equals one
if it is the time interval that processing unit j' has started
processing the task, ¢’ is the time interval that the task has
started on processing unit 7/, and ¢ is the time interval in
which the task has arrived at processing unit j.

A deadline violation, v;;, occurs at ¢ when the sum of the
IoT to UAV transmission delay, A%, processing unit delay,
Aj¢, and the transmission delay between processing units, Aif
exceeds the task’s deadline, aﬁ. It can be formulated as,

1 when A;t + zj’€J+ Tjtj * Ag? + Ajt > Oéth
0 when A%, + 3¢ 74 wjuj % AL+ Ajy < o)
“4)

where x4, is used to determine if the task was done at
processing unit j'. It is set to 1 when the task is going to be
performed at processing unit j’, otherwise, it will be set to 0.

In order to avoid the ping-pong effect, a task can only be
offloaded one time,

S wpy <1, VjeJ MeT. )

Jjeg+

Vit =

IV. PROPOSED METHOD
A. Deep Q-Learning

In the traditional Q-Learning, the Q-values are stored in a
Q-table. When the agent needs to make a decision, it looks up
the current state in the Q-table and selects the action with the
highest Q-value. The Q-value measures the future cumulative
discounted reward of the action at a given state. After the
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Fig. 2. Deep Q-Learning Architecture

agent performs the selected action, the Q-value for that state-
action pair is updated in the Q-table, and the agent moves on to
another state. Due to the computer’s finite amount of memory,
Q-Learning’s state space and action space are limited.

With DQL, instead of looking up the Q-value in a Q-
table, a DNN is used to predict the Q-values for each action
at a given state. After the agent selects and performs the
action, the agent’s experience is collected. The experience is a
tuple consisting of the agent’s current state, next state, action,
and reward. The experience is stored in a buffer called the
experience replay, and the buffer is used to train the DNN.
With more experience, the DNN becomes more accurate in
predicting the Q-value of each action.

A Markov decision process (MDP) framework provides a
mathematical representation of a decision-making problem. In
an MDP, there is an agent interacting with an environment
through actions, and each action has an effect on the environ-
ment. After the agent performs the action in the environment,
the environment returns a new state and reward to the agent,
the agent must select a new action, and the process is repeated.
The future state depends only on the current state and action.
Finally, the agent needs to find a series of actions that will
maximize the cumulative reward.

Every UAV in the network will have its own MDP frame-
work. In this problem, the UAVs are the agents and they
receive tasks from the IoT devices, and they must decide
where the tasks will be processed. After the UAVs send the
tasks to the appropriate processing unit, the UAVs’ battery
levels change, the processing unit delays change, and these
changes are reported back to the UAVs. The UAVs must select
processing units that will minimize the number of deadline
violations and energy consumption, which will in turn lead to
the highest reward. The MDP is defined as follows:

o State: The state consists of the offloaded task’s type k,
all processing unit delays Aj/c 7+, the battery levels of




every UAV Tf,e 7> and the transmission delays between
every UAV and MEC device A’ 1€TET  The state is

joeTt
defined as,
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e Action: The action is to choose a processing unit among
the set of available processing units j' € J+, where the
task will be computed. The tasks can be done by the local
processing unit, the processing unit of a neighbouring
UAYV, or the MEC servers. Therefore the action is given
as,

A={zjer}. (N

e Reward: The reward function is defined as the sum of
two terms, the battery level reward (TJL& — 1), and the
deadline violation reward (1 —E(v;,)) + Vi * E(vj,)).
T]La rewards the agent for choosing an action that does
not lead to a significant increase in energy consumption.
e refers to the energy consumption change threshold. VjLa
penalizes the agent for selecting an action that resulted
in a deadline violation. If the deadline violation could
have been prevented by offloading the task to a different
processing unit, then the penalty is severe. If the deadline
violation is inevitable, then the penalty is milder because
there does not exist a better location to compute the task.

R=(Tj 1)+ (1-E(v,) + Vi *E(v,) 8
2, ifE(TH) - maxj/ej(E(Tf,)) > —e
Ti =10, if E(YE) - max;es(B(YE)) < —2¢
1, otherwise,
)
—40, if E(v;,) =0
| =10, i 35 € (T/ (G U da)) (E(y) = 0

—1,  otherwise.
(10)

The values in (9) and are selected such that the
agents are reinforced to choose optimal battery and
deadline values in fewer learning cycles.

o Policy: We use the well-known epsilon-greedy action
selection algorithm.

In the following subsections, we explain the baseline
schemes.

B. Baseline Methods

In order to investigate the effectiveness of the proposed
method, it is compared with the methods presented in [6].

1) Round Robin (RR): Every device with a processing unit
in the network j/ € JT, is assigned an order from 1 to
JT. The current UAV will cycle through the ordered list to
determine where to offload its task.

TABLE I
DQL PARAMETERS

Parameter Value

Number of Agents 4

Batch Size 500

Experience Replay Size 100000

DNN Architecture Layer | Num. of | Activation
Type Neurons Func.
Input 10 N/A
Hidden 32 ReLU
Hidden 32 ReLU
Output 5 N/A

DNN Loss Function Mean Squared Error

DNN Optimization Function | Adam w/ Learning Rate of 0.001

TABLE II
TASK PARAMETERS FROM [6]].
Task Type (/M| af | el (UAV) | of (MEC)
Fire Detection 0.25s 0.3s | 0.1s 0.05s
Pest Detection 0.25s 0.8s | 0.5s 0.25s
Growth Monitoring | 0.5s Ss 0.1s 0.05s

Mean interarrival rate.

2) Highest Energy First (HEF): The UAVs regularly update
each other on their current battery levels. The current UAV
will first find the device with the highest remaining battery
level. If the difference between the current energy level and
the highest energy level is more than 1%, then offload the task
to the UAV with the highest energy level, otherwise, compute
the task locally. Because MEC devices have unlimited power,
we have to constrain the number of times tasks can be sent to
MEC. Each MEC device has a 1/J7 chance of being selected.

3) Lowest Queue Time and Highest Energy First (QHEF):
The UAVs regularly update each other on their current battery
levels and queue times. First, the algorithm finds the minimum
queuing time. Then the UAV finds the device that has the
highest energy level and a queue time that is lower or equal
to the minimum queue time. If the highest energy level is
higher than the current energy level by a threshold, then the
current UAV will offload the task to that device. Otherwise,
the UAV will compute that task locally.

4) Q-Learning: We used the Q-Learning algorithm pre-
sented in [6]. The Q-Learning algorithm uses the action set
defined in (7), reward function defined in (8), and epsilon-
greedy policy. The Q-Learning algorithm’s state is the same
as (6)), but without the transmission delays A;;é‘;fET.

V. PERFORMANCE EVALUATION

We used SimuS5G, a 5G network simulator that runs on
top of Omnet++ [20]], to simulate our smart farm network.
In our simulation, we have four UAVs (J = 4), and one MEC
device (L = 1). There are three task types: fire detection, pest
detection, and growth monitoring. The task interarrival time
is modeled as an exponential distribution. Each task type has
a unique mean interarrival rate and processing time, and their
values are presented in Table
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The remaining battery level and delay violation results are
the averages of ten runs with different seed values. For Q-
Learning and Deep Q-Learning, a learning rate of 0.05 is
assumed, and a discount value of 0.85 is considered.

In order to compare our work with [[§], we used their energy
consumption model and parameters. We also made the same
assumptions when it came to battery type, and hovering power
consumption formula. We used (Z) to model a UAV’s energy
level throughout our simulations. The values (in Watt-Hour)
for each energy consumption parameter El are as follows, the
maximum battery capacity (Tﬁ) is equal to 570, hovering
(Tﬁ ) is equal to 211, the antenna is equal to 17, an idle
processing unit is equal to 4320, and an active processing unit
is equal to 12960 [6].

A. Simulation Results

1) Convergence: Fig. [ shows Q-Learning’s cumulative
reward for one episode, for 60k episodes. The rewards began
converging to an average reward of 100 per episode after
approximately 55k episodes. The solid lines represent the av-
erage cumulative reward for 500 or 100 episodes. The shaded
area shows the variation of the average cumulative rewards.
Fig. d] shows DQL’s cumulative reward for one episode, for 5k
episodes. The rewards began converging to an average reward
of 100 per episode after approximately 4200 episodes. Figures
[] and [] demonstrate that the Q-Learning algorithm requires
approximately 13 times more episodes to reach convergence in
comparison with the proposed DQL algorithm. The variation
in cumulative reward in an episode in DQL decreased faster
than the variation seen in Q-Learning. This is due to DQL’s
DNN constantly improving its ability to predict the Q-values.
The variance is also caused by the varying total number of
tasks in an episode. Each episode had a different random seed
which influenced the starting point for task offloading for each

'We set the energy consumption level of idle and busy CPU periods to be
at the level they would be if they ran for ten hours. This was done in order
to showcase the performance of methods in terms of energy consumption in
a limited amount of simulation time.
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IoT device, which in turn affects the total number of tasks in
circulation.

2) Remaining Battery Level: The remaining battery level is
defined as the percentage of energy that remains in the UAV’s
battery at the end of the simulation. This percentage indicates
how long the UAV can remain hovering. A higher percentage
corresponds to a long-lasting hover time. Fig. |5|indicates that
Q-Learning has the highest minimum remaining energy per-
centage. DQL is not far behind, it is approximately 2% lower
than Q-Learning’s minimum remaining energy percentage.
The RR method had the lowest remaining energy percentage
because it does not consider energy in its decision-making
process. Note that, both machine learning based techniques are
compared after they reach convergence. Hence, DQL provides
a close performance under a shorter convergence time.

3) Deadline Violations: A deadline violation occurs when
the processing unit has not completed the task before its
deadline. @) can be used to determine if a deadline violation
has occurred. Fig. [f illustrates the percentage of deadline
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violations that occurred at each node out of the total number
of tasks that were generated. In terms of deadline violations,
DQL is the best performing algorithm because it has the lowest
total percentage of deadline violations. This is because DQL
was able to consider all of the transmission delays between
the UAVs and MEC device in its decision-making process.
Nevertheless, Q-Learning has comparable performance, it has
approximately 0.9% more deadline violations than DQL. The
HEF algorithm has the worst performance because it does not
consider any type of delay or deadline in its decision-making
process.The QHEF method also has poor performance because
it offloaded too many tasks to the MEC device and increased
the MEC device’s queue time.

VI. CONCLUSION AND FUTURE WORKS

In this study, we presented a task distribution algorithm for
a MEC assisted [oT-UAV smart farm network. We proposed
a DQL-based algorithm to improve the convergence speed of
an existing Q-Learning algorithm. The deep learning part of
the algorithm also allowed us to include more observations
into the state, therefore our decision-making algorithm had
more information than Q-Learning. We investigated the pro-
posed algorithm against four baseline algorithms RR, HEF,
QHEF, and Q-Learning. The results demonstrated that the
DQL algorithm is able to converge 13 times faster than Q-
Learning. Finally, DQL had comparable results to Q-Learning
when it came to remaining energy percentage and percentage
of deadline violations. Therefore it is a more optimal solution
for our joint optimization problem, with the ability to reach
the optimal solution faster than Q-Learning. In the future, we
plan to work on reducing the convergence further and also
addressing scalability issues.
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