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Abstract—In this paper, we address the networking and com-
munications problems of creating a digital copy in the Metaverse
digital twin. Specifically, a virtual service provider (VSP) which is
responsible for creating and rendering the Metaverse, is required
to use the data collected by IoT devices to create the virtual copy
of the physical world. However, due to the huge volume of the
collected data by IoT devices (e.g., images and videos) and the
limited bandwidth, the VSP might become unable to retrieve
all the required data from the physical world. Furthermore, the
Metaverse needs fast replication (e.g., rendering) of the digital
copy adding more restrictions on the data transmission delay.
To solve the aforementioned challenges, we propose to equip
the IoT devices with semantic information extraction algorithms
to minimize the size of the transmitted data over the wireless
channels. Since many IoT devices will be interested to sell their
semantic information to the VSP, we propose a truthful reverse
auction mechanism that helps the VSP select only IoT devices
that can improve the quality of its virtual copy of objects through
the semantic information. We conduct extensive simulations on
a dataset that contains synchronized camera and radar images,
and show that our novel design enables a fast replication of the
digital copy with high accuracy.

Index Terms—Metaverse, sensing-as-a-service, semantic com-
munication, reverse auction.

I. INTRODUCTION

A. Background and Motivations

Driven by the Covid-19 pandemic, the Metaverse has gained

huge interest recently from different industry and public sec-

tors [1]–[3]. Considered as the next generation of the Internet,

the Metaverse enables users and objects to experience near

real-life interaction with each other in the virtual environment

through their avatars. The Metaverse is made up from different

emerging technologies such as virtual reality (VR), augmented

reality (AR) and haptic sensors. Furthermore, other emerging

technologies such as beyond 5G and 6G are driving the

Metaverse from imagination and fiction towards real world

implementation as they enable users to access the Metaverse

from anywhere, anytime instantly [4].

Digital twin modeling of the physical world in the Meta-

verse have a number of benefits for different application sce-

narios. For example, creating a virtual copy of the workplace

enables employers to bridge the gap between working from

office and working from home. Another example appears

in the smart vehicles area, where several companies face

significant challenges to train their autonomous vehicles (AVs)

in the real world. A digital twin of the road, vehicles and other

objects can be created, and then the AVs are trained in the

Metaverse. Instead of training the AVs on the real road network

which is a high risk task, training in the Metaverse is much

safer as road accidents in the Metaverse are not reflected to the

real world, but the experiences are identical. More importantly,

the experiences faced in the Metaverse are learnable by the

learning model of the AVs [5]. An agriculture company can

enable smart farming by creating a digital twin of the farm.

IoT devices deployed in the field can collect several types of

data about the plants and the soil, and then send it back to

the edge server of the company through an unmanned aerial

vehicle base station (UAV-BS) relay [6]. This enables farmers

to simulate and observe effects of interventions with real-time

data before physical interventions can take place.

As the digital twins are required to replicate the physical

real-world system to the finest details [3], generating an accu-

rate 3D model of the physical system is the first step towards

this goal. However, the creation of an accurate 3D digital copy

is challenging for several reasons. First, the collection of data

about the environment requires different types of sensors, e.g.,

cameras, radars and LIDARs, which are required to be located

at the region of interest of the VSP. It will be costly for the

VSP to deploy IoT devices equipped with the aforementioned

sensors for each task which are dynamic in both time and

location. Second, the collected data by the IoT devices is

huge in size and the available bandwidth for data transmission

will quickly exceed the system limitation. To enable a real-

time construction of the digital twin in the Metaverse, the

communication system needs to be carefully designed as to

maximize successful data transmission while minimizing the

latency of packet delivery.

B. Contribution

In this paper, we study the paradigm of digital twin con-

struction over wireless channels from the communication and

computation perspective. As the study of the Metaverse is

still in its infancy, only few works addressed the aspect of

wireless resource allocation for the Metaverse. In [7], an

IoT-assisted Metaverse sync problem is studied in which an

evolutionary game is formulated to enable the IoT devices to

select VSPs to work for. However, the volume of the data and

the limited bandwidth problem was not addressed. In contrast,
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our work mainly focuses on addressing the issue faced during

data transmission from IoT devices to the VSP. Specifically,

we propose the transmission of only semantic information to

the VSP instead of raw data. Since the semantic extraction

from raw data depends heavily on the data type, we focus in

this work on the case of camera and radar sensors for AV

systems [8], [9]. This is motivated by the fact that camera and

radar sensors produce data with high volume and consume

a large amount of bandwidth for transmission. However, our

framework is straightforwardly to apply to other sensor types

(e.g., voice recording) and other use cases of the Metaverse

with changes only to the semantic valuation function. We then

leverage existing IoT devices such as existing AVs and smart

phones to transmit their data to the VSP (Figure 1). The VSP

sends a UAV-BS to its region of interest to collect data. Beside

the cost efficiency, this solution is scalable as it enables the

VSP to hire IoT devices to satisfy the targeted QoS. However,

IoT devices might take advantage of the importance of their

semantic information to the VSP and increase their revenues

by selling their data much higher than their true value. To

overcome this manipulation of the strategic interaction, we

develop a reverse auction mechanism that incentivizes IoT

devices to make their bids to sell semantic information to the

VSP truthfully. Our main contributions are as follows:

• We propose a novel design for digital twin construction

in the Metaverse by leveraging semantic information

extraction algorithms. The obtained semantic information

are sent to the VSP instead of the raw data, reducing the

size of the transmitted data and consequently the latency.

• To collect data from IoT devices, we propose that the

VSP sends a UAV-BS to its region of interest. A reverse

auction mechanism is developed then to select the set of

IoT devices that can access the wireless bandwidth and

sell their semantic information to the VSP.

• We conduct extensive simulations to validate our pro-

posed model. The major finding is that the use of seman-

tic information transmission enables more IoT devices to

transmit their data to the VPS compared to traditional

raw data transmission. This enables the VSP to have a

variety of data sources and fast rendering of the digital

twin in the Metaverse.

In Section II, we describe our proposed semantic infor-

mation marketing model. In Section III we formulate the

social welfare maximization problem. Simulation results are

presented in Section IV and Section V concludes the paper.

II. SYSTEM MODEL: SEMANTIC INFORMATION MARKET

A. Preliminaries About semantic information

As illustrated in Figure 1, we consider a Metaverse market

which consists of a virtual service provider (VSP) and a set

of N = {1, . . . , N} IoT devices, i.e., data owners. The VSP

is responsible for the construction of the digital twin in the

Metaverse based on the collected data from the selected set of

IoT devices. Each IoT device has a set of sensors to collect

geo-spatial data from the surrounding environment and has a

machine learning (ML) model to extract semantic information

from the collected raw data. Different from traditional crowd-

sensing platforms that collect all the raw data from the IoT

devices, the VSP obtains only semantic information (e.g.,

semantic mask for each object with its corresponding class),

which is motivated by the following reasons:

• The number of channels available to the VSP are limited.

Hence, if the VSP allows transmission of raw data by the

IoT devices, only few devices will be able to transmit

their data which might be of less importance than the

data of other non-selected IoT devices.

• Raw data is large in size in general (e.g. video and im-

ages), which can increase the transmission delay making

the rendering of the digital twin very slow and obsolete.

• The quality of the constructed digital twin will be higher

as more semantic information about the physical world

will be available to the VSP.

Edge server (VSP)

UAV-BS

Source data

Sensing devices

Extracted

seman�c data

Fig. 1: Exemplary use cases of semantic information for the

Metaverse.

B. Service Cost in the Metaverse Market

The IoT device needs to calculate the cost of collecting data,

extracting the semantics from raw data and the communication

costs required to transmit the semantic information to the edge

server.
1) Computation Cost: The computation cost for data col-

lection for IoT device i is defined as follows [10]:

cRi =

mi
∑

k=1

dRikα
R
ik (1)

where dRik is the size of the collected raw data and αR
ik is the

per unit computation cost for sensor k by the IoT device i.

mi is the number of sensors supported by the IoT device i.

The cost of the semantic extraction is primarily based on the

amount of energy required to perform the semantic extraction

which can be formulated as

cSi = ∆tγi (2)

where ∆t is the time required for the semantic extraction given

the input raw data and γi is the per time step computation cost.

The total computation cost is then

c
p
i = cRi + cSi =

mi
∑

k=1

dRikα
R
ik +∆tγi. (3)



2) Communication Cost: When transmitting semantic in-

formation to the VSP on Ci channels with capacity r for each

channel1, the resulting communication cost to the IoT device

i is defined as [10]

cmi = rCiβi (4)

where βi is the per unit energy cost for transmission. By

summing (3) and (4), the total service cost is

ci = c
p
i + cmi =

mi
∑

k=1

dRikα
R
ik +∆tγi + rCiβi. (5)

3) Semantic Information Value: Not all the extracted se-

mantic information have the same value. For instance, if the

IoT device has predicted a car collision, the device should

value this information more and hence increase its price when

selling the semantic information to the VSP. Therefore, the IoT

device should include the valuation of the derived semantic

information based on the sensitivity of its content in the final

service cost valuation. The semantic information value/reward

is then defined as follows:

RS
i =





Ot
∑

j=1

(

δ
j
1
+ δ

j
2
+ δ

j
3
+ δ

j
4

)

q(j)





1

wt

+
1

dRi
(6)

where Ot is the number of objects detected at time t, δ
j
1
, δ

j
2
,

δ
j
3

and δ
j
4

are binary variable that reflects the existence of

semantic information about the relative speed, size, relative

position and moving direction for the object j, respectively.

q(j) is the model quality for the detected object j. For

example, the quality function can be the intersection over

unit (IoU) for image segmentation or the accuracy for object

detection. Finally, wt is the weather condition at time t scaled

between zero and one. If the weather condition is bad, i.e.,

close to zero, the derived semantic information valuation RS
i

will increase, reflecting its high value to the VSP. The last

term 1

dR

i

indicates the importance of data size to the VSP. For

example, if two IoT devices have the same semantic value

for certain data, the IoT device that provides this data with a

smaller size is preferred by the VSP.

C. Auction Based Metaverse Service Market

In our considered system model, as there are several sellers

(the IoT devices) and one buyer (the VSP), a reverse auction,

where the traditional roles of buyer and sellers is reversed, is

appropriate for our system design [11]. Therefore, to select

the set of IoT devices to collect data from, the VSP conducts

a reverse auction. Each IoT device bids for the price it is

willing to sell its semantic information to the VSP. This is

modeled as a competition on the channels provided by the

VSP through its UAV-BS. Therefore, the IoT devices tries to

increase their bids b = (b1, b2, . . . , bN ) to gain access to the

minimum number of channels required to transmit their data.

Since all sensors do not have the same data quality due to their

1For simplicity, we consider a frequency-division multiple-access (FDMA)
communication scheme, with other schemes straightforwardly applicable with
appropriate adjustment to the cost function.

location and hardware specifications, the VSP needs to choose

the winners based on their semantic information quality in

addition to data size and bid value. The IoT device i reports its

type ti = {bi, RS
i } and the number of channels Ci required to

transmit its data. The IoT device is single minded, i.e., it either

take all the request set of channels or any [11]. Additionally,

The VSP requires information freshness, i.e., the transmitted

data should not exceed a certain time threshold tmax which

is broadcasted before the beginning of the auction. The IoT

devices use this threshold to determine the required number

of channels to transmit their local data within the specified

threshold.

III. SOCIAL WELFARE MAXIMIZATION REVERSE

AUCTION

The IoT device’s utility is the difference between its pay-

ment and service cost (computation cost and communication

cost), which is expressed as

ui = pi −RS
i − bi (7)

where bi = ci. The utility of the VSP is the sum of all IoT

devices’ semantic information rewards minus the cost ĉ of

allocating the channels from the wireless service provider and

the sum of payments to the winners, which is written as

û =

|N |
∑

i=1

ξiR
S
i −

|N |
∑

i=1

ξipi − ĉ (8)

where ξi is a binary decision variable that indicates if IoT

device i is chosen among the winners (ξi = 1) or not (ξi = 0).

The social welfare of the system is defined as the sum of

the utilities of all the system entities (the VSP and the IoT

devices), which is written as

S(ξ) =

|N |
∑

i=1

ξiui + û = −

|N |
∑

i=1

ξibi − ĉ. (9)

The social welfare is regarded as the system efficiency [12]

and hence, maximizing the social welfare implies an efficient

Metaverse market system. The social welfare maximization

is formally written as an integer linear programming (ILP)

problem as follows:

max
ξ

S(ξ) = −
∑

i∈N

ξibi − ĉ, (10a)

s.t.
∑

i∈N

ξiCi ≤ B (10b)

ξi ∈ {0, 1}, ∀i ∈ N (10c)

where B is the number of channels provided by the VSP.

The ILP presented in (10) can be solved using a deterministic

off-the-shelf solver or using a heuristic algorithm [13]. In

Section IV, we implement and compare both solutions. To

avoid manipulation of the market by malicious IoT devices,

e.g., gaining a higher utility than deserved or getting a negative

utility, the mechanism should guarantee the properties of

incentive compatibility (IC) and individual rationality (IR).

Therefore, in the following, we present the payment rule for

winning IoT devices and prove the properties of IC and IR.



1) Payment Rule: The payment rule for winning IoT de-

vices is based on VCG mechanism payment [12] and is

represented as follows:

pk = S(ξ∗)− SN\{k}(ϕ
∗) + (RS

i + bk)ξk, (11)

where ξ∗ is the optimal allocation for IoT devices given the

bidding and demand vectors, and S(ξ∗) is the corresponding

maximal social welfare obtained from (10). SN\{k}(ϕ
∗) is the

maximal social welfare when IoT device k is not among the

participant in the auction where ϕ∗ represents the correspond-

ing optimal allocation strategy.

2) Incentive Compatibility and Individual Rationality:

Theorem 1: The proposed VCG-based reverse auction

mechanism is incentive compatible.

Proof: We consider two cases for the IoT device k in the

set of bidders:

Case 1: The submitted bid bk by the IoT device k is equal to

its true valuation ck. In this case, by substituting (11) in (7),

the utility is written as

uk = S(ξ∗)− SN\{k}(ϕ
∗) (12)

Case 2: The submitted bid b
′

k by the IoT device k is different

from its true valuation, i.e., b
′

k 6= ck and the utility is written

as

u
′

k = S(ξ∗′)− SN\{k}(ϕ
∗′) + ξ∗k

′b
′

k − ξ∗k
′ck (13)

We note that the optimal allocation strategy in the absence

of the IoT device k in the auction in both cases is the same,

i.e., SN\{k}(ϕ
∗) = SN\{k}(ϕ

∗′). The difference between the

utilities of the above two cases is then calculated by:

u
′

k − uk = S(ξ∗′)− S(ξ∗) + ξ∗k
′b

′

k − ξ∗k
′ck

=



−

|N |
∑

i6=k

ξ∗i
′bi − ξ∗k

′b
′

k



−



−

|N |
∑

i=1

ξ∗i bi



+ ξ∗k
′b

′

k − ξ∗k
′ck

=



−

|N |
∑

i=1

ξ∗i
′bi



−



−

|N |
∑

i=1

ξ∗i bi



 (14)

If u
′

k − uk > 0, then the IoT device has an incentive to

deviate from ξ∗. However, since ξ∗ is the optimal solution for

the ILP in (10), and hence better than any other solution (e.g.,

ξ∗′), we have u
′

k ≤ uk. Therefore, the IoT devices cannot

obtain any benefit by misreporting their true valuation of their

data. Note that the IoT device might submit a higher semantic

value than its true value to gain access to the channels and

sell its data with higher price. However, both the ILP problem

in (10) and the utility of the IoT device in (12) are independent

from the value of the submitted semantic value RS
i , giving no

incentive to the IoT device to submit untruthful value of RS
i ,

concluding the proof.

Theorem 2: The proposed VCG-based reverse auction

mechanism has the property of individual rationality.

Mask R-CNN

Background

�ltering

(1) (2) (3)

(a) Camera view.

TMVA-NET
Background

�ltering

(b) Range-Doppler view.

Fig. 2: A scene from CARRADA dataset from different views

with their respective semantic segmentation, with a cyclist and

a pedestrian. The blue mask in (b) represents the pedestrian

while the green mask represents the cyclist.

Proof: Given that the mechanism is truthful, we consider

two cases:

Case 1: S(ξ∗) ≥ SN\{k}(ϕ
∗), then based on (12), uk ≥ 0.

Hence, the IoT device k will get non-negative utility after

joining the auction.

Case 2: S(ξ∗) < SN\{k}(ϕ
∗). In this case, since N\{k} ⊂

N , the VSP will have much more options to choose from

with N rather than with N\{k} implying that S(ξ∗) ≥
SN\{k}(ϕ

∗) and uk ≥ 0. Therefore, Case 2 cannot be realized

and the proposed VCG-based reverse auction mechanism has

the property of individual rationality.

IV. EXPERIMENTS

In this section, we conduct experiments on real world data

and present numerical results to evaluate the performance of

our proposed reverse auction mechanism. Unless otherwise

stated, we consider that N = 20, tmax = 1s, and that the

channel’s capacity for each IoT device is fixed to r = 10kbps.

A. Dataset and Experimentation’s Settings

We conduct our experiments on CARRADA dataset [14]

which is a recent, open dataset that contains 30 scenes of

synchronized sequences of camera and radar images. The

radar images consists of the range-angle (RA) and the range-

Doppler (RD) views. Figure 2 illustrates sample images from

the CARRADA dataset where a cyclist and a pedestrian are

moving into the opposite directions. To extract the semantic

information from the raw data, different algorithms are used

based on the supported sensors on the IoT device. We consider

4 types of IoT devices that use different semantic extraction

algorithms. For devices with camera sensors only, Mask R-

CNN algorithm for semantic segmentation and bounding boxes

is used [15]. For devices with radar sensors only, RAMP-CNN

(for RA view only), FCN-8s (for either RA or RD views)

and, TMVA-NET (for RA and RD views) are used [9], [14],

[16]. We adopt simulation settings similar to [9]. Each IoT

device is considered to use one of the aforementioned algo-

rithms based on a uniform distribution. For devices with both



camera and radar sensors, a combination of these algorithms

is used instead. As an output for the aforementioned semantic

segmentation algorithms, a white background image which

contains the masked objects (see Figure 2) is produced in

addition to a meta-data text file (in JSON format) that contains

a mapping between each object in the image with its class and

other derived semantic information (e.g., range and shape).

The meta-data text file has a maximum size of dmeta = 1kb.

B. Results

1) Impact of The Solver on The Social Welfare: First, we

evaluate the efficiency of our proposed ILP reverse auction

algorithm. The ILP is solved deterministically using Gurobi

optimizer and the results are compared to the heuristic auction

algorithm proposed in [13] with the payment rule adjusted

to follow (11). We observe from Figure 3 that both solvers

reach an equivalent optimal solution when the number of

channels is higher than 30. However, when the number of

channels is lower, i.e., from 10 to 25, the heuristic algorithm

is not able to reach the optimality derived by the deterministic

optimizer. This is explained by the fact that the heuristic

algorithm first sorts the IoT devices (bidders) based on their

bids and stops the search for potential winners once the social

welfare stops increasing. This makes the algorithm deviate

from the optimal solution as other potential combination of

winners is not explored. In what follows, we only consider the

use of the deterministic optimizer to solve the social welfare

maximization problem.
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Fig. 3: Impact of the solver on the social welfare.

2) Impact of semantic information Transmission on The

Metaverse: We consider two types of transmission: the first

one consists of transmitting raw data, i.e., no semantic infor-

mation extraction, and the second one consists of transmitting

only the semantic information extracted from the raw data.

We observe from Figure 4 that as the number of channels B

provided by the VSP increases, the number of winners for

the case of semantic information transmission also increases

(up to 12 winners). However, in the case where only raw

data is transmitted, the number of winners is very low (1
to 2 winners) and almost remain unchanged, making the

VSP relies heavily on the inputs of a small set of IoT

devices. This result is explained by the fact that raw data has

significantly a larger size compared to the size of semantic

information and therefore one winner can use up to half of

the available channels. Furthermore, even if the channels are

fully allocated in both cases, the received data by the VSP

might be insignificant in case of raw data transmission (e.g.,

in case of camera image, the captured image can be taken

from an angle where no object is present). Specifically, if the

VSP tries to create a copy of the physical world using the

received raw data, the constructed virtual world would have

a very poor quality and cannot capture the real dynamics of

the system (e.g., congestion of the road). However, in case of

semantic information transmission, the VSP has a variety of

data sources/views which are rich of semantic information,

e.g., instances and their shape or relative speeds, showing

the importance of semantic information and heterogeneity of

data sources. This result also indicates that our formulation of

the utility functions is able to select IoT devices with more

valuable semantic information as winners and hence, transmit

their data to the VSP. An important point to highlight is that

as more IoT devices send their data to the VSP, the chances of

having redundant information increase, which helps creating

a more reliable virtual environment.
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Fig. 4: Impact of the number of channels on the number of

winners and social welfare.

Interestingly, we observe from Figure 4 that when the

number of channels increases from 25 to 30, the number of

winners drops by 1. This is due to the fact that some IoT

devices that have more valuable information but require a

larger number of channels are not selected as winners when

fewer channels are available, i.e., B = 25. However, when the

number of channels increases to 30, the winner list changes to

contain fewer IoT devices but they can provide a higher social

welfare, which is clearly observable in Figure 4 (red dotted

curve).

3) Impact of the semantic information Extraction Algo-

rithms and The Input Data on The Winner List: To observe

how the winner list changes based on the semantic information

extracted from data, we consider two identical groups of IoT

devices where each group has 5 IoT devices and use different

semantic information extraction algorithms as described in

Table I. We provide the first group with scenes that contains 3

objects while the second group is provided with scenes which

have only one object. The total number of participating IoT

devices is then N = 10 and the number of channels is varied

from 3 to 21. We observe from Figure 5 that the first IoT

devices to join the winner list after the number of available

channels increases are from group 1. This is justified by the



fact that input scenes for group 1 contains more semantic

information than group 2. Interestingly, when the number of

channels increases to 15, IoT device 5 from group 2 join the

winner list leaving one element from group 1 not in the winner

list. This is due to fact that IoT device 5 has camera and

radar sensors and is using both Mask R-CNN and TMVA-NET

algorithms for semantic extraction which have high quality

of extracting significant semantic information. The remaining

element from group 1 is IoT device 2 uses RAMP-CNN for

radar semantic extraction, which has the lowest performance

compared to other algorithms [9].

TABLE I: Semantic extraction algorithms for different IoT

devices.

IoT device Sensor(s) Semantic algorithm(s)

1 camera Mask R-CNN

2 radar RAMP-CNN (RA)

3 radar FCN-8s (RA)

4 radar TMVA-NET (RA and RD)

5 camera & radar Mask R-CNN + TMVA-NET

5 5 5 5 5 5 5

1 1 1 1 1 1

4 4 4 4 4

3 3 3 3

5 5 5
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Fig. 5: Impact of the extracted semantic information on the

winner list. Green boxes represent IoT devices from group 1

and red boxes represent IoT devices from group 2.

V. CONCLUSION

In this paper, we presented a novel design to address the

problem of data transmission over the wireless channels in

the Metaverse. Specifically, we considered the scenario where

a VSP is collecting data from the physical world using IoT

devices in the field to create a digital twin of the road for AV

training. We then proposed the use of semantic information

extraction algorithms by the IoT devices to transmit only

semantic information to the VSP instead of raw data. This

significantly reduces the data transmission volume over the

wireless network. It also enables more IoT devices to access

the channels and the VSP to access a heterogeneity of data

sources. As many IoT devices are interested in selling their

semantic information to the VSP, we designed a reverse

auction mechanism that has the properties of IC and IR to

enable the VSP to choose the winners. Simulation results show

that our proposed novel design is able to intelligently select

IoT devices that have more semantic information and enable

the VSP to create a high quality digital copy of the physical

world. To further improve our design, we consider as a future

work the use of a prediction model by the VSP to be trained on

masked images to create scenes which have been lost during

communication due to link failures.
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