
 Vertical-oriented 5G platform-as-a-service:
 user-generated content case study
 Sarang Kahvazadeh, Hamzeh Khalili, Rasoul Nikbakht Silab, Bahador Bakhshi, Josep Mangues-Bafalluy
 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)
 Castelldefels, Spain
 Emails:{ skahvazadeh, hkhalili, rnikbakht,bbakhshi, jmangues }@cttc.es

Abstract—5G realizes an impactful convergence, where
Network Functions Virtualization (NFV) and cloud-native
models become fundamental for profiting from the
unprecedented capacity offered at the 5G Radio Access
Network (RAN). For providing scalability and automation
management over resources in 5G infrastructure, cloud-
native and Platform as a service (PaaS) are proposed as
solutions for paving the way for vertical applications in 5G.
This paper leverages cloud-native models, PaaS, and
virtual testbed instances to provide key platform
provisioning and service life-cycle management features to
a selected User Generated Content (UGC) scenario in
multimedia applications. Specifically, this article and
results show how service-level telemetry from a UGC
cloud-native application is used to automatically scale
system resources across the NFV infrastructure.

Keywords—5G Testbed, Platform as a service, Scalability,
Testbed as a service, Kubernetes, Auto-scaling

I. INTRODUCTION

 Nowadays multimedia streaming is one of the most
popular services over the Internet. The disruption of cloud/edge
computing and internet of things (IoT) into 5G architecture
poses virtualization (i.e., NFV) as a fundamental tool for
supporting massive UGC multimedia streaming. Such
disruption heavily influences multimedia design; this being
dramatically changed by container-based micro-services [1].
That is, the monolithic approach (all application functions in a
single resource) are replaced by a distributed view, in which the
application is split into micro-services hosted inside lightweight
virtualization containers. This is referred to as cloud-native
computing in software development. A 5G multimedia
application is then expected to be composed of several
containers across several physical nodes at the cloud/edge of the
communications infrastructure, leveraging network overlays
and specific reference points for communication and ultimately
providing a service.

One of the main concerns with cloud-native 5G multimedia
application relates to scalability. Scalability is about remaining
unchanged the service-level performance indicators despite
demand. Scalability may also have to conform with other
criteria, like cost savings (e.g., Mobile Network Operator may

impose additional charges for resources consumed at the edge of
the network). Container Orchestration Engines (COE)
(Kubernetes [2] considered the de facto standard) are the
common choice for deploying cloud-native applications at the
resource-constrained edge of the 5G network. Kubernetes
enables cloud-native life cycle management such as self-
healing, automatic scheduling, automatic scaling, application
management, creating predictable infrastructure, etc.

Kubernetes facilitates the scaling of resources according to
system telemetry via its Horizontal Pod Autoscaler (HPA) [3]
controller. Traditionally, HPA only was setup for specific
metrics such as CPU and Memory data for conditioning the
scaling out/in of Pods (Pods are Kubernetes’s smallest
deployable computing unit. A Pod may contain one or more
containers). Nevertheless, HPA may also be configured to feed
from custom service-level metrics from Pods, other Kubernetes
Objects, or even external sources. This ability yields freedom to
design automatic scaling algorithms subject to arbitrary service-
level criteria.

In order to Kubernetes hosts micro-services for handling
HPA custom metrics, we also need to have proper 5G
infrastructure and testbed. To be specific for handling scalability
issue in vertical and horizontal way, we need also to offer a
scalable 5G testbed environment where vertical applications
such as multimedia streaming can easily be tested with 5G
infrastructure alongside with Kubernetes. This scalable testbed
can offer testing as a service. In this paper, we illustrate our
testbed architecture and design that can be scaled to different
instances for easing vertical´s applications to be tested with 5G
infrastructure for different scenarios and use-cases. Our testbed
also offers a novel Platform as a Service (PaaS) where
Kubernetes infrastructure are implemented as network slices sub
instances (NSSI). The PaaS is designed and implemented
aligned with ETSI NFV IFA 029 [4]. We also show that how we
can get benefits over our infrastructure in the case of scalability.
Finally, in this paper, we present this concept through a chosen
case study scenario that is the emulation of a crowded UGC
(e.g., live sports or news coverage) where caching/processing
applications endpoint hosted at Multi-access Edge Computing
(MEC) are dynamically scaled by HPA conditioned to a custom
service-level metric.

II. RELATED WORK

Recently, there has been a lot of activity in the development of
5G testbeds for supporting research and development in mobile
technologies [5]. In this section, our focus is placed on the
cloud-native models or virtual testbed instances, to provide key
infrastructure provisioning and service life-cycle management
features, supported by a variety of testbed providers in EU
projects. For this, we summarized a few of them here. One of
the relevant 5G testbed is TNOR’s testbed facility that has been
leveraged from 5G-VINNI project [6]. This testbed is proposed
to support end-to-end network slicing, service deployment and
management, toward onboarding and running experiments and
validation of relevant use cases in 5G mobile network. In
addition, The NFVI and VIM are based on OPNFV, with
OpenStack as VIM and KVM as hypervisor. The NFVO
provides network service orchestrator and resource orchestrator
functions. The 5G-Berlin testbed [7] provides a 5G standalone
network to test 5G technologies like NFVO, function
virtualization, SDN, open-source stack, mobile edge computing
and network slicing for the implementation of applications for
verticals in mobile networks. 5GENESIS testbed is leveraged
from 5GENESIS project [8], providing heterogeneous physical
and virtual network elements under a common openness
framework for experimenters and vertical industries. The
testbed enables end-to-end slicing and cloud-native NFV
MANO capabilities for deploying and running variety of
experimenter applications (NetApps) on top of NFV
infrastructure.
Nevertheless, despite all functionalities offered by other
testbeds, cloud-native model and Platform as a Service are not
provided together as an underlying 5G infrastructure. The
combination of them allowing 1) vertical applications, 5G
internal services and 5G Core functions to share NFVI
resources, and 2) experimenters to have a simplified and
sufficient abstracted visibility.

III. VIRTUAL TESTBED DESCRIPTION

 In this section, we propose and illustrate our testbed instances
together with PaaS design and architecture over our 5G
infrastructure. These testbed instances alongside with PaaS
bring scalable 5G infrastructure and scalable testing as a service
for application’s owners.

A. Testbed Infrastructure

Our testbed is based on Amarisoft 5G RAN, Open5GS core,
and ETSI OSM MANO stack. It leverages a Cloud Radio
Access Network (C-RAN) architecture with virtualized 5G core
alongside with 5G RAN.

Figure 1. Amarisoft RAN/Open5gs Core (AMF: Access and
Mobility Management Function, SMF: Session Management
Function, UPF: User Plane Function, DNN: Data Network
Name, gNB: Next Generation Node B, UE: User Equipment).

5G RAN-Core segment is implemented with the industry
Amarisoft 5G Private Node, which provides 5G RAN
capabilities as well as management northbound interfaces (NBI)
out-of-the-box, enabling the establishment of 5G end-to-end
services. The Amarisoft Northbound Interface (NBI) exposes a
range of telemetry and actuation via web sockets, which may be
leveraged for emulating a wide variety of scenarios and
management algorithms. Also, the 5G core in our testbed is
Open5GS, that is implemented in Kubernetes infrastructure and
connected to our Amarisoft Radio Access Network (RAN).
Figure 1 shows an implemented example of 5G RAN/CORE.
Edge and Cloud 5G segments are enabled thanks to Virtualized
Infrastructure Managers (VIM) such as OpenStack and
Kubernetes. The former is typically used to provide
Infrastructure as a Service (IaaS), while the latter helps deploy
Mobile Edge Computing (MEC) architecture, state-of-the-art
cloud-native applications, and dynamic infrastructure/service
support components (aligned with ETSI NFV IFA 029).

B. Testbed Instances

Our testbed also provides a sandbox for creating isolated
Cloud/MEC environments. These are referred to as Testbed
Instances (TI). A Testbed Instance will be deployed for testing
and validation of our scenarios. Figure 2 shows the overall view
of default resources of our TIs.

Figure 2. TI’s default resources.

A default testbed instance consists of the following
resources:

 Cloud Resources: High speed underlay, Network
Function Virtualization Orchestrator (NFVO),
Virtual Infrastructure Manager (VIM) control,
Kubernetes control and Virtual Machines (VMs).

 Edge/RAN Resources: Lower speed underlay,
Amarisoft 5G Private Node, Open5GS core in
Kubernetes (K8s), VIM compute, K8s compute and
User Equipment (UE) instance.

TI’s Resources are illustrated in Figure 3 below.

C. Internal testbed instances design

The internal testbed instances include two levels: 1) the
individual 5G testbed infrastructure elements and 2) monitoring
modules for the real-time metrics recording.
Infrastructure level details:
The testbed benefits from Sandbox mechanisms for
creating/building a testbed instance environment and design
and creating Testbed Instance Template (TIT) composed of
multiple stateful LXD VMs, which may contain:

a. NFVI: OpenStack Cluster, Kubernetes Cluster,
b. Virtual Machines (VMs),
c. ETSI OSM (whatever release),
d. Amarisoft RAN along side with Open5GS core

implemented in Kubernetes.

Note that the RAN is shared among all created TIs, thus access
to the RAN should be coordinated accordingly.
Metrics level:

 Our platform provides NetData for gathering Virtual
Network Function (VNF) or resource telemetry, also,
as upstream telemetry aggregator, e.g., slice-level.

 Prometheus can be configured for long-term metrics
storage.

The figure below illustrates TI’s architecture and template
examples.

Figure 3. TI components, architecture, and TIT examples.

D. Technologies and protocols in testbed instances

 Tools involved in TI implementation are as following:

1. Service management tools: Version control
(Gitlab), PaaS (Kubernetes v1.18), PaaS
Controller (Kubernetes Federation API),

 2. Edge and cloud infrastructure: VIM (OpenStack),

 3. ETSI NFV MANO: OSM v11,

 4. GPU: NVidia RTX 2080Ti,

 5. RAN Controller.

Finally, Figure.4 shows a created testbed instance.

Figure 4. Testbed Instance alongside PaaS.

E. Platform as a Service (PaaS) implementation

The designed PaaS follows "cloud-native" design principles.
The PaaS abstraction layer particularly facilitates the utilization
of container technologies, where the consumer does not manage
or control the underlying cloud infrastructure including network,
servers, operating systems, storage and platform services, but
has control over the deployed applications and possibly over
application hosting environment configurations. The concept of
PaaS been introduced in ETSI GR NFV-IFA 029 [4].

 In this work, we focused on the use case where VNFCs (Virtual
Network Function Containers) are deployed in containers in
virtual machines. The virtualization layer in NFVI is responsible
to provide: 1) the VM runtime environment, 2) the OS in the
VM, 3) the container runtime environment for the containerized
VNFCs hosted by the VMs running on a hypervisor layer of the
NFVI-nodes and 4) the virtual network so that the containers can
communicate within a VM, an NFVI-Node and across NFVI-
Nodes. The NFV-MANO allocates the resources needed by the
VNFCs. A "Container Infrastructure Service Management"
function will provision the containers, when the VNFCs are
deployed. It can be a separate functional block or integrated in
an NFV-MANO component. VNFCs, which are containers, are
part of the VNF (while their runtime environment is provided by
the NFVI).

Following the ETSI GR NFV-IFA 029 specifications, we are
adopting our design with the option of deploying container-
based services on top of a shared NFVI. The PaaS-inspired
design with the capability of supporting container-based
services is composed of the Container Infrastructure Service
Instance (CISI) and Container Infrastructure Service
Management (CISM). CISI is the execution environment for the
container cluster where the container-based services run CISM

https://learn.netdata.cloud/docs/agent/backends/prometheus

is responsible for the infrastructure resource management and
lifecycle management of the execution environment for
container cluster. CISI and CISM realize the PaaS instance. In
our approach CISI and CISM are part of the VNF. The CISM is
responsible for managing the lifecycle of CISI and initiating
container-specific virtual resource management based on the
virtual machines allocated to the VNF. The VNF is implemented
as VNFCs whereby each VNFC is deployed as a container in a
virtual machine (see Figure.5, Figure.6).

Figure 5. CISM embedded into VNF with support for shared
container service.

Figure 6. CISM embedded into VNF without support for shared
container service.

In our design, resource orchestration is performed by an ETSI
Open-Source MANO (OSM) NFVO. OSM supports descriptor
files written in yaml (Virtual Network Function Descriptors -
VNFDs and Network Service Descriptors NSDs). The VNFD
defines the needed VNF resources in terms of compute resources
and logical network connection points, the image that will be
launched at the VM, as well as the autoscale thresholds based on
the metrics that are being collected from the Telemetry service
of the VIM. The NSD is responsible for the connection point
links, using virtual links, among the interconnected VNFs,
mapping them to the physical networks provided by the VIM.
The primary aim of the OSM MANO is to coordinate NFV
Infrastructure (NFVI) resources and map them efficiently to
various VNFs. In turn, VNFs can then be interconnected into
chains to realize more complex Network Services (NS). OSM
reserves a number of VMs on top of which the Kubernetes
clusters will be deployed. Thus, Kubernetes will be deployed as

overlay. The underlay is the respective VIM (i.e., Openstack)
and OSM. Part of the resource orchestration is also the scale-out
and scale-in. The NFV MANO is able to scale dynamically
resources to support the VNFs according to the heterogeneous
quality of service requirements of the applications at hand. That
is, Key Performance Indicators (KPI) of the VNF are monitored
and if they are above a given threshold a scaling process is
started, which implies the creation of new VMs to deploy the
VNF (or to accommodate the Kubernetes clusters).

After describing our testbed instances and PaaS designs and
implementation, a high-level figure for our testbed for testing
the following scenario is presented in Figure.7. Technologies
that are used for the implementation of PaaS are Kubespray [9],
sets of ansible servers for automation [10] and OSM DAY0
cloudinit files [11].

When applications are deployed in PaaS (Kubernetes) to be
tested with 5G, we are able to scale applications with HPA inside
of Kubernetes infrastructure and/or even scaling by creating
more PaaS´s NSSIs.

Figure 7. Testbed high-level architecture.

III. MULTIMEDIA SCENARIO DESCRIPTION

Focusing on Multimedia domain, High Quality User
Generated content (UGC) production services uploading in a
dense area is one of the most impacting 5G UCs. In this scenario
the UGC in the form of 4K video will be produced with smart
phones and streamed up-link via 5G to a cloud-based system
where it will be integrated with a professional video production.
It is expected that 5G supports very high-density of devices, as
well as high concurrent up-link transmissions capacity from one
single location, avoiding congestion far beyond what is possible
by existing 4G networks. Specifically, we demonstrate a
Network Slice Subnet Instance (NSSI) holding a tenant service
able to balance the load of incoming UGC streams coming from
RAN. Such NSSI is orchestrated with ETSI OSM as NFV
Orchestrator and constitutes the Virtual Network Function
(VNF) resources on top of which the tenant service (i.e., COE
and cloud-native application) is executed.

Focusing on the tenant service (i.e., cloud-native 5G
multimedia application), it leverages IPVS as load balancer for
a dynamic pool of endpoints, i.e., Video Sink Pods (VSP). As
the configured HPA metrics change, the tenant service scales-
out/in the number of VSP, therefore dynamically changing the
total capacity of supported UGC streams and resources

footprint. That is, allocating more resources when UGC streams
increase, while destroying unused resources when no longer
needed.

Figure 8. high-level deployment of multimedia architecture.

Figure.8 shows a simplified view of the proposed scenario.
NSSI-2 shares access to the 5G Core. NSSI-1 is a shared
Open5GS core implemented in Kubernetes where UPF can be at
the edge or core according to Figure. 1. That is, UGC streams
will come out of 5G Core and leverage NFV networking to reach
NSSI-2. The scenario is implemented over our testbed instance
that leverages PaaS where Kubernetes infrastructure is
implemented as NSSI. At arrival, streams are balanced by IPVS
to available VSPs. The latter being dynamically added or
removed by HPA according to custom monitoring data
deposited at a local Prometheus instance by the tenant service.
Specifically, a new Video Sink Pod (VSP) instance is set to be
automatically created if the average active streams per VSP
surpasses a determined threshold.

IV. TEST DESCRIPTION AND WORKFLOW

The development of this scenario will allow testing different
combinations of load balancing algorithms and various
thresholds determining scaling out of VSP. Figure.9 shows the
workflow from an experiment where Emulated Clients acting as
UGC requests to upstream a+b+c+…+z streams, but only a+b+c
streams are initially admitted due to limited VSP http_requests.
Then, HPA operations extend the pool of VSP, which in turn
admit the remaining d+e+…+z UGC streams. The following
illustrates the experimental workflow:

1. Emulated Clients send request to the controller.

2. Emulated Clients get notified of a VSP endpoint from
controller.

3. HPA is configured to scale-out VSP according to a
custom metric, http_requests. Specifically, a new VSP
is created if it receives more than s=1000 requests.

4. Emulated Clients request the upload of (a+b+c+...+z)
UGC streams to the VSP endpoint.

5. IPVS load balances the upstream a+b+c+...+z to an
existing Video Sink Pod (VSP1).

6. VSP1 accepts upstreams a+b+c, but upstreams
d+e+…+z are denied due to an overloaded VSP1. The
rest of streams are denied.

7. HPA notices the observed metric surpassing the
predefined threshold and automatically creates an

additional VSP. IPVS then gets informed of the newly
created VSPs and can now balance traffic to it.

Figure 9. Multimedia scenario workflow.

VPSs leverage prometheus-fastapi-instrumentator [12] and
starlette-exporter [13] Python libraries for exposing service-
level metrics to Kubernetes. This way HPA may condition
scaling operations on them. Figure.10 illustrates a single VSP
and HPA before Emulated Clients start requests. Client request
is simulated with Locust python library [14] with 100 users with
10 users spawned/second Hatch rate.

Figure 10. VSP and HPA creation.

When Emulated Clients start sending requests for VSP, the
associated http_requests increase. This is when HPA detects a
threshold violation in the observed custom metric and starts
scaling out VSP. This is illustrated in Figure.11, specifically
when http_requests > 1 (1000m where m stands for milli-units,
or 1000ths of a unit) such as 2913m, 1946m, and 1433m, HPA
starts to create VSP replicas until http_requests become 942m,
which is less than the set target value, 1 (1000m).

Figure 11. Lifecycle of HPA user requests.

Figure.12 illustrates created VSP´s replicas.

Figure 12. Created VSP´s replicas.

 After the required VSP replicas are created, IPVS controls
traffic distribution among them. Figure.13 shows the
distribution of traffic among 5 of VSP replicas. Consider in
IPVS, you have a choice for selecting different algorithms for
traffic distribution among created VSP´s replicas

Figure 13. IPVS load balancing.

Figure.14 shows all the HPA process during our test, such as
scaling out/in of VSP. The blue and red lines are min and max
number of replicas, set to 1 and 10, respectively. The yellow line
shows the running replicas. As we can see, HPA automatically
creates enough VSP replicas during the test, and removes them
after the requests finish.

Figure 14. Replicas creation and deletion.

We have a traffic generator in our scenario. When Locust start
generating traffics, we are able to see charts created in their web-
interface. In the following figures, charts created by Locust such
as the number of users, video sink´s pods response times and
total requests per second for a short testing interval will be
illustrated to assess the validity of test.

Figure 15. Number of users (100).

Figure 16. Video Sink’s pods Response time.

Figure 17. Total number of requests per second.

V. CONCLUSION

In this article, we illustrate our 5G scalable testbed architecture
design. The testbed is designed and implemented to be scaled in
different instances for different scenarios accordingly. We test
an emulated multimedia scenario in our infrastructure. The
deployment of multimedia scenario is in our Kubernetes
infrastructure connected with Open5GS core and Amariosoft
where we were able to scale in/out emulated video sinks
according to service metric (HTTP Requests). In our future
work, we want to test and show that testbed instances scalability
can be effective 5G network key performance indicator (KPIs).

ACKNOWLEDGMENT

This work is founded by the H2020 5GSolutions (Grant
Agreement no.856691) and H202 5GMediaHUB (Grant
Agreement no.101016714).

REFERENCES

[1] IO.Ayo, V.Geteloma, I.Eweoya R.Ahuja, Virtualization,
Containerization, Composition, and Orchestration of Cloud Computing
Services, ICCSA 2010.

[2] https://kubernetes.io/
[3] https://kubernetes.io/docs/tasks/runapplication/horizontal-pod-autoscale/
[4] "Network Functions Virtualisation (NFV) Report on the Enhancements

of the NFV architecture towards Cloud-native and PaaS", [online]
Available:https://www.etsi.org/deliver/etsi_gr/NFVIFA/001_099/029/03
.03.01_60/gr_NFV-IFA029v030301p.pdf.Y. Yorozu, M. Hirano, K. Oka,
and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media
and plastic substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp.
740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p.
301, 1982].

[5] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
Programmable, and Virtualized 5G Networks: State-of-the-Art and the
Road Ahead,” Computer Networks, vol. 182, p. 107516, 2020.

[6] Arampatzis, Dimitrios, et al. "Unification architecture of cross-site 5G
testbed resources for PPDR verticals." 2021 IEEE International
Mediterranean Conference on Communications and Networking
(MeditCom). IEEE, 2021

[7] 5G-Berlin, available online at: https://5g-berlin.de/en/
[8] 5GENESIS, availabe online at: https://5genesis.eu/
[9] https://kubespray.io/#/
[10] https://docs.ansible.com/automationcontroller/latest/html/administration/

index.html
[11] https://osm.etsi.org/docs/vnf-onboarding-guidelines/02-day0.html
[12] https://pypi.org/project/starlette-exporter/
[13] https://pypi.org/project/prometheus-fastapiinstrumentator/#adding-

metrics
[14] https://docs.locust.io/en/stable/

https://5g-berlin.de/en/
https://docs.locust.io/en/stable/

