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Abstract—When operated in the mmWave band, user channels
get highly correlated which can be exploited in mmWave-NOMA
systems to cluster a set of “correlated” users together. Identifying
the set of users to cluster greatly affects the viability of NOMA
systems. Typically, only channel state information (CSI) is used
to make these clustering decisions. When any problem arises
in accessing up-to-date and accurate CSI, user clustering will
not properly function due to its hard-dependency on CSI, and
obviously, this will negatively affect the robustness of the NOMA
systems. To improve the robustness of the NOMA systems, we
propose to utilize emerging trends such as location-aware and
camera-equipped base stations (CBSs) which do not require
any extra radio frequency resource consumption. Specifically,
we explore three different dimensions of feedback that a CBS
can benefit from to solve the user clustering problem, namely
CSI-based feedback and non-CSI-based feedback, comprised of
user equipment (UE) location and the CBS camera feed. We
first investigate how the vision assistance of a CBS can be used in
conjunction with other dimensions of feedback to make clustering
decisions in various scenarios. Later, we provide a simple user
case study to illustrate how to implement vision-assisted user
clustering in mmWave-NOMA systems to improve robustness,
in which a deep learning (DL) beam selection algorithm is
trained on the images captured by the CBS to perform NOMA
clustering. We demonstrate that user clustering without CSI
can achieve comparable performance to accurate CSI-based
solutions, and user clustering can continue to function without
much performance loss even in the scenarios where CSI is
severely outdated or not available at all.

Index Terms—Non-orthogonal multiple access (NOMA); User
Clustering; Beamforming (BF); Camera Base Station (CBS);
Deep Learning (DL)

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) techniques offer
a way to serve multiple users in the same orthogonal resource
(e.g., time, frequency, orthogonal frequency division multi-
plexing resource block (RB), etc.) by separating the users
in the power or code domains instead. In mmWave bands,
users’ channels are strongly correlated due to the highly
directional nature of mmWave transmission [1], [2]. The strong
correlations among users’ channels in mmWave and higher
bands make them ideal for the formation of user clusters that
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can be served by a single beam and separated in the power or
code domain through NOMA.

For mmWave-NOMA, the way how to cluster users is one
of the important functionalities to achieve the desired level
of network performance. Obtaining the global solution for
that problem, particularly for large-size networks, could be
a formidable task due to its combinatorial nature, but local
solutions could be efficiently obtained, for instance, using
optimization schemes (e.g., [2], [3]) or machine learning (ML)
approaches [4], [5]. However, these approaches are all based
on the strong assumption of accurate instantaneous channel
state information (CSI) from the users. Firstly, since clustering
is an aspect of user scheduling, executing clustering algorithms
based on instantaneous CSI is problematic, as the CSI acquired
might be stale by the time it is used for user clustering.
Secondly, for mmWave-NOMA systems, CSI acquisition and
user tracking, which are required to establish and support
highly directional transmission links, can create a tremendous
amount of overhead and latency [6]. Thirdly, in practice, the
availability and the reliability of CSI at base stations cannot
be always guaranteed due to the following reasons: 1) Non-
ideal hardware behavior. 2) Poor performance of physical
downlink control channel. 3) Poor performance of physical
uplink shared channel. 4) Errors in reported CSI. 5) Errors
in decoded CSI. 6) Long CSI reporting duration and having
outdated CSI. 7) Frequency gap between uplink and downlink
in frequency division duplex mode. All these make it important
to find other dimensions of user feedback that the BS can
exploit for NOMA clustering decisions, such as user location
information or pictures from a scene captured by a camera-
equipped BS (CBS).

Beyond 5G (B5G) systems can access the location informa-
tion of users [7] and exploit the directional nature of mmWave
transmission, location aided beamforming (BF) strategies have
been developed, e.g., [8]. Extending this idea to NOMA
systems, in [9], a location-aided NOMA clustering strategy
was developed that exploits the user location to assign a user
to pre-defined cluster angles. CBSs, on the other hand, can
be used to capture red-green-blue (RGB) images of users
at a scene and utilize the vast potential of deep learning
(DL) algorithms on these images for performing wireless
communication tasks [10]–[12]. In [10], a synthetic data
generation framework for RGB images and the associated user
channels for mobile users was developed. In [12], for instance,
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Alrabeiah et al. applied convolutional neural networks (CNN)
to residual networks (ResNets) [13] to solve a beam predic-
tion problem. An 18-layer residual network (ResNet-18) was
adopted and customized to fit the beam prediction problem.

In this paper, we motivate the use of CBSs to enhance
the performance and robustness of mmWave-NOMA systems,
which does not need to consume any extra radio frequency
(RF) resource. The camera feed of CBSs can be used for user
clustering exclusively when CSI is hard to obtain, or the feed
can be used in conjunction with CSI not only to improve the
accuracy and the quality of the scheduling decisions, but also
to reduce the amount of overhead and power consumption
in the system. We highlight the different dimensions of user
equipment (UE) feedback that a CBS can exploit for NOMA
clustering, namely CSI-based feedback from the user and non-
CSI-based feedback, comprised of the images captured by the
CBS and UE location. Through a simple case study that per-
forms NOMA clustering exclusively based on CBS images and
user location feedback, we show that applying deep learning
techniques to the images captured by the CBS can be exploited
to achieve a spectral efficiency performance comparable to
where NOMA clustering decisions are taken using the full
accurate CSI of users. The results of our investigation highlight
that in practical NOMA systems, either the CSI of users or
visual feed of cameras or some combination of the two can
be used interchangeably for NOMA clustering, depending on
what feedback is available to the CBS in different situations.

II. WHY CAMERA-EQUIPPED BS IN MMWAVE-NOMA
CLUSTERING?

A. Dimension space for possible clustering approaches in
mmWave-NOMA systems

In this section, we illustrate the NOMA clustering problem
statement for a CBS and the different dimensions of UE
feedback that a CBS can use to solve this problem. Consider
a multi-antenna, mmWave-NOMA enabled BS as shown in
Fig. 1. Using the spatial dimension, users can be separated
through beamforming. As we can see in Fig. 1, NOMA allows
multiple users to be served in one beam. The goal of user
clustering schemes in mmWave-NOMA systems is to identify
sets of correlated users, so that they can be grouped into a
NOMA cluster. Within a cluster, the users are separated via
the power domain, called power-domain NOMA [14]. Clusters
are separated from each other in the spatial domain, using
beamforming techniques. Clustering, therefore, represents a
user scheduling problem of identifying the set of users to
be served in each time slot and of identifying the candidate
beams, such that a minimum quality-of-service is guaranteed
to each user.

To solve this NOMA clustering problem, we can see that
Fig. 1 shows the different dimensions of user feedback that
a CBS can exploit. This feedback that the CBS relies on
for NOMA clustering can be classified under two categories:
CSI-based feedback and non-CSI-based feedback. The CSI-
based feedback (i.e., the channel information dimension shown
in the figure) incurs wireless channel overhead. The non-
CSI-based feedback is comprised of two entities, namely

user location feedback and pictures from the camera feed
of the CBS. The latter is the main focus of this article.
Any combination of these three dimensions of feedback may
be available at different times, for different users, and in
different situations. We note that while obtaining BS images
and user location has an associated cost, it is not a cost
on the wireless channel resources itself, the most precious
commodity in a wireless system. With ever-decreasing camera
prices and location information already a common feature of
5G systems [7], it is not unrealistic to expect that CBSs will
be able to exploit this information in the near future. CBSs
can make clustering decisions with information from anyone
dimension or combination of dimensions, depending on what
is available.

B. Role of the vision dimension in clustering

To make clustering decisions, current mmWave-NOMA
clustering schemes are based on the CSI feedback from
the users, typically using the cosine similarity or Euclidean
distance metrics to determine the correlation between users [4].
A CBS allows for a new dimension of UE feedback that can
be used for UE clustering decisions in NOMA systems. The
visual dimension can be used in conjunction with or as a
replacement for CSI, which is traditionally used for NOMA
clustering. In other words, the visual information provided by
an external unit can be used by the baseband on the CBS to
make a decision about how to form the NOMA clusters using
the following possible permutations:

• In case there is no access to the visual information, the
CBS will rely on the channel information.

• In case there is no access to the channel information, the
CBS will rely on the visual information.

• In case there is access to both channel and visual in-
formation, the CBS can combine information from both
sources, e.g., through weighted summation, to make a
better decision. Or, the CBS can resort to visual informa-
tion as a fallback solution, only when the reliability of
channel information is low. To detect whether there is a
reliability issue with channel information, the number of
consecutive Hybrid Automatic Repeat Request (HARQ)
Non-Acknowledgements (NACKs) and the number of
consecutive Discontinuous Transmissions (DTXs) might
be used.

Obtaining CSI is often challenging and problematic in terms
of its availability and reliability [6]. This is particularly true
for NOMA systems that are designed to serve a large number
of users. Even when CSI is available, there is a large cost
involved in obtaining the channel information of all users;
something that conventional NOMA clustering schemes rely
on to work. In particular, obtaining CSI for clustering in this
way is wasteful for users who cannot be scheduled on the
basis of current CSI, and a newly updated CSI is needed when
they are actually scheduled. Additionally, using instantaneous
CSI for UE scheduling decisions in future transmission slots
presents issues related to the quality of CSI being used. Hence,
even when CSI is available, there is an incentive to rely on
CSI-free NOMA clustering approaches.
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Fig. 1: Illustrating the dimensions of feedback that a CBS can exploit for NOMA clustering decisions, categorized into CSI-
based feedback and non-CSI-based feedback, comprised of UE location and BS camera feed images.
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Fig. 2: High-level illustration of the proposed NOMA clustering scheme based on non-CSI-based feedback involving the images
captured by the camera feed of the BS and UE location input.

In mmWave systems that have dominant line-of-sight (LoS)
paths, approaches such as the location-aware NOMA cluster-
ing scheme proposed in [9] can be used. However, a NOMA
clustering approach based exclusively on user location feed-
back is limited to LoS paths and simple channel settings, such
that the best beam for a user can be determined exclusively on
the basis of user location and no other feature of the channel
or surroundings. However, with CBSs, we can feed captured
images to powerful DL image processing techniques. These
DL techniques, using neural networks, can learn advanced
features of the channel and make good beam predictions or

cluster formation decisions. These neural networks can also be
fed the location of the users as an additional input, particularly
for identifying users in images captured by the CBS. Fig. 2
illustrates an example with a classroom deployment where a
CBS captures the image of all users along with user location
feedback. A deep learning algorithm parses the images from
the classroom, using the user location feedback to identify the
users. From a codebook of beams, the best beam for each user
can be predicted; which can in turn be used for the clustering
of users that all select the same best beam. This concept is
illustrated through a case study in the next section.
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Fig. 3: Illustrating the NOMA-BB algorithm, where from a
codebook of beams each users best beam is determined and
users that share the same best beam are clustered together.

III. A CASE STUDY: ROBUST USER CLUSTERING IN
MMWAVE-NOMA VIA VISION-BASED DEEP LEARNING

We start by describing a simple heuristic CSI-based
mmWave-NOMA clustering scheme, called the NOMA Best
Beam (NOMA-BB) clustering approach. We focus on a single-
path mmWave channel model in this case study. From a
codebook of beams, such as the one shown in Fig. 3, the
idea behind NOMA-BB is for the BS to identify the best
beam for each user from the set of candidate beams. Using the
available CSI of each user, the BS uses the cosine similarity
metric between the user channels and the fixed beamforming
directions to determine the best beam for each user, b∗u.
NOMA-BB then clusters users that all have the same “best
beam,” hence the name NOMA-BB. Additionally, there is
a constraint on the maximum number of users, nmax, not
to overload certain clusters with too many users, since in
practice, each digital unit has a limit on the number of parallel
transmissions per time slot. If the number of users with the
same BB is greater than nmax, NOMA-BB simply splits them
into more than one cluster, all served by the same beam but
in different time slots. A similar but complementary constraint
is considered in [3] where each user had their own individual
successive interference cancellation (SIC) decoding capability,
since in practice, the NOMA users cannot perform SIC to
decode an infinite number of other users’ signals due to the
limited computational and energy and memory resources of the
UEs. The goal of the case study is to see if NOMA clustering
can be done using only the visual feedback from the CBS
and how it performs compared to approaches such as accurate
CSI-based NOMA-BB. The key point is to show that CSI is
not essential for determining the best beam of each user, b∗u.
If this b∗u can be determined through the other non-CSI-based
UE feedback dimensions discussed in Section II-A, the rest of
NOMA-BB can be used for NOMA clustering.

For this case study, we expand on the deep learning (DL)
based beam prediction scheme proposed in [12], where a
ResNet-18 neural network pre-trained on the popular Ima-
geNet2012 dataset is customized for the purpose of beam

Algorithm 1: Proposed DL-based NOMA clustering
algorithm using the images captured by the CBS.
Stage 1 (Training):
1. CBS collects CSI from users and images from the
scene.
2. CBS uses CSI to generate training data for the
ResNet-18 beam prediction algorithm.
3. NOMA clustering is done using CSI at this stage.
Stage 2 (Execution):
1. CBS uses UE’s location input and the trained ResNet-
18 model to pick the best beam, b∗u, for each user u.
2. NOMA-BB:
for (beam-b : Bc) do

A. Group all n users that picked b∗u = b into a
cluster, to be served by beam-b.
B. If (n = 0), do not form a cluster to be served by
beam-b.
C. If (n > nmax), split the n users into

⌈
n

nmax

⌉
clusters, all served by beam-b.

end
Stage 3 (Validation):
1. Collect CSI of random users and validate against best
beam, b∗u, predicted by ResNet-18 model.
2. If error threshold reached, go back to Stage 1.
Note: Stage 2 and Stage 3 run in parallel.

prediction1. Typical DL neural networks for image classifica-
tion are skilled at classifying images into the appropriate class
with sufficient training examples of images that belong to the
different classes. In [12], it is shown that with a pre-defined BF
codebook like in our problem, learning beam prediction from
the RGB images degenerates to an image classification task
where the goal of the system is to identify to which sector a
user belongs. In other words, since the set of candidate beam
vectors divides the scene (spatial dimensions) into multiple
sectors, and single-user images are used to train the neural
network, the image classification DL algorithm identifies the
sectors to which a user belongs. Thus, the algorithm finds the
users “best-beam direction” using the image captured by the
CBS only. However, the images used to train the ResNet-18
neural network are single-user images (i.e., they contain only
one user per image).

This concept can be extended to NOMA clustering problems
where a CBS will capture images with hundreds of users that it
needs to serve. As described above, an algorithm like NOMA-
BB can be adapted to make the user clustering decisions
based on the “best-beam” prediction from a neural network.
Fig. 2 shows what this deployment would look like in a
classroom, where a CBS captures images of all users. Unlike
in [12] that assumes single-user images, in our case and in
reality, we will have multiple users in an image that are to
be served by the CBS, particularly in NOMA use-cases where

1As future works, we plan to investigate the performance of the system
along with more complex and realistic datasets, such as ViWi version 2
(https://www.viwi-dataset.net) with multi-user scenarios, or DeepSense 6G
(https://deepsense6g.net).
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(a) DL model trained with 100 samples in Stage 1.

(b) DL model trained with 500 samples in Stage 1.

Fig. 4: Simulation results highlighting the close performance
of the proposed DL approach using camera and location feed
(non-CSI feedback) with the clustering schemes that use CSI
feedback.

the goal is to serve a large number of users. However, the
location information can be used to break down these multi-
user images into single-user images. We just need to learn the
best beam from each user’s perspective, and this can be done
with training examples from any user in the scene. This is
because in a single-path LOS scenario with no obstacles, and
where all users have equal channel gain, the best beam learned
for user A at location (X,Y) implies that the best beam for user
B at location (X,Y) is also the same. In more complex channel
models, we need to adapt the model further, as discussed in
the future research directions in Section IV.

We divide the entire algorithm into three distinct stages, as
shown in Algorithm 1. The first stage involves the training
phase where the CBS learns how to make “best beam”
predictions for all users in an image. To achieve this, the
CBS collects CSI of all users to determine each user’s best
beam using the cosine similarity metric like in [2], and
that is provided as a training sample to the DL algorithm
along with a picture of the scene. During this phase, since
the CBS is not yet trained to make predictions using the
DL algorithm, the CSI is used to make NOMA clustering

decisions to provide system continuity. Once the DL algorithm
is sufficiently trained, the CBS moves to Stages 2 and 3 jointly.
In Stage 2, the CBS stops collecting the users’ CSI and instead
starts using the beam predictions made by the trained DL
algorithm to feed to NOMA-BB for the final NOMA clustering
decisions. In parallel to this, Stage 3 is run where the CSI of a
few users is collected in order to validate against the best beam
prediction from the DL model. If a defined error threshold is
reached, the algorithm reverts to Stage 1 if the environment
has sufficiently changed from the originally trained model. For
instance, in LoS dominated scenarios like classrooms, coffee
shops, etc. where there can be many users to serve (user
devices like today, but also internet-of-things (IoT) devices
in the future), the environment does not change that often and
so we will not have to keep reverting from Stage 3 to Stage 1.

The performance of this proposed scheme is shown in
Fig. 4, where we can see that the DL camera-based clustering
scheme is able to achieve comparable performance in spectral
efficiency to the CSI-based scheme. We can see that the
performance of the camera feed approach improves as more
training data is used in Stage 1 to train the ResNet-18 based
DL model. The difference in performance between the CSI
and camera feed schemes shown here is entirely due to the
beam prediction aspects. Errors in predicting the best beam for
some users mean they are placed in clusters where they do not
receive the maximum possible signal-to-noise and interference
ratio (SINR). It is worth mentioning that the user ordering and
power allocation parts of the NOMA scheme depend on the
CSI of the user, as it is most optimal to order the users for
SIC decoding in the order of their channel gains. In a truly
CSI-independent scheme, we would have to do this arbitrarily,
which would cause a loss of performance as well.

IV. CHALLENGES AND FUTURE DIRECTIONS

In this section, we discuss potential challenges and future
research directions for implementing DL-based NOMA clus-
tering algorithms using the images captured by CBSs.

Camera coverage and cost: The number of cameras used,
the placement of these cameras, and the quality of the pictures
captured by the CBS are all interesting questions that will
have an impact on the NOMA performance. Of course, better
quality images equal more cost, so exploring such trade-offs,
particularly for low-cost small cell BSs is an important aspect
for practical deployments.

Frequency of camera updates and mobility aspect: A
cluster of users has to be determined by the baseband unit on
the order of hundreds of milliseconds. The current camera
feed might not provide updates that often and then have
clustering decisions be made accordingly. Hence, the control
interface between providing new camera updates, making
beam predictions and accordingly NOMA clustering decisions
is an important challenge to address. On the other hand, in
this paper, it is assumed that user locations do not change
faster than every few seconds, since in practice, how often the
user location (i.e., beam-index information) changes will have
a direct impact on the load of the control interface and the
design of the interface.
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Imprecise location information: Another challenge is ad-
dressing imprecise location information. Since the system re-
lies on the location information to identify users on the scene,
other object detection techniques such as [15] can be used for
user identification to complement user location feedback.

Complexity of channel models and amount of data:
In multi-path settings, learning the best beam from a set of
candidate beams could involve more advanced features, and
thus also, require more training data. For example, multi-
path poses a challenge to the neural network to learn the
requisite advanced features of the channel. Additionally, users
themselves can be obstacles and alter the multi-path setting
and so the best beam of the users.

Privacy and security: An important concern with the use of
cameras for clustering is the user privacy and security concerns
that come with it. This is true for any vision-assisted scheme
where the BS gets access to camera images that identify
individual users. With the proposed scheme, given that the
camera feed is used only for 0clustering decisions, regulations
can be built-in to ensure the BS does not store any history
related to the user. For cases where the pictures might be
stored for some time for offline training of the model, the user
context and identity of the users can be removed; so nothing
can be traced back.

Anticipatory networking with visual information: To re-
duce operational and cost inefficiencies of the next-generation
wireless networks, knowing the future user distribution in both
spatial and temporal domains, i.e., forecasting the future state
of the network, at various time scales is critical [16]. Visual
information collected by various cameras on the BSs can
be leveraged to predict user distribution with high precision,
and to optimize not only the network functions such as
handover, but also, the network performance through such as
cell dimensioning, cell switch-off, and load balancing.

V. CONCLUSION

In this paper, the potential of CBSs in mmWave-NOMA
systems was explored to improve the robustness of user
clustering. We showed three different dimensions of user
feedback that a CBS can exploit for user clustering, depend-
ing on the situation; CSI-based feedback or non-CSI-based
feedback, including the UE location and camera feed of the
CBS. Exploiting the advances in deep learning, the NOMA
clustering problem can be addressed using the images captured
by CBSs, without consuming extra RF resources. Through
a case study, we showed that such an approach achieves
comparable performance to a CSI-based approach, and user
clustering can continue to function without much performance
loss even in the scenarios where CSI is severely outdated or
not available at all. Lastly, open challenges and future research
directions in this area were discussed.
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