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Abstract

A principled procedure to infer a hierarchy of sta-
tistical distributions possessing ill-conditioned eigenstruc-
tures, from incomplete constraints, is presented. The in-
ference process of the pdf’s employs the Fisher informa-
tion as the measure of uncertainty, and, utilizes a semi-
supervised learning paradigm based on a measurement-
response model. The principle underlying the learning
paradigm involves providing a quantum mechanical conno-
tation to statistical processes. The inferred pdf’s constitute
a statistical host that facilitates the encryption/decryption
of covert information (code). A systematic strategy to en-
crypt/decrypt code via unitary projections into the null
spaces of the ill-conditioned eigenstructures, is presented.
Numerical simulations exemplify the efficacy of the model.

1. Introduction

This paper accomplishes a two-fold objective. First,
a systematic methodology to infer from incomplete con-
straints, a hierarchy of statistical distributions correspond-
ing to the multiple energy statesof a time independent
Schrödinger-like equation (TIS-lE), is presented. By def-
inition, the case of incomplete constraints corresponds to
scenarios where the number of constraints (physical ob-
servables) is less than the dimension of the distribution.
The inference procedure employs a semi-supervised learn-
ing paradigm, based on a measurement-response model that
utilizes the Fisher information (FI) as the measure of uncer-
tainty.

The time independent Schrödinger equation (TISE) is a
fundamental equation of physics, that describes the behav-
ior of a particle in the presence of an external potential [1]

− h̄2

2m

d2ψ (x)

dx2
+ V (x)ψ (x)

︸ ︷︷ ︸

HQMψ(x)

= Eψ (x) . (1)

Here, ψ (x) is the wave function,E is the total energy
eigenvalue,V (x) is the external potential, and,HQM is the
TISE Hamiltonian. The constants̄h andm are the Planck
constant and the particle mass, respectively. In time in-
dependent scenarios, Lagrangians containing the FI as the
measure of uncertainty, yield on variational extremization
an equation similar to the TISE, i.e. the TIS-lE [2]1. The
TIS-lE provides a quantum mechanical connotation to a sta-
tistical process.

Next, a self-consistent strategy to project covert infor-
mation into thenull spacesof ill-conditioned eigenstruc-
tures possessed by the inferred host statistical distributions
corresponding to themultiple energy statesof the TIS-lE, is
described. The strategy of unitary projection of covert infor-
mation into thenull spacesof the ill conditioned eigenstruc-
tures of a hierarchy of statistical distributions, has beenre-
cently studied for host probability density functions (pdf’s,
hereafter) inferred using the maximum entropy (MaxEnt)
principle [3].

The selective projection of covert information into a hi-
erarchy of statistical distributions implies that the dimen-
sion of the covert information is greater than that of any
single host distribution. This selective projection endows
the code2 with multiple layers of security, without alter-
ing the host statistical distributions. The present paper ac-
complishes the task of achieving both symmetric and asym-
metric cryptography [4] via a judicious amalgamation of
statistical inference using an information theoretic semi-
supervised learning paradigm, quantum mechanics, and, the
theory of unitary projections.

In summary, the semi-supervised learning paradigm
is utilized to infer the statistical hosts possessing ill-
conditioned eigenstructures. The code is then projected into
thenull spacesof these ill-conditioned eigenstructures. An-
other example of the use of learning theory in cryptosys-
tems, albeit within a different context, is described in [5].

1This property is theraison d’etréfor the phrase ”Fisher-Schrödinger
model”

2The terms covert information and code are used interchangeably.

http://arxiv.org/abs/cond-mat/0701319v1


1.1 The TIS-lE

Consider a measured random variabley = (y1, ..., yN),
parameterized byθ = (θ1, ..., θN ) (the ”true” value). A
fluctuation, i.e. a random variablex = (x1, ..., xN ), de-
fined byx = y− θ is introduced. For translational (or shift)
invariant families of distributions,p (y |θ ) = p (y − θ) =
p (x). The particular form of the FI that is chosen is the
trace of the FI matrix for independent and identically dis-
tributed (iid, hereafter) data3. This is referred to as the
Fisher channel capacity (FCC) [2]. The FCC is:IFCC =
∫
dyp (y| θ)

(
∂ ln p(y|θ)

∂θ

)2

=
∫
dxp (x)

(
∂ ln p(x)
∂x

)2

un-

der translational invariance [2,6]. The probability am-
plitude (wave function) relates to thepdf as ψ (x) =
√

p (x). The FCC acquires the compact formIFCC =

4
N∑

n=1

∫
dxn

(
∂ψ(xn)
∂xn

)2

= 4
∫
dx

(
∂ψ(x)
∂x

)2

. The form of

the FCC is essential to the formulation of a variational prin-
ciple. Within the framework of a measurement-response
model, this implies that the observer who initiates the mea-
surements, collects the response in the form ofiid data. In
many practical scenarios, the response of a system to mea-
surements is not obliged to beiid. The presence of corre-
lations contribute to off-diagonal elements in the FI matrix
formed by the observer. These correlations may be miti-
gated, thereby eliminating the off-diagonal elements of the
FI matrix, by performing ICA (or an equivalent procedure)
as a pre-processing stage.

Consider a Lagrangian of the form

LFCC = 4
∫
dx

(
∂ψ(x)
∂x

)2

+

+

∫

dx

M∑

i=1

λiΘi (x)ψ
2 (x)− λo

∫

dxψ2 (x)

︸ ︷︷ ︸

−J[x]

, (2)

M < N (incomplete constraints), where the Lagrange mul-
tiplier (LM) λo corresponds to the probability density func-
tion (pdf, hereafter) normalization condition

∫
dxψ2 (x) =

1. The LM’s λi; i = 1, ...,M correspond to actual
(physical) constraints of the form

∫
dxΘi (x)ψ

2 (x) =
〈Θi (x)〉 = di. Here,Θi (x) are operators, and,di are
the constraints (physical observables). This work considers
constraints of the geometric moment type:Θi (x) = xi; i =
0, ...,M . Here, (2) resembles the usual MaxEnt Lagrangian
with the FCC replacing the Shannon entropy. In (2), the
FCC is ascribed the role akin to the kinetic energy. The
constraint terms manifest the potential energy. Variational
extremization of (2) yields the minimum Fisher information

3The FI matrix foriid data has vanishing off-diagonal elements (e.g.,
Appendix B in [2])

(MFI) principle [7]

−d
2ψ (x)

dx2
+

1

4

M∑

i=1

λiΘi (x)ψ (x)

︸ ︷︷ ︸

HFIψ(x)

=
λo

4
ψ (x) , (3)

whereHFI is an empirical Hamiltonian operator. Here, (3)
is referred to as a TIS-lE. Note that the probability ampli-
tudes are taken as being real quantities. This assumption is
tenable since the model is spatially one dimensional in the
continuum, and is time independent. Comparing the TIS-lE
with the TISE immediately reveals that the constraint terms

V (x) = 1
4

M∑

i=1

λiΘi (x) =
M∑

i=1

λ̃ix
i, constitute an empirical

pseudo-potential. The normalization LM and the total en-
ergy eigenvalue relate asλo = 4E. Further, the constants
in the TISE relate as̄h2

/
2m = 1.

Solution of the TISE as an eigenvalue problem yields a
number ofenergy statescharacterized by distinct values of
E. These comprise the equilibrium state (zero-energy state)
characterized by a Maxwellian distribution, and, higher en-
ergyexcited states(non-equilibrium states). The wave func-
tions are a superposition of Hermite-Gauss solutions.By
virtue of its similarity to the TISE, the TIS-lE “inherits”
these energy states within an information theoretic context.
This feature permits the projection of covert information
into multiple energy statesof the TIS-lE, for an empirical
pseudo-potential that approximates a TISE physical poten-
tial.

Employing the TIS-lE to inferpdf’s from incom-
plete constraints, requires an accurate evaluation of the
LM’s. This is accomplished in this paper through a semi-
supervised learning paradigm, that iteratively couples the
solution of (3) with the minimization of a Lagrangian that
manifests a measurement-response model.

This procedure represents, in certain aspects, an exten-
sion of the optimization procedure employed to achieve
quantum clusteringusing the TISE [8]. In the case of
quantum clustering, the TISE probability amplitude/wave
function is approximated by a non-parametric estimator
(Parzen windows), and, the potentialV (x) is determined
via a steepest descent in Hilbert space. In contrast, the semi-
supervised paradigm presented in this paper achieves recon-
struction ofpdf’s (the inverse problem of statistics) without
anya-priori strictures placed on the probability amplitudes
of (3). The Fisher-Schrödinger model has been employed
within a statistical setting in a number of studies ranging
from quantum statistics to fuzzy clustering [9]. Within the
context of securing covert information, the above features
endow the statistical enryption/decryption strategy witha
fundamental physical connotation.



1.2 The Dirac notation

This paper utilizes the Diracbra-ketnotation [10] to de-
scribe linear algebraic operations in a compact form. By
definition, aket |•〉 denotes a column vector, and, abra
〈•| denotes a row vector. The scalar inner product and the
projection operators are described by〈• | •〉, and the outer
product|•〉 〈•|, respectively. The expectation evaluated at
theεth energy stateis 〈•〉ε.

2 Semi-supervised Learning Paradigm

2.1 Theory

The task of density estimation involves the iterative de-
termination of the LM’s and probability amplitudes of the
TIS-lE (3). In the MaxEnt and MFI theories, the observer
is external to the system. The present work reconstructs
the hostpdf’s using a semi-supervised learning paradigm,
by incorporating aparticipatory observer. This is accom-
plished by positioning theparticipatory observerin a mea-
surement spacecharacterized by the amplitudeψε(x), per-
forming unbiased measurements [2, 11] on a given physical
system (data).

Thesystem space, inhabited by the physical system sub-
ject to measurements, is characterized by an amplitude
φε(x̃). Here,x and x̃ are the conjugate basis coordinates
of the measurement spaceandsystem space, respectively.
Herein, the mutually conjugate spaces are taken to be the
Cartesian coordinate and the linear momentum. Setting
x̃ = µ, the commutation relation is[x, µ] = ih̄, respectively
[1]. The group for the basis change isG = −ih̄ d

dx
. The

corresponding Hermitian unitary operator isU = e−aih̄
d
dx ,

wherea is the group parameter of infinitesimal transforma-
tions. Within the present scenario,Uψε [x] = ϕε [µ]. On
the basis of the above discussions, it is easily proven that

IFCCε [x] = 4
∫
dx

(
dψ(x)
dx

)2

= 4
h̄2

〈
µ2

〉

ε
= 4

〈
µ2

2m

〉

ε
=

IFCCε [µ] ; h̄
2/

2m = 1. In the non-relativistic limit, the ki-

netic energy of a particle isT = µ2

2m [1]. For TIS-lE poly-

nomial pseudo-potentials of the formV (x) =
M∑

i=1

λεix
i, the

quantum mechanical virial theorem [9, 12, 13] yields

IFCCε = 2

〈

x
dV (x)

dx

〉

ε

= 2

M∑

i=1

iλεid
ε
i (4)

The unitary relation between the amplitudes in conju-
gate spaces results in the potential energy term in (2),
Jε [x], being manifested as an empirical representation of
the FCC. Specifically,IFCCε [x] = Jε [x]. Each measure-
ment (or set of measurements) initiated by the observer

at a specific juncture, perturbs the amplitude of thesys-
tem spaceas δϕε (µ). For mutually conjugate spaces re-
lated by a unitary transform, this results in a perturbation
δψε (x) = δϕε (µ) of themeasurement space. It is at this
juncture that the observer constructs the FCC foriid data.
Consequently,δIFCCε [x] = δJε [x] [2]. Such models are
known as measurement-response models [14].

Incorporation of aparticipatory observerresults in a
zero-sum game[15] of information acquisition played be-
tween the observer and the system under observation. The
observer seeks to maximize her/his information about the
system. Simultaneously, thesystem spaceis inhabited by
a demon, remniscent to the Maxwelldemon, who seeks to
minimize this information transfer. Thiszero-sum gamebe-
tween the observer and thedemonis hereafter referred to as
theFisher game.

Game theoretic studies in MaxEnt and MFI follow the
traditional pattern of having thearbiter, who assigns strate-
gies to the players, residing external to the system.In this
paper, the probe measurements initiated by the observer
constitute the arbiter, and, the probability amplitudes man-
ifest the strategies.A future publication treats the game
theoretic aspects of the semi-supervised learning paradigm,
within the ambit of thebounded rationality theory[16].

The incomplete constraintsdεi , i = 1, ...,M are evalu-
ated as the moments of the Cartesian coordinates at each
energy stateε, by solving the TISE (1) as an eigenvalue
problem on a lattice, for ana-priori specified physical po-
tential. The incomplete constraints represent the only man-
ifestation of the target values of the amplitudes/pdf’s, made
available to the designer at the commencement of the infer-
ence procedure.

The hostpdf inference is solved by an iterative optimiza-
tion processIn this paper, the host pdf is independently in-
ferred for each energy levelε. The optimization process
couples the solution of the TIS-lE (3), with the steepest de-
scent minimization of an empirical quantity known as the
residue. The residuerepresents the discrepancy between
the value ofJε [x] in (2) evaluated at an intermediateitera-
tion levell for a specificenergy state, and, the value of the
exact (target) FCC expressed at the sameiteration levell.

In (4), the LM’sλεi are target values of the optimization
process, which are unknown at the commencement of the
inference procedure. Here, (4) is made consistent with the
iteration process by specifying the relation between the tar-
get values of the LM’s, and, the LM’s at some intermediate
iteration levell as

2
M∑

i=1

iλεi
∼=

M∑

i=1

λεi,l 〈ψεl | ψεl 〉ε (5)

Here, (5) is critical to the optimization process since it
infuses a representation of the target response state into the
iterative procedure. The final values of the expectation of



the amplitudes satisfy
〈

ψεl=final

∣
∣
∣ ψεl=final

〉

ε
= 1. Note

that the expectation〈ψεl | ψεl 〉ε is not assumed to be unity.
Combining (4) and (5) allows the target value of the FCC to
be manifested at some intermediate iteration levell. At the
lth iteration level, the termJε[x] in (2) is

J
(

λεi,l

)

= λεo,l 〈ψεl | ψεl 〉ε −
M∑

i=1

λεi,l 〈ψεl |Θ(x) |ψεl 〉ε
(6)

The residueat thelth iteration level, re-scaled with re-
spect to〈ψεl | ψεl 〉ε, is

Rε(λε
i,l)

〈ψε
l
|ψε

l 〉ε
= R̃ε

(

λεi,l

)

∼= −λεo,l +
M∑

i=1

λεi,l

{

〈ψε
l |Θ(x)|ψε

l 〉ε
〈ψε

l
|ψε

l 〉ε
+ dεi

} (7)

Here, (7) is R̃ε

(

λεi,l

)

∼= ĨFCCε

(

λεi,l, d
ε
i

)

−

ℑε
(

λεo,l, λ
ε
i,l

)

; i = 1, ...,M , where the re-scaled target

FCC and thepotential energyare ĨFCCε

(

λεi,l, d
ε
i

)

, and,

ℑε
(

λεo,l, λ
ε
i,l

)

, respectively. A steepest descent procedure

∂R̃ε(λε
i,l)

∂λε
i,l

→ 0 along the gradient of the LM’s yields “opti-

mal” values of the LM’s

∂
[

ĨFCCε

(

λεi,l, d
ε
i

)

−ℑε
(

λεo,l, λ
ε
i,l

)]

∂λεi,l
→ 0; i = 1, ...,M

(8)
The optimization procedure is carried out till the target val-
ues are achieved. The steepest descent procedure requires

the analytical values of
∂R̃ε(λε

i,l)
∂λε

i,l

, and thus,
∂λε

o,l

∂λε
i,l

; i =

1, ...,M . Left multiplying (3) for theenergy stateε and

iteration level l by ψεl and integrating, yields
∂λε

o,l

∂λε
i,l

=

dεi,l

〈ψε
l
|ψε

l 〉ε
; i = 1, ...,M . The theory of the semi-supervised

learning paradigm based on theFisher gameis summarized
by the pseudo-code in Algorithm 1.

2.2 Physical interpretations

The Fisher gameconstitutes a self-consistent informa-
tion theoretic optimization procedure, with a quantum me-
chanical connotation. The above theory contains three inter-
esting observations. First, the commencement of eachitera-
tion loopcorresponds to the juncture at which the observer
initiates measurements. Next, as the iterative process ad-
vances, the FCC approaches a minimum. This corresponds
to an increase in the uncertainty at the location of the ob-
server.

Finally, at the termination of thelth iteration loop, the
condition (8) that yields the ”optimal” LM’s is the state-
ment of acontract between thedemonand the observer,

whereby, thedemonmakes the last move in the iterative
Fisher game. This implies that theparticipatory observer
acquires a state of maximum uncertainty (minimum Fisher
information). Such acontractis the underlying basis for de-
termining the ”optimal” LM’s, corresponding to amplitudes
that decrease the FCC at the termination of each iteration
level.

Scenarios of such type cannot be modeled within the
framework of traditional game theory [17], thus, justify-
ing the use of thebounded rationality theoryto study the
game theoretic aspects of theFisher game. A future publi-
cation studies the information landscape and its relation to
theFisher game.

Algorithm 1 Inverse Problem of Statistics
PROCEDURE FOR EACH ENERGY STATE ε

INITIALIZATION
1.Solve TISE (1) for known physical potentialV (x) as
an eigenvalue problem in the event space[a, b]. Obtain
incomplete constraintsdεi ; i = 1, ...,M .
2. Solve TIS-lE (3) for arbitrary Lagrange multipliers
λεi,arbitrary; i = 1, ...,M . Obtain amplitudesψεi,l=1.
3. Input tolerance parameterδi; i = 1, ...,M
ALGORITHM FOR lth ≥ 1 ITERATION LOOP
1. Obtainψεl by solving the TIS-lE (3) as an eigenvalue
problem, using the optimized LM’sλεi,l−1 obtained from
the(l − 1)th iteration loop.

2. Minimize the re-scaledresidueR̃ε
(

λεi,l

)

(7), to obtain

optimized LM’s that correspond toψεl

λεi,l ←
∂[ĨFCC

ε (λε
i,l,d

ε
i)−ℑε(λε

o,l,λ
ε
i,l)]

∂λε
i,l

3. Solve TIS-lE (3) as an eigenvalue problem with LM’s
λεi,l. Obtain momentsdεi,l; i = 1, ...,M .
IF∣
∣
∣dεi − dεi,l

∣
∣
∣ > δi; i = 1, ...,M

l = l + 1
RETURN
ELSE IF∣
∣
∣dεi − dεi,l

∣
∣
∣ ≤ δi; i = 1, ...,M

END IF

2.3 Numerical results

The asymmetric harmonic oscillator (AHO) potential
V (x) = x + x2

2 is chosen as TISE physical potential.
The TISE with the AHO potential is solved as an eigen-
value problem for 201 data points within the event space
[a = −1, b = 1] for differentenergy states. Boundary con-
ditions on the amplitudes,ψε (a) = ψε (b) = 0, are en-
forced. An empirical pseudo-potential of the formVε (x) =
λ̃ε1x+ λ̃

ε
2, that approximates the TISE AHO physical poten-



tial is specified. Here,̃λεi =
λε
i

4 . In this case,M = 2, N =
201.

The values of the incomplete constraints ared
ε=0,1
1 =

(−0.0344, 0.0097,), and, dε=0,1
2 = (0.1302, 0.2809). The

final values of the LM’s arẽλε=0,1
1 = (1.0892, 1.1121),

and,λ̃ε=0,1
2 = (0.6635, 0.7175) , respectively. The inferred

total energy eigenvalues areEε=0,1
inf = (2.5333, 10.0769) .

The corresponding TISE total energy eigenvalues are
E
ε=0,1
exact = (2.5152, 10.0147) . Fig. 1 depicts the in-

ferred pdf’s overlaid upon the TISE solution. Here, the
Maxwellian distribution corresponds toε = 0, and, dou-
ble peakedpdf corresponds to the firstexcited stateε = 1.
Note that the inferredpdf’s almost exactly coincide with the
TISE solutions.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

x

P
(x

)

Figure 1. Inferred TIS-lE pdf (dash-dots) and
exact TISE pdf (solid lines)

3 Projection Strategy

Consider M constraints dε1, ..., d
ε
M . In a discrete

setting, these are expectation values of a random variable
xi,n;n = 1, ..., N :

dεi =

N∑

n=1

pεnxi,n; i = 1, ...,M. (9)

The pdf |pε〉 ∈ ℜN is a ket, where |n〉 ;n = 1, ..., N
is the standard basis inℜN , is expressed as|pε〉 =
N∑

n=1
|n〉 〈n | pε〉 =

N∑

n=1
pεn |n〉. The ket of observable’s is

expressed as|dε〉 ∈ ℜM+1 with componentsdε1, ..., d
ε
M , 1,

and, an operatorA : ℜN → ℜM+1 given by A =
N∑

n=1
|xn〉 〈n| . Defining vectors|xn〉 ∈ ℜM+1;n = 1, ..., N

as the expansion|xn〉 =
M+1∑

i=1

|i〉 〈i | xn〉 =
M+1∑

i=1

xi,n |i〉,

where i is a basis vector inℜM+1, (9) acquires the com-
pact form

|dε〉 = A |pε〉 ;A : ℜN → ℜM+1. (10)

The physical significance of the constraint operatorA

in (10) is as follows. Inference of thepdf and the TIS-
lE pseudo-potential in (3) from physical observables is

achieved by specifyingV (x) =
M∑

i=1

λix
i. In a discrete set-

ting, xin → xi,n; i = 1, ...,M ;n = 1, ..., N . Thexi,n con-
stitute the elements of theM rows andN columns of the
operatorA, and represent the spatial elements of the TIS-
lE pseudo-potential in matrix form. The unity element in
|dε〉 ∈ ℜM+1 enforces the normalization constraint of the
probability density|pε〉.

The operatorA is independent of the host pdf, and thus,
the energy state. This may be mitigated by defining

Ãε = A+ kε |dε〉 〈I| (11)

Here,〈I| is a1×N bra, and,kε 6= −1 is a constant param-
eter introduced to adjust the condition number ofÃε, and
hence its sensitivity to perturbations. In (11), dependence
upon the hostpdf is ”injected” into the operator̃Aε by the
incorporation of|dε〉. Specifically, each element of theket

|dε〉 is defined by
N∑

n=1
pεnx

i
n; i = 1, ...,M .

Thus, (10) becomes̃Aε |pε〉 = |dε〉+ 〈kε |dε〉 〈I|〉ε. Ex-
panding〈k |dε〉 〈I|〉ε = k |dε〉 〈I| pε〉, and evoking thepdf
normalization,〈I| pε〉 = 1, yields

∣
∣
∣d̃ε

〉

= (kε + 1) |dε〉 = Ãε |pε〉 ; Ãε : ℜN → ℜM+1.

(12)
The operator̃Aε is ill-conditioned and rectangular. Thus,

(12) becomes:

|pε〉 =
(

Ãε
)−1 ∣

∣
∣d̃ε

〉

+
∣
∣
∣pε

′

〉

, (13)

where,
(

Ãε
)−1

is the pseudo-inverse [18] of̃Aε , and lies

in range
(

Ãε
)

. All necessary data dependent information

resides in
(

Ãε
)−1 ∣

∣
∣d̃ε

〉

.

The null spaceterm in (13) is of particular importance
since the code is embedded into it via unitary projections.

Here,
∣
∣
∣pε

′

〉

∈ null
(

Ãε
)

is explicitly data independent.

However, it is critically dependent on the solution method-
ology employed to solve (13). The operatorGε = Ãε†Ãε

is introduced. Here,̃Aε† is the conjugate transpose of̃Aε.
Projection of the covert information intonull (Gε) instead

of null
(

Ãε
)

, leads to increased instability of the eigen-

structure, which is exploited to increase the security of the
covert information [3, 9].



Given the operator̃Aε and the probability vector|pε〉,
whose inference is described in Section 2, the normalized
eigenvectors corresponding to the eigenvalues in thenull
spaceof Gε having value zero (zero eigenvalues) are de-
fined as|ηεn〉 ;n = 1, ..., N − (M + 1). Here,|ηεn〉, defined
as the basis ofnull (Gε), are evaluated using SVD [18]. To
introduce cryptographic keys (cryptographic primitives), an
operatorG̃ε is formed by perturbing select elements ofGε

by δGεi,j . Here,δGεi,j is a perturbation to the element in-
habiting theith row andjth column of the operatorGε.
In symmetriccryptography, only a single element ofGε

is perturbed. The security of the code may be ensured by
adopting anasymmetriccryptographic strategy. Here, more
than one element ofGε is perturbed.

The extreme sensitivity to perturbations ofGε causes the
eigenstructure ofG̃ε = Gε + δGεi,j to substantially dif-
fer from that ofGε, even for infinitesimal perturbations.
The values of|η̃εn〉 ;n = 1, ..., N − (M + 1), the basis
of null(G̃ε), are evaluated using SVD. The unitary oper-
ators of decryptionUεdec (without perturbations) and̃Uεdec
(with perturbations),Uεdec, Ũ

ε
dec : ℜN → ℜN−(M+1),

and, the corresponding encryption operatorsUεenc, Ũ
ε
enc :

ℜN−(M+1) → ℜN for theenergy stateε are

Uεdec =
N−M−1∑

n=1
|n〉 〈ηεn|;

Ũεdec =
N−M−1∑

n=1
|n〉 〈η̃εn|,

and,

Uεenc = U
ε†
dec =

N−M−1∑

n=1
|ηεn〉 〈n|;

Ũεenc = Ũ
ε†
dec =

N−M−1∑

n=1
|η̃εn〉 〈n|,

(14)

respectively.

3.1 Encryption

Given a code|qε〉 ∈ ℜN−(M+1) to be encrypted in the
energy stateε , theN − (M + 1) components are given
by 〈n | qε〉 = qεn;n = 1, ..., N − (M + 1). Thepdf of the
embedded code is:

|pεc〉 = Ũεenc |qε〉 =
N−M−1∑

n=1

|η̃εn〉 〈n | qε〉. (15)

The totalpdf comprising the hostpdf and thepdf of the
code is

|p̃ε〉 = |pε〉+ |pεc〉 . (16)

Note that since|pεc〉 ∈ null
(

Ãε
)

, Ãε |pεc〉 = 0 .

3.2 Transmission

Information may be transferred from the encrypter to the
decrypter in two separate manners , via apublic channel.
The first mode is to transmit the constraint operatorsÃε

and the totalpdf’s |p̃ε〉. An alternate mode is to transmit
the LM’s obtained on solving theFisher game(Section 2),
and, the totalpdf’s |p̃ε〉. Owing to the large dimensions of
the constraint operators̃Aε, the latter transmission strategy
is more attractive.

The values of parameterskε for eachenergy state, and,
the cryptography key/keys are transmitted through ase-
cure/covert channel. The cryptographic primitives are la-
beled in order to identify the elements of the operatorGε

that are perturbed. In the case ofasymmetriccryptography,
some of the keys may be declared public, while keeping
the remainder private [4].Asymmetriccryptography pro-
vides greatly enhanced security to the covert information,
and, provides protection against attacks, such asplaintext
attacks[3, 4, 9].

3.3 Decryption

The decrypter and encrypter have ana-priori ”agree-
ment” concerning the nature of TIS-lE pseudo-potential,
and, the number ofenergy states. The legitimate receiver
recovers the key/keysδGεi,j and the parameterkε from the

covert channel. The operatorsÃε , Gε , and, G̃ε are
constructed. The hostpdf may be recovered in two dis-
tinct manners, depending upon the transmission strategy
employed. Note that both methods to reconstruct the host
pdf require the totalpdf p̃ε to be provided by the encrypter.
First, the scaled incomplete constraints, defined in (12), are

obtained by solving〈i| Ãε |p̃ε〉 =
∣
∣
∣d̃ε

〉

. Here, i is a

basis vector inℜM+1 . This procedure is possible because

|pεc〉 ∈ null
(

Ãε
)

. Thus, Ãε |pεc〉 = 0 . The hostpdf are

then computed for eachenergy stateby solving theFisher
game, using the re-scaled set of incomplete constraints. Al-
ternatively, the hostpdf may be obtained by solving the
TIS-lE (3) as an eigenvalue problem, given the values of
the LM’s λεi ; i = 1, ...,M , and, the event space (Section
2). Both methods allow the reconstructed hostpdf’s to be
obtained with a high degree of precision. The codepdf is
recovered using

|pεrc〉 =
∣
∣p̃ε

〉
− |pε〉 . (17)

The encrypted code is recovered by the operation

|qεr〉 = Ũεdec |pεrc〉 =
N−M−1∑

n=1

|n〉 〈η̃εn | pεrc〉 (18)



The thresholds for the cryptographic keys is accom-
plished by the designer, who performs a simultaneous en-
cryption/decryption without effecting perturbations to the
operatorGε. The hostpdf’s are inferred from theFisher
game. The code|qε〉 having dimensionN − (M + 1) is
formed. The designer implements (15)-(18) for eachen-
ergy stateε. The threshold for the cryptographic key/keys
is δε = ‖|qε〉 − |qεr〉‖. Hardware independence is demon-
strated by performing the encryption on an IBM RS-6000
workstation cluster, and, decryption on an IBM Thinkpad
running MATLAB v 7.01. The encryption/decryption strat-
egy is critically dependent upon the exact compatibility of
the routines to calculate the basis|η̃εn〉 and the eigenvalue
solvers, available to the encrypter and decrypter.

4 Numerical Examples

The encryption/decryption strategy is tested using the
energy statedependent model vis-á-vis anenergy statein-
dependent model [9], for the case ofasymmetriccryptog-
raphy. These are characterized by the constraint operators
Ãε (described in (11) and (12)) forkε=0,1 = −0.1, and,
A (described in (10)), respectively. Theenergy stateinde-
pendent model corresponds to the ground state Maxwellian
distribution.

A random number generator generates code in[0, 1].
Two identicalketsof the code having dimensionN − (M +
1) = 198 are created for projection into thenull spacesof
the energy statedependent operators̃Gε=0,1, respectively.
This ”emulates” the selective projection of a code compris-
ing of a singleket of dimension396, into the twoenergy
stateof null(G̃ε. For theenergy stateindependent oper-
ator null(G̃), only a singleket is projected. The crypto-
graphic primitives areδG1,3 = δG̃

ε=0,1
1,3 = 3.0e − 013

and δG2,7 = δG̃
ε=0,1
2,7 = 7.0e − 013, respectively. All

numerical examples in have a threshold for perturbations
δε ∼ 2.0e − 014. The condition numbers,cond (•) of the
constraint operatorsA and Ãε provides a measure of the
sensitivity to perturbations of the operatorsG = A†A and
Gε.

Values ofcond(A), cond(Ãε=0), and,cond(Ãε=1) are
3.73048, 3.41742, and, 3.37888 , respectively. Going
by conventional logic, theenergy stateindependent model
should afford greater security to the covert information, ow-
ing to the greater value ofcond(A), vis-á-viscond(Ãε=0,1).
Numerical simulations reveal a dichotomy in this regard.

A more relevant metric of the extreme sensitivity of
null (Gε) to perturbations, induced by the cryptographic
keys δGεi,j , is the distortion of the codepdf

∣
∣pεc,unpert

〉
.

Here,
∣
∣pεc,unpert

〉
is evaluated from (15), usingηεn (the un-

perturbed basis ofnull (Gε)). The distorted codepdf is
|p̃εc〉, which is calculated from (15) using̃ηεn (the perturbed

basis ofnull
(

G̃ε
)

), as described in Section 3.1.

For theenergy statedependent model, theRMS error
of encryptionis defined as:RMSεenc =

‖errεenc‖√
length(errεenc)

.

Here, ‖|errεenc〉‖ =
∥
∥
(
|pεc〉 −

∣
∣pεc,unpert

〉)∥
∥ , and,

length (|errεenc〉) is the dimension of
(
|pεc〉 −

∣
∣pεc,unpert

〉)
.

A further quantitative metric of the degree of se-
curity of the encrypted code is the RMS error of
reconstruction between the embedded code and the
code reconstructed without the keys. For theen-
ergy state dependent model, this is:RMSεrecon =
‖|errεrecon〉‖/length (|errεrecon〉); ‖|err

ε
recon〉‖ =

‖|q〉 − |qr1〉‖ . Here, RMSεrecon provides a measure
of the error of recovery of the code by anunauthorized
eavesdropperwho does not possess the keysδGεi,j , but,
possesses the totalpdf and the codepdf. Such attackers
are known assemi-honest adversaries, since no attempt is
made to distort the information transmitted via the public
channel. In this case, the reconstructed code becomes

|qεr1〉 =
N−M−1∑

n=1
|n〉 〈ηεn | pεrc〉 .

For theenergy stateindependent model, the values of
RMSenc = 0.79869 andRMSrecon = 0.81302. The
corresponding values for theenergy statedependent model
areRMSε=0,1

enc = (0.83878, 0.89651), and,RMSε=0,1
recon =

0.84596, 0.88931, respectively. The higher values of the
RMSεenc for theenergy statedependent model explains the
vastly enhanced degree of security it provides by demon-
strating a greater value ofRMSεrecon, despite the value of
cond(Ãε) being less thancond(A). Simulations results for
select values for the case of theenergy stateindependent
and dependent models are described in Table 1 and Table
2, respectively. The reconstructed codewith the keys is ex-
actly similar to the original code.On the other hand, the
code reconstructed without the keys bears no resemblance
to the original code. The highly oscillatory nature of the to-
tal pdf (16) for theenergy statedependent model depicted
in Fig. 2, demonstrates the extreme instability of the statis-
tical coding process.

5 Ongoing Work

The Fisher game has been extended to multi-
dimensional and temporal cases. The model presented
herein is in the process of being amalgamated with existing
quantum key distribution protocols [19], to yield a hybrid
statistical/quantum mechanical cryptosystem. Such a hy-
brid cryptosystem mitigates the current limitations of quan-
tum channels to transmit large amounts of data. Acovert
quantum key distribution protocol may be utilized for the
secure delivery of the cryptographic primitives (theδGεi,j).
Finally, the statistical encryption/decryption strategyhas



been modified to perform privacy protection in statistical
databases. These results will be published elsewhere.

Table 1. Energy State Independent Model
|q〉 = |qr〉 |qr1〉

0.23813682639005 -0.00668168344388
0.69913526160795 0.20008072567388
0.27379424177629 -0.14186802540956
0.90226539453884 0.36853370671177

Table 2. Energy State Dependent Model

|qε〉 = |qεr〉 |qεr1〉

ε = 0 Zero-energy/ground state
0.23813682639005 -0.26776249759842
0.69913526160795 0.77862610842042
0.27379424177629 -1.16636783859136
0.90226539453884 0.02881517541356

ε = 1 First excited state
0.23813682639005 1.25161826270042
0.69913526160795 -3.255410114151938e-005
0.27379424177629 -0.11041660156776
0.90226539453884 0.61665920565232
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