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Abstract. The Lemke—Howson algorithm is the classical algorithm for the problem NASH of finding
one Nash equilibrium of a bimatrix game. It provides a constructive, elementary proof of existence of
an equilibrium, by a typical “directed parity argument”, which puts NASH into the complexity class
PPAD. This paper presents a class of bimatrix games for which the Lemke—Howson algorithm takes,
even in thebestcase exponentiatime in the dimensionl of the game, requiring)((83/4)4) many

steps, wher® is the Golden Ratio. The “parity argument” for NASH is thus explicitly shown to be
inefficient. The games are constructed using pairs of dual cyclic polytope2itluitably labeled

facets ind-space.

1 Introduction

Note: This paper is directed at theoretical computer scientists, so this introduction empha-
sizes aspects of computational complexity. Our geometric construction of certain bimatrix
games in the subsequent sections should be accessible to any game theorist.

Game theory is the formal study of conflict and cooperation. In computer science, game
theory has attracted recent interest for economic aspects of the internet, such as electronic
commerce, selfish routing in networks [28], and algorithmic mechanism design [23]. In
complexity theory, game-theoretic ideas are basic for proving lower bounds for randomized
algorithms [36] and in the competitive analysis of online algorithms [2].

*Rahul Savani is supported by an EPSRC doctoral grant. We thank the participants of the Bellairs Workshop
on “Polytopes, Games, and Matroids” in Barbados in March 2003, in particular the organizer, Komei Fukuda,
and Walter Morris anddrg Rambau, for stimulating discussions and comments.

fThis paper supersedes the earlier report LSE-CDAM-2003-14, “Long Lemke—Howson Paths”, which is
obsolete.



A bimatrix gamds a two-player game in strategic form, a basic model in non-coopera-
tive game theory. The strategic form is specified by a finite set of “pure” strategies for each
player, and a (for simplicity of input, integer) payoff for each player for estcdtegy profile
(which is a tuple of strategies, one for each player). The game is played by each player in-
dependently and simultaneously choosing one strategy, whereupon the players receive their
respective payoffs. A player is allowed to randomize according to a probability distribution
on his pure strategy set, which definesixed strategyor that player. Players are then in-
terested in maximizing their expected payoffsNash equilibriums a profile of (possibly
mixed) strategies such that no player can gain by unilaterally choosing a different strategy,
where the other strategies in the profile are kept fixed. Every game has at least one equilib-
rium in mixed strategies [22]. For two players, the game is specified byniwon integer
matricesA andB, where them rows are the pure strategiesf player 1 and thex columns
the pure strategigisof player 2, with resulting matrix entrias; andb;; as payoffs to player
1 and 2, respectively. This is called a bimatrix gaiAe B).

A classic open problem is the complexity of the problem NASH of finding one Nash
equilibrium of a bimatrix game. For the special case of zero-sum games, which are bimatrix
gameg A, —A), this problem generalizes linear programming, but in general is not known to
be polynomial. Together with factoring, NASH has been called “the most important concrete
open guestion on the boundary of P today” [26]. A standard method for finding one Nash
equilibrium of a bimatrix game is theemke—HowsoilLH) algorithm [14]. In this paper,
we present a class of games where this algorithm is exponential. The LH algorithm is a
pivoting method related to the simplex algorithm for linear programming [4], which also has
worst-case exponential behavior [13]. Our games show that evdretitecasdehavior of
the LH algorithm can be exponential, fany choice of its free parameter (the first variable
“to enter the basis”). To our knowledge, these are the first examples of this kind. Finding
a Nash equilibrium in sub-exponential time must therefore go beyond this classic pivoting
approach.

Exponentially long paths for finding solutions to a a linear complementarity problem
(LCP) are described in [21][9]. Although Nash equilibria are solutions to certain LCPs,
bimatrix games do not define the LCPs studied in these papers.

NASH belongs to the complexity class TENP of total function problems in NP [25,
p. 229]: With the bimatrix game as input, the required output is a pair of mixed strategies
(as the decision problem whether an equilibrium exists is trivial); due to Lemma 1 (of [22])
below, the mixed strategy probabilities are rational numbers of polynomial length as they
solve certain linear equations, and the equilibrium property is verified in polynomial time.
The class TFNP does not have complete problems unless=Néb-NP [19] (almost by
definition, the TFNP-version of SAT, which for a SAT-formula produces a satisfying truth
assignment if one exists or else the answer “no”, when reduced to a TFNP-complete problem,
would give a problem that is both NP- and co-NP-complete).



More specifically, NASH belongs to the subclass of TFNP call PPAD, of problems
with a parity argument for directed graphs [24, p. 516]. The parity argument states that a
directed graph (defined implicitly), where the indegree and outdegree of every node is at
most one, consists of cycles and directed paths, so that there are as many starting points as
endpoints of these paths. An instance of a problem in PPAD is specified by a polynomial-
time algorithm for finding at least one starting point, and for finding the neighbor of a point
in the graph or else declaring it as an endpoint. The possible endpoints (of which at least one
exists) are the allowed function values. The LH algorithm is a special case. It uses a trivial
artificial equilibrium as starting point, and a freely chosen starting edge, and then a unique
“complementary” pivoting rule for determining a next “basic solution”. It thereby traces the
vertices of a certain polytope and ends at an equilibrium. The edges of the graph are directed
(so the direction of the path can be determined even without knowing the past history) by a
geometric orientation [29]; see also Figure 1 below. The parity argument may be inefficient if
the paths are not of polynomial length. Our paper shows explicitly that this inefficiency may
occur for NASH, by giving games that produce exponentially long Lemke—Howson paths.

A related question is if NASH may be complete for the class PPAD. This seems to
require encoding an arbitrary polynomial-time Turing machine computation into comple-
mentary pivoting steps for polynomial-sized payoff matrices, which looks difficult.

Unlike the set of solutions to a linear program, or equivalently [4, p. 290] of equilibria
of a zero-sum game, the set of Nash equilibria of a general bimatrix game is not convex.
Thus, NASH cannot be approached in an obvious way by interior point methods. Moreover,
the set of all Nash equilibria is computationally “hard” in the sense that various associated
decision problems are NP-complete, e.g. if the game has only one Nash equilibrium, or one
with a certain support size, or with a player’s payoff above a given bound [7l(thport
of a mixed strategy is the set of pure strategies that have positive probability). Therefore,
any method for finding one Nash equilibrium, e.g. by divide-and-conquer or incrementally
(which is not obvious at any rate) must be weaker than characterizing the set of all equilibria
in the end, if such a method is to be polynomial (unless RP).

The games that we construct are hard to solve for the LH algorithm. Unfortunately,
it is easy to guess the support of the equilibrium, and thereby find it, since the only Nash
equilibrium of our games is fully mixed. A next step in the construction, which we have not
yet done, would thus be toide the equilibrium support so that it is no longer the set of all
pure strategies.

Equilibrium enumeration methods (see [33], [35], [10], [1] and the survey in [31]) can
be modified to terminate once the first equilibrium is found, and would have to be tested on
our games as well. These methods are designed to produce all rather than just one equilib-
rium, which cannot even be polynomial in thatputsize (unless P= NP), since deciding if
a game has only one Nash equilibrium is NP-complete ([7], see above). There is no a priori
reason to assume that these methods are good for finding just one equilibrium. Similarly,

3



general algorithms for finding equilibria in games with any number of players are not likely
to be fast. These include path-following algorithms [6], which typically specialize to piv-
oting in the two-player case (for a generalization of LH to more than two players see [27],
[34]), and algorithms for approximating fixed points [17][24].

Finding ane-approximatesquilibrium (see e.g. [16]) is a different problem than NASH.
In our games, all points on the LH path fulfill the equilibrium condition except for one pure
strategy, and it is possible that the payoff “error” for that strategy goes beliter a small
number of steps; we have not investigated this. Similarly, a pivoting method implemented
in floating-point arithmetic may quickly and erroneously produce an “equilibrium” due to
rounding errors. Numerical problems arise since our payoffs are derived from the moment
curve, which leads to ill-conditioned matrices. Working implementations of the LH algo-
rithm use exact integer arithmetic [32].

Our work is most closely related to that of Morris [20], who used dual cyclic polytopes
to produce exponentially long paths, called “Lemke” paths in [20], for a related method.
As we will explain in Section 2, this can be interpreted as the LH method for finding a
symmetrieequilibrium of a symmetric bimatrix game. However, these games have additional
non-symmetric equilibria that are found very quickly by the general LH algorithm, and are
therefore not useful for our purpose. Morris showed that Lemke paths cannot be used to
address the Hirsch conjecture [12]. This famous conjecture states a tight linear bound on the
shortest path between any two vertices of a polytope, for which the best known bounds are
not even polynomial [11]. Avolynomialpivoting algorithm for NASH (or even for finding a
symmetric Nash equilibrium of a symmetric game, using the symmetrization in (2) below),
applied to zero-sum games, would answer that question as well.

Section 3 describes our construction. The LH paths are defined purely combinatorially
in terms of the supports of, and best responses to, the mixed strategies that it traces. These
correspond to known bit patterns that encode the vertices of dual cyclic polytopes, which are
one of the few classes of polytopes whose face structure is known in arbitrary dimension.
Linear recurrences for the various path lengths give rise to their exponential growth. The
longest path lengths are given by every third Fibonacci number, growingadth for a
d x d game, wherd is the Golden Ratio. Shorter path lengths are obtained by certain sums
of these, the shortest length beifif934/4).

Section 4 concludes with open problems.

2 Games, polytopes, and the Lemke—Howson algorithm

Given a bimatrix gaméA, B) with m x n payoff matricesA and B, a mixed strategy for
player 1 is a vectox in R™ with nonnegative components that sum to one, and a mixed
strategy for player 2 a similar vectgrin R™. All vectors are column vectors; the row vector
corresponding ta is written as the transpose . The support of a mixed strategy is the set
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of pure strategies that have positive probabilitybést responsto y is a mixed strategy

of player 1 that maximizes his expected payoffAy, and a best response tois a mixed
strategyy of player 2 that maximizes her expected payoffBy. A Nash equilibrium is a
pair of mutual best responses, that is, a mixed strategy(paif) so thatx' Ay > x' Ay
andx'By > x ' By for all other mixed strategies andy. Best responses are characterized
by the following combinatorial condition, which we state only for a mixed strategyf
player 1.

Lemma 1l [22] Letx andy be mixed strategies of player 1 and 2, respectively. Then
a best response tg if and only if all strategies in the support afare pure best responses
toy.

Proof. Let (Ay); be theith component ofAy, which is the expected payoff to player 1
when playing rowi. Letu = max(Ay);. Then

x'Ay =) xi(Ayli=u—) xi(u—(Ay)).

Since the sund_, x;(u — (Ay);) is nonnegativex' Ay < u. The expected payoft' Ay
achieves the maximum if and only if that sum is zero, that is, ¥ > 0 implies(Ay); = u,
as claimed. ]

A game(A, B) issymmetrigf A = B, so it does not change when the players change

roles. The game of “chicken” witA = BT = (i ?) is an example. Its equilibria, in terms

of probability vectors, are the bottom left pure strategy &, 1)7, (1,0)") with payoffs

4,2 to players 1,2, the top right pure strategy p@(i‘r,O)T, (0,1 )T) with payoffs2,4, and

the mixed strategy paif(1/3,2/3)T, (1/3,2/3)T) with payoffs2,2. The mixed strategy
equilibrium is the only symmetric equilibrium. Its probabilities are uniquely determined by
the condition that the pure strategies in the support of the opponent’s strategy must both be
best responses (by Lemma 1) and hence have equal expected payoff.

In a mixed equilibrium, the probabilities are uniquely given by the pair of supports if the
corresponding sub-matrices have full rank; the support sizes are then equal. This holds if the
game isnondegeneratalefined by the property that the number of pure best reponses to any
mixed strategy never exceeds the size of its support (see [31] for a detailed discussion). Even
in a degenerate bimatrix game, any Nash equilibrium is a convex combination of extreme
equilibria [35][10], which are also determined by linear equalities. The LH algorithm can be
extended to degenerate games by standard lexicographic perturbation techniques [14][31].
All games considered here are nondegenerate.

By Lemma 1, an equilibrium is given if any pure strategy of a player is either a best
response (to the opponent) or is played with probability zero (by the player himself). This
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can be captured by polytopes [37][8] whose facets represent pure strategies, either as best re-
sponses or having probability zero. We explain first the simpler case of symmetric equilibria
of a symmetric game witld x d payoff matrixC to player 1, say. Let

S={zeR%|z>0, Cz<1)} (2)

where0 and1 denote vectors with all entries 0 and 1, respectively, and inequalities holding
for all components. We can assume tfiais nonnegative and has no zero colubyadding

a constant to all payoffs, which does not change the best response structure, so that the poly-
hedronS is bounded and thus a polytope. We assume there are no redundant inequalities
in Cz < 1, which would correspond to dominated strategies [31]. Then the game is nonde-
generate if and only if the polytopgeis simple that is, every vertex lies on exacttlyfacets

of the polytope [37][8]. A facet is obtained by making one of the inequalities defining the
polytopebinding that is, by converting it into an equality.

Lemma 2 [33] A mixed strategy paifx,y) is a symmetric Nash equilibrium of the game
(C,CT)ifandonlyifx =y =u-zandz € Sin(1),z # 0, u = 1/) ,z, and
z" (1— Cz) = 0, wherez must be a vertex & by nondegeneracy.

Proof. Letze S,z# 0andu =1/} . z. Thenu > 0, andu-z is a mixed strategy. The
conditionCz < 1 is equivalent toCx < 1u. The orthogonality conditior’ (1 — Cz) = 0

is equivalent tox" (1u — Cx) = 0, so that for each positive componeqtof x (of which
there is at least one}Cx); = u = max(Cx)x. Thus, by Lemma 1x is a best response
to itself, that is,(x, x) is a symmetric equilibrium. Conversely, any such equilibri(xnx)
with u = max(Cx)x, which is positive, and = 1/u - x, gives a vector with the stated
properties.

The vectorz is on d facets ofS since for each, eitherz; = 0 or (Cz); = 1. If z
was not a vertex but on a higher-dimensional facé odny vertex of that face would be on
additional facets, contradicting nondegeneracy of the ganSevasuld then not be a simple
polytope. O

In the game of chicken above,= (1/6,1/3)" gives the symmetric equilibrium. The
vectorz has to be re-scaled to become a mixed strateg¥he equilibrium payoffu, nor-
malized to 1 inCz < 1, is the scaling factor. The converse mapping frono z defines a
projective transformation of a polyhedron representing the upper envelope of expected pay-
offs to the polytopeS [31].

The conditions in Lemma 2 define an LCP [3], usually stated as:fisal that
z>0, q+Mz >0, z'(q+Mz) =0,

here with datavl = —C, q = 1. This LCP has a trivial solutiom = 0, which is not a Nash
equilibrium. Howeverz = 0 is anatrtificial equilibriumwhich is the starting point of the LH
algorithm (in our first version for symmetric games, giving what [20] calls “Lemke paths”).
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It is useful tolabelthe facets ofS [29]. For each pure stratedy the facets defined by
z; = 0 and by(Cz); = 1 both get label. Every vertex has the label of the facets it lies
on. The complementarity conditiarl (1— Cz) = 0 then means that is completely labeled
(has all labelsl), since then each is either not played or a best response, as required in
equilibrium. SinceS is simple, such a completely labeled vertex has each label exactly once.

The LH algorithm is started from the completely labeled vertex 0 by choosing one
label k that isdropped meaning that labek is no longer required. This is the only free
choice of the algorithm, which from then on proceeds in a unique manner. By leaving the
facet with labelk, a unique edge is traversed whose endpoint is another vertex, which lies on
a new facet. The label, sayof that facet is said to p@icked up If this is the missing labet,
the algorithm terminates at a completely labeled vertex. Othenyiseclearly duplicate
and the next edge is (uniquely) chosen by leaving the facet that so far had,|apel the
process repeated. The LH method generates a sequemkealwiost complementamdges
and vertices (having all labels except possiblywherek occurs only at the starting point
and endpoint). The resulting path cannot repeat a vertex as this would offer a second way
to proceed when that vertex is first encountered, which is not the case &iscgmple).
Hence, it terminates at a Nash equilibrium.

FIGURE 1

This is illustrated in Figure 1 for dimension 3. Pogis completely labeled, being
adjacent to facets with labels 2,3. Dropping labell, it proceeds to poinb picking up
label 2, now duplicate. The next point swith duplicate labeB, and finallyd where the
missing labell is picked up, which terminates the path.

As in the simplex algorithm [4], edge traversal is implemented algebraicalfyivmt-
ing with variables entering and leaving a basis, the nonbasic variables representing the facets.
The only difference is the rule for choosing the next entering variable, which in linear pro-
gramming is done such as to improve the objective function. Here, it isdimplementary
pivotingrule where the nonbasic variable with duplicate label enters the basis.

Furthermore, the path is directed, giving a “directed parity argument” [24] which puts
the problem in the class PPAD, rather than just in PPA. In Figure 1, the startinggoint
has anorientation with the labelsl, 2, 3 in clockwise order. When labdl is dropped, the
remaining labels keep their orientation (in one dimension less) relative to the edges of the
path. In Figure 1, label is always to the left and labél always to the right of the edge. At
the endpoint of the path, the missing label is picked up at the other end of the edge, so that
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the orientation of that vertex is opposite to that of the starting vertex of the path; in Figure 1,
point d has labelsl, 2,3 in anticlockwise order. This generalizes to higher dimensions,
where orientation is defined as the sign of a certain determinant. The endpoints of any LH
path have opposite orientation, which leads taalex theoryof equilibria [29][6]. Knowing

the orientation of the artificial equilibrium, the orientation of dmalmost complementary
edge can be determined directly, which gives the PPAD property.

For nonsymmetric bimatrix gamesa., B), or even for finding nonsymmetric equilibria
of symmetric games as in the game of “chicken” above, the LH algorithm is applied as
follows, which is its standard form. Let

() 2D

The polytopeS of dimensiond = m + n in (1) is then theproductP x Q of the polytopes
P={xeR™[x>0, B'x<1}, Q={yeR"|Ay<1 y=>0}. (3)

Any Nash equilibrium(x,y) of (A, B) is again given by " (1—Cz) = 0, which is equivalent
tox'(1—Ay)=0andy'(1—B"x) = 0. These conditions state thatis a best response
toy and vice versa, whereandy have to be normalized to represent mixed strategies. The
only difference to Lemma 2 is that this normalization has to be done separatelafaty,
rather than for the entire vectar It is easy to see that in equilibriusn= 0 if and only if

y = 0, where(0, 0) is the artificial equilibrium.

The LH algorithm is then applied as before, where a label corresponds either to a strat-
egy i of player 1 or a strategy of player 2. These have to be distinct, so it is convenient to
number then strategies of player 2 aa + 1, ..., m + n, as suggested in [29]. A duplicate
label then represents a pure strategy that has both probability zero and is a best response. If
this is a strategy of player 1, for example, it determines the faget= 0 in P or (Ay); =1
in Q, corresponding to the respectivgh inequality in (3).

The LH path on the edges 6f= P x Q is a subgraph of thproduct graphof the edge
graphs ofP andQ. This means that edges are alternately travers®dand Q, keeping the
vertex in the other polytope fixed. A duplicate label picked u@iis dropped inP and vice
versa. This is the standard view of the LH algorithm; for further details see [31].

3 Lemke—Howson on labeled dual cyclic polytopes

We construct square games withh = n = d strategies for each player. Similar to [30],
these are derived frordual cyclic polytopeg37][8] in dimensiond with 2d facets. A
standard way of obtaining a cyclic polytof in dimensiond with 2d vertices is to take
the convex hull o2d pointsp(t;) on themoment curver: t — (t,t%,...,t9) " for1 <i <



2d. However, the polytopes in (3) are defined by inequalities and not as the convex hull of
points. In the dual of a polytope, its vertices are re-interpreted as normal vectors of facets.
The polytopeP’ is first translated so that it has the originin its interior, for example by
subtracting the arithmetic meanof the pointsy(t;) from each such point. The resulting
vectorsc; = u(t;) — 1 then define the dual cyclic polytope

P'={zeR%c¢/z<1,1<i<2d}

A vertexu of such a polytope is characterized by a bitstrina, - - - u,4 of length2d, with
the kth bit w, indicating whethen is on thekth facet (v, = 1) or not (w, = 0). The
polytope is simple, so exactly bits arel, the otherd bits are0. Assume that; < t; <
-++ < ty4 When defining thékth facet of P” by the binding inequalityf(ty) — ®)z < 1.
Then the vertices oP” are characterized by th& 1 strings fulfilling the Gale evenness
condition [5]: A bitstring represents a vertex if and only if any substring of the form - 10
has even length, bl 10, 011110, etc., is allowed, but ndt10, 01110, and so on. A maximal
substring ofl’s is called arun. We only consideevendimensiond, where the allowed odd
runs of1’s at both ends of the string can be glued together to form an even run, which shows
the cyclic symmetry of the Gale evenness condition. Gétl) be the set of these Gale
evenness bitstrings of leng#hl with d ones.

Both P andQ in (3) will be dual cyclic polytopes with a special order of their inequal-
ities corresponding to the facet labels. A suitable affine transformation [30, p. 560]Rjives
from P/, andQ in a similar manner, so that the firdtinequalities (for the pure strategies of
player 1) inP have the fornx > 0, and the second inequalities (for the pure strategies of
player 2) inQ arey > 0. The remainingd inequalitiesB'x < 1in P andAy < 1in Q
then determine the gamd , B). For further details of the construction see Appendix A. The
game data is of polynomial size ih (so the running time of an algorithm is polynomial in
the size of the game if and only if it is polynomial &).

The equilibrium condition and the LH algorithm depend on which facets a vertex be-
longs to, as encoded in the Gale evenness bitstringg i), and on the facet labels. These
are defined by permutationsandl’ of 1,...,2d for P andQ, respectively. For a vertex
of P, which we identify with its bitstring inG(d), its labels are given bi(k) whereuw, =1,
and the labels of a vertexof Q arel’(k) wherev, =1, for 1 < k < 2d. Thekth facet
of P (corresponding to th&th position in a bitstring) has labélk) = k, sol is simply the
identity permutation. Théth facet ofQ has labell’(k). The permutatioi’ has the fixed
pointsl’(1) = 1 andl’(d) = d, and otherwise exchanges adjacent numbers, as follows:

K, k=14,
V(k)=<k+(=1)k 2<k<d-1, (4)
k—(=1)¥% d+1<k<2d.



The artificial equilibriume, is a vertex pairfu,v) so thatu is labeled with1, ... d andv
with d+1,...,2d. Interms of bitstringsy = 140¢ (which ared ones followed byd zeros)
andv = 0414, which both fulfill Gale evenness, and have the indicated labels Urateil’,
respectively, so that

eo = (1904,0419) € G(d) x G(d). (5)

A similar Nash equilibriune; is readily identified, which has full support.
Lemma 3 Lete; = (0414,1404). This is the only Nash equilibrium of the game.

Proof. Let (u,v) be acompletely labeled vertex pair, and supposeuthat 1. If ug; =1,
thenvy = 0 andvg,, = 0 (via complementarity, sincé(d + 1) = d + 2) sovgy; = 0 by
Gale evenness, and thug,, = 1. Continuing in that way, alll’s to the right of thedth
bit u4q of u (which is 1) have to come in pairs. Similarly, iy ; = 1, thenvyg , = 0 by
complementarity, which witlvy = 0 impliesvy4 1 = 0. This means that th&’s to the left
of uq come in pairs if there is a zero to the left of them. In the latter case, the ruis of
containinguy has odd length, so it must include, but then is too long. Hence, the only
possibility whereuy = 1 is when(u,v) = ey. Similarly, uq = 0 implies (u,v) =e;. O

Hence, all LH paths, for any dropped label, lead fregto e;. Denote byr(d, k) the
path when labek is dropped in dimensiod, regarded as a sequen@€,v°) (u',v!) ---
(ul, vt) of vertex pairs inP x Q, that is, inG(d) x G(d), and letL(d, k) = L be the length
of that path.

12345678 13246587 12345678 13246587
11110000 00001111

10001101
01111000

10011001
01101100

10110001
00111100

11100001
00011110 11110000
00001111

FIGURE 2 FIGURE 3

As an example, Figure 2 showd4, 8), with P on the left andQ on the right. The
numbers at the top are the lab&lk) andl’(k) for k = 1,...,8. The starting poing, is the
vertex pairep = (u,v) = (11110000,00001111). We first drop labeB in Q, so the bitv,
(sincel’(7) = 8) changes fron to 0, which by Gale evenness gives the bit strifg01101
as the new vertex’ in Q. In Figure 2,u is connected to both andv’ by a sloped line.
These sloped lines (forming the middle zigzag path) indicate the vertex pairs on the LH path,
which we use since in each step only one vertex changes but the other stays fixéd. In
label 1 has been picked up, which is now duplicate and droppdd miving the next vertex
01111000. The new duplicate label i§ and in the next step dropped @, giving vertex
10011001. In that manner, the path proceeds until it ende;at
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All paths can be expressed in terms of the two special patds1) and 7t(d, 2d).
These have certain symmetries.

Lemma4 LetL = L(d, 1) and let(u!,vi) be theith vertex pair of the pati(d,1). Then
for0 <i<L, (ut,vt) = (Wbt ubt),

Proof. The particular names of the labels do not matter, so we can re-name them fé& both
andQ with the permutation’ in (4), thekth facet inP getting labell’(1(k)), whichisl’(k),

and inQ labell’(1'(k)), which isl(k). But thenP andQ switch rolese, is exchanged with

e, label1 stays the same, and the path backwards correspondslid) itself as claimed.
Examples are Figures 5, 7, 10 far= 2,4, 6 in Appendix B. ]

For the pathr(d, 2d), we disregard the first vertex pair and the last two vertex pairs.
The remaining path, which will caB(d), is point-symmetric in each polytope, by reversing
the bitstrings while ignoring the zero bit for the missing label. Figure 3 shows this fert
where the disregarded rows and columns are struck out. Examples are Figures 6, 9, 11, 12
for d = 2,4,6,8 in Appendix B.

Lemmab5 LetL = L(d,2d) and let(u!,vt) be theith vertex pair of the pathr(d, 2d) for
0<i<L=1L(d,2d). Thenforl <i<L-2,

= ub (1<k<2d-1), (6)
vi = v t=1, (7)
vio= VT (2<k<2d-2), (8)
uiZd = Vizcm =0. ()]

In (u',v"), the duplicate label id, which is then dropped iR, and never picked up again.

Proof. An example for the following arguments is provided by Figure 2. Equation (9) holds
because labeld is missing for alii = 1,...,L — 2. After one step ont(d, 2d), the vertex
pair
(u', v = (1904, 1041147201) (10)
is reached. The duplicate labelliswhich has been picked up @, and will next be dropped
in P from u!. The last vertex pair oft(d, 2d) is (ut,vt) = e{. This is reached by picking
up label2d in P. The previous vertex pair is therefofa™' vi=1) = (09-1140, 19409),
where labeld is duplicate. The vertex paju'—2,v—2) is therefore

(uLfZ’vaZ) — (Odf]]do) ]d710d~|)’ (11)
with duplicate labeld — 1. This vertex pair is reached from

(uF=3 vE3) = (09721900, 19-1041) (12)
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by picking up this labeRd — 1 in P. Equations (10) and (11) describe the starting vertex
pair (u',v') and ending vertex paiu'—2,v-—2) of the pathB(d).

The mapping defined byr(k) =2d—kfor 1 <k < 2d-—1, andr(2d) = 2d, serves
as a relabeling to prove the claimed symmetnB6d). Equation (6) is equivalent to

U =up) o (1<k<2d-1). (13)

We will show shortly that (7) and (8) together are essentially equivalent to the equations,
similar to (13),

Vi =Vigny  (1<k<2d-1). (14)
When labelk is dropped inQ from v, then the bilv} in positionj so thatl’(j) = k changes
from one to zero. Sinct¥ is its own inversej = 1'(k). So, (14) has to be read as: the bit of
vertexv' in positionl’(k), which has labek, is equal to the bit of vertex" '~ in position
V(r(k)), which has labet (k).

In addition to the two equations (13) and (14), we will show by inductioni orf
label k is duplicate in the vertex paifu',v'), then labelr(k) is duplicate in the vertex
pair (u—""t v:=1-4) and when labek is dropped in one polytopeP(or Q) going from
(ub,vi) to (utt!, vit1), then labelr(k) is dropped in the same polytope going backwards
from (uLflfi,valfi) to (uLfoi)VLfoi)_

Equations (10) and (11) show that (13) holds fo 1, and the duplicate label is
in (u',v') andr(1) in (uF-2,v+2). Wheni is odd, then in the step frorut,v) to
(u™*1 vi*1) the duplicate label is dropped i, andv: = vi*'. Similarly, the backwards
step from(ut—'—1 V=11 to (ul—271 vi=271) is also done by dropping the label i If
in these two steps, the duplicate labels &rand r(k), respectively, then (13) also holds
for i + 1 instead ofi, because preserves the Gale evenness conditioms(a reversal of
the bitstrings and cyclic shift by one position), so the vertioésand u**' are joined by
an edge inP if and only if Ut andu2~* are joined by an edge (defined by the same
labels, using the relabeling in P. Moreover, a new label, say/, is picked up inP which
is the duplicate label of the vertex paitt*', vi*1), and the duplicate label in the vertex pair
(ut—2-t vI=274) is thenr(k’). This shows the inductive step froirto i + 1 wheni is odd.

We now consideK). The set{2,3,...,2d — 2} is mapped to itself under bothand
1’ defined in (4); note that both bijections mdpto itself. It is then easy to see that (8) is
equivalent to (14) fo2 < k < 2d — 2. Fork = 1, we havel’(k) = 1 andl'(r(k)) = 2d,
so (14) fork = 1 (or k = 2d — 1, which gives the same equation) follows from (7); we will
prove the stronger assertion (7).

As inductive hypothesis, assume that for soinequations (7), (13), and (14) hold;
moreover, that the duplicate labelkisand dropped fronv' in Q (that is,i is even), and that
the duplicate label to be dropped when going backwards frorh* to vi—2"t is r(k). This
is true fori = 2 by (12), wherek = d 4+ 1. Suppose that lab&l’ is picked up inQ in vertex
vitl, We want to show that" 2~ has the new label(k’).
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Call two labels (of any vertex) i) adjacentif they are the labels of two cyclically
adjacent positions in the bitstring, as determined’byJnlike in P, if some labelsa andb
are adjacent irQ, then there are cases whetl@) andr(b) are not adjacent. This occurs
when(a, b) is any one of the pair§l, 3), (2d — 3,2d), (2d,2d — 1). Similarly, the labels
r(a) andr(b) are adjacent whefa, b) is (2d — 1,2d — 3), (3,2d), or (2d, 1) but thena
andb are not. However, we show that this does not matter, considering each of these three
cases (and their symmetric counterparts) in turn.

Because of the inductive assumption (7), and (9), the adjacent [adbgld — 1,1 in Q
(in positions2d — 1, 2d, and1, respectively) correspond to the bitsl, 1 for both current
verticesvt andv—'—}. First, suppose that when dropping lalkefrom v', it matters that
labels1 and3 are adjacent. That is, the run of ones that is changed in going-fraomn !
includes positions 1 and 2 (which have labéland 3, respectively). This would cause a
problem since labels(1) = 2d — 1 andr(3) = 2d — 3 in vi='—* are not adjacent (because
they correspond to positior’sl and2d — 2, respectively). This could occur in two cases:
First, whenk = 2d — 1, because then the above hitsl, T would change t®, 0, 1 and the
even run of ones starting in positi@al (with label2d — 1) would “shift to the right” across
positions1 and2, which have labeld and3 in Q. But then, by the inductive assumption,
the dropped labet(k) when going backwards fromt—'— to vi=2"1 is 1, which is the label
of the rightmost bit in0, 1,1, which shifts left to becomé, 1,0, so that the label picked
up in vt—2-* would be2d, contradicting (9). The second case occurs when the said string
0,1, 1 would shift left to becomé, 1, 1 (where the third one, in position 1, is shifted in from
position 2), again contradicting (9).

Second, suppose it matters that labkls— 3 and2d are adjacent in' butr(2d — 3)
andr(2d) in v-='- are not. This can only happen when ladl is picked up, which it
is not, by (9). Third, the fact that labelsl and2d — 1 are adjacent in' but r(2d) and
r(2d — 1) in vt= 1% are not does not matter either, because ladek not picked up.

These three cases have their counterparts where lapkls— 1) and r(2d — 3) in
vi=1-1 are adjacent, buitd — 1 and2d — 3 in v are not; the reasoning is identical to the
first case above. The second and third case arerfBatandr(2d), andr(2d) andr(1),
respectively, are adjacentih—'—t, which is again unproblematic.

This completes the inductive step fronto i + 1 for all i, so that equations (6) to (9)
hold throughout. ]

Two vertices ofG(n) are connected by an edge if and only if the corresponding bit-
strings differ only by two substrings which aité0 for one bitstring and)1* for the other
(wherek is even), using the cyclic symmetry of the Gale evenness bitstrings if necessary.
For example, the vertices’ andv' in Figure 2 are00001111 and 10001101, where the
substrings are those in positioRAss, 1. These use the cyclic symmetry since the substrings
in question involve both positiodd and positionl. We say that such an edggaps around
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(the end of the 0-1 string). If the mentioned substriig8 and 01 are contiguous sub-
strings of positiond through2d, the edge doesotwrap around, like, for example, the edge
connecting vertices® = 11110000 andu' = 01111000 in Figure 2.

Lemma 6 No edge oft(d, 1) wraps around (in either polytope): If the edge conndcisv)

to (u’,v), then the edge connectingandu’ in P does not wrap around, and if the edge of
7(d, 1) connects(u,v) to (u,v’), then the edge connectingand v’ in Q does not wrap
around.

Proof. The first edge oft(d, 1) joining e, to (019041 0414) does not wrap around, and
neither does the last edge joinif@f1¢,01¢09-7) to e;. In all other edges, positiohis zero
in both polytopes, so none of these edges wraps around either. ]

For any two pathst andnt’ on G(n) x G(n), we denote byt+ 7’ the path obtained by
joining the last vertex pair oft to the first pair oft’, assuming this is possible. The length
of the new path is the sum of the lengthsoénd7t’ plus one; the number ofertex pairss
simply the respective sum.

The following central theorem describes how patiid, 1) andnt(d, 2d) are composed
of other such paths, possibly from lower dimension. Appendix B shows these paths as pat-
terns of bitstrings that illustrate this, as indicated in detail in the proof.

Theorem 7 Let A(d) = nt(d, 1) andB(d) = (u',v')--- (ut2,v=2) where(u!,v') is the
ith vertex pair oft(d, 2d), 0 <i < L =L(d,2d). Then there are path§(d) and mappings
«, 3, B',v,y’ defined on vertex pairs, and extended to sequences of vertex pairs, so that

A(d) = B(B(d))+C(d), (15)
Cld) = «(A(d—2))+p'(B(d)), (16)
B(d) = v(A(d—2))+v'(C(d—2)). (17)

Proof. Overview: The pathiC(d) is simply a tail segment oA (d). The mappings are given
as follows: 3 andp’ are defined ors(d) x G(d),

B(u,v) = (u,0vv3...voq 21v24),

andp’ is determined by due to Lemma 4. Furthermore,vy,vy’: G(d—2) x G(d—2) —
G(d) x G(d). With u defined as the bitstring reversed,

a(u,v) = (0u110,0v110). (18)

With ¢ = 2d — 4,
yv(ur...ue,v) = (uy1Tuy ... u 00, T0v0T). (29)
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We obtainy’ fromy by Lemma 5.
First we show, equivalent to (15) and (16), that

A(d) = B(B(d)) + «(A(d —2)) + B'(B(d)). (20)

Note that only positiond and2d — 1 in Q (corresponding to the missing label A(d)
and B(d), respectively) are changed by the mappihgand these positions are constant
throughoutB(d) by (7) and (9). The starting poirft.’,v') of B(d) is given by (10), and
in the first step oB(d) label 1 is dropped inP. The pathA(d) is also started by dropping
label T in P from ed. Now B(u',v') = ed, as required, and in the first step Afd) and
B(d) the label to be dropped ikin P. As (u',v!) andeg differ only in positions that are
constant throughou(d), the pathB(d) maps top(B(d)) and thereby represents the initial
part of A(d). An example isB(6) in Figure 11 (omitting fromrt(6, 12) the first and the last
two vertex pairs), and\(6) in Figure 12. By (11), the endpoint @(B(d)) is

B(0% 119,197 10%1) = (04 "140,01¢-20%111). (1)

The duplicate label i2d — 1, which has been picked up i So in the next step oA (d),
label2d — 1 is dropped inQ and label2d — 3 is picked up, giving the vertex pair

(u*,v*) = (0471190, 01972042110). (22)

(For the pathr(d, 2d), labeld would be picked up instead at this stage, as stated in the proof
of Lemma 5.) This is the edge @(d) which joins3(B(d)) to «(A(d — 2)) in (20).

We are now at the start af(d) and want to show that this path segment starts with
«(A(d —2)) with o in (18). Indeed, the starting vertex pair 6fd) is (u*,v*) = oc(eg’z).
The duplicate label i2d — 3, which is to be dropped iR in the next step. The subsequent
steps are represented byA(d — 2)) since in the lower-dimensional polytope, laldels
dropped, which is mapped hyto label2d — 3 of the higher-dimensional polytope, consid-
ering « also as an injective map of labels, obtained in the obvious way from (18), namely
a(k) =2d—2—kfor1 <k < 2d—4. Essentially, the subsequent stepifd — 2) map
into higher dimension by (18) and by Lemma 6; we only need to check complementarity
of the constant positions in higher dimension. In the higher dimension, positrath the
missing labell is zero in both polytopes, consistent with (18). Positidds- 1 and2d are
also complementary by (18). For positiodd — 3 and2d — 2, we have complementarity
becaus€d — 3 is zero as it is obtained from the position with the missing labil lower
dimension. This shows that the initial segmentidtl) is indeedow (A (d — 2)).

Inthe last step oA (d—2), labell is picked up inQ. Soin the last step at(A(d—2)),
label 2d — 2 is picked up inQ. Then we are at the vertex pdiv*, u*) = oc(e?’z), which
is (01472092110, 04-11490) by (22). We have shown that the initial partAfd) in (20) is
B(B(d))+ «x(A(d—2)) and that the starting point and endpointdfA (d — 2)) are (u*, v*)
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and (v*,u*), respectively. Then the rest of the pailid) in (20) is obtained by Lemma 4:
The next vertex pair, obtained frofm*, u*) by dropping labeld — 2 in P, is

(W, v') = (019204111, 04 1140), (23)

which agrees with Lemma 4 and (21). Thus, the remainder is thef&bhd)) backwards
but with the bitstrings fo® and Q exchanged. However, using the symmetryBgtl) in
Lemma 5, this part of the path can be expressef &88(d)) with a suitably defined mapping
B’, similar to 3, which exchanges the bitstrings fBrand Q. This shows (20). (Figures 7,
10, 11 illustrate the casé = 6.)

We now show (17). (Fod = 8, Figures 12 and 10 sho®(8) andA(6), and Figures
7 and 11 together giv€(6) as in (16).) The first part db(d) is indeedy(A(d — 2)): Both
B(d) andA(d —2) start by dropping label in P, and the starting point d(d) is y(e$ 2).
Then B(d) proceeds likey(A(d — 2)) because of Lemma 6 and since complementarity
holds for the constant positions in higher dimension, which is easily checked using (19).
Next, by (20),

Y(A(d—2)) =vIB(B(d—2)) + x(A(d —4)) + B'(B(d — 2))]. (24)

Now consider the starting poiritt”, v”) of 3’(B(d — 2)), which is (u/,v’) given by (23)
but with d — 2 instead ofd. Furthermore, consider the endpoint®@{B(d —2)), that is, the
endpointe~* of A(d — 2). The images of these points undeare

y(u”,v") = (0147404311, 09731920) = (01420931100, 1092142001
y(ef2) = y(0421972,194-204-2) = (0110% 319200, 101¢20%11).

This shows that these two vertex pairsu”,v”) and y(eﬁ”) are mirror images of each
other under the symmetry d(d) described in Lemma 5. This means that the endpoint
v(e$2) of y(A(d — 2)) is already in the second half &(d). The central part oB(d),
given by the last part of/(A(d — 2)) in (24), isy[R'(B(d — 2))]. Therefore, there is a
mappingy’ so that

B(d) =v[B(B(d—2)) + (A(d—4)) + B'(B(d—2))] +v'[x(A(d—4)) + B'(B(d—2))],

because the paths(d — 4) andB(d — 2) are symmetric and therefore do not have to be
written backwards. This representationBifd) is equivalent to (17) as claimed. ]

Let a,, be the number of vertex pairs @(2n), which is one more than the length
L(2n,1) of that path. Letb,, andc, be that number foB(2n) and C(2n), respectively.
That is,

a, =L(2n, 1)+ 1, b, =L(2n,4n) -2 (n>1). (25)

Then the concatenation of paths in (15) implees = b,, + ¢, In (16) ¢, = an 1 + by,
and in (17)b,, = a,._1 + c,_1. Moreover, the paths(2,1) andn(2,4) have lengthd =
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a; — 1 = by + 2. This shows that the numbebs, ¢4, ai, by, ¢,, a,, ... are the Fibonacci
numbers2, 3,5,8,13,21,... given by

fO - 1) f] - 2) fn—H = fn + fnf1 (Tl > 1)) (26)

that is,
an = f3n> bn = f3n72 (Tl > 1) (27)

So both the lengths af(d, 1) and oft(d, 2d) for evend = 2n = 2,4,6, ... are given by

every third Fibonacci number (minus one and plus two, respectively). These are the longest
paths. They occur several times, siidel, 1) = L(d,d) andL(d,d+ 1) = L(d,d + 2) =

L(d,2d — 1) = L(d,2d). As shown next, this is due to the symmetry of the Gale evenness
condition and of the labelings. Other pathéd, k) are given as concatenations of these
paths in lower dimension. They are characterized, for all possible dropped labels

the following theorem. The lengths of these paths doK 14 are shown in Table 1 in
Appendix B.

Theorem 8 The LH path lengths for any dropped label are characterize(2by, (26), (27)
and

@ L(d,k)=L(d,d+1—%k)andL(d,d+k)=L(d,2d+1—%k),for1 <k <d;

(b) L(d,k) = L(d,k+ 1) for evenk when2 < k < d — 2, and oddk whend + 1 < k <
2d—1;

(c) L(d,k) =L(k,1)+L(d—X%,1) forevenk and2 < k < d — 2;

(d)L(d,d+k) =L(k,2k) +L(d—k+2,2(d—k+2)) —4 = by, + bg/2_x/241 Whenk
isevenandl <k <d-—2.

Proof. Overview. Claim (a) is proved using a cyclic shift kly of each string inG(d)
followed by a reversal, which leaveas(d) invariant and is compatible with the labelings

1L andl’. Claim (b) is proved like Lemma 4. For (c), the patAsk) and A(d — k) are
concatenated with extension mappings similar to (15), (16), (17). A similar argument applies
to (d) using the pathB(k) andB(d — k + 2). Using (b), cases (c) and (d) cover all possible
dropped labels. The range &fin (d) can be restricted because of (a) and (b); by (25), we
could have allowed = 2 in (d), but there would be nothing to prove.

For (a), lety be defined byp(k) = d—k+1 and{(d+k) = 2d—k+ 1 for
k=1,...,d. Thisis a cyclic shift byd followed by a reversal of positions, which leaves the
setG(d) invariant. Furthermore) commutes with the labelingsandl’ of P andQ, so the
Lemke—Howson algorithm proceeds in the same manner. That is to say, the vertex pairs on
the pathrt(d, k), seen as a pairs of 0-1 strings, are step by step the same when the positions
in each string are permuted accordinglto Under, the first vertex paie, (and similarly
the last paire;) is mapped to itself, but the positions are changed as above. This means that
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underi, the pathr(d, k) is mapped tat(d,d — k + 1), so these two paths have the same
length. Figures 7 and 8 in Appendix B illustrate the cdse 4, k = 1.

To show (b), le?2 < k < d—2. Asin Lemma 4, the relabeling in (4) applied to both
P and Q shows thatt(d, k) corresponds to the patk(d, k + 1) backwards, so these paths
have the same length.

Claim (c) requires more work. For any pathsandB on G(n) x G(n), considered as
sequences of vertex pairs, I&B denote the patiA joined to the patlB, where the endpoint
of A is equal to the starting point &. The length (number of edges) AfB is the sum of
the lengths ofA andB.

We prove the the following statement, which clearly implies (c): kdte even and
2<k<d-—2. Then
ni(d, k) = a(A(k)) B(A(d —k))

with o : G(k) x G(k) — G(d) x G(d) = P x Q,
o, V) = (W - - Wy TR0 ug -y, Vi - v 081 Ry o), (28)
andp : G(d—k) x G(d — k) — G(d) x G(d),
B(u,v) = (0*ulk, 1%v0¥).

The starting point oft(d, k) is eg. As required,x(ef) = ed. In the first step oft(d, k),
label k is dropped inP. Position1 of the lower dimensional polytopes, given by the bijt
andv; in (28), is mapped to positiok in both P and Q in the higher dimension. v,
positionk has labelk, which is missing inrt(d, k). This missing label in the higher dimen-
sional polytopeP corresponds to the missing labklin the lower dimension. Because
preserves the adjacency of labels cyclically, and since by Lemma 6 thé\pkjhdoes not
wrap around, the firsk (k, 1) steps ofrt(d, k) proceed according ta(A(k)); all we need

to check is the complementarity of the positions of the higher dimensional polytope which
are constant according to. Complementarity of positions + 2, ...,2d — k is immediate.
Positionk andk + 1 in P andQ, respectively, correspond to the missing labelf 7t(d, k)

and are thus both zero throughout. Finally, posificA1 in P, with labelk + 1, is T accord-

ing to (28), and is complementary since positlom Q with labelk + 1 is 0 throughout, as

it corresponds to the missing label in the lower dimensional polytope. At the end of the first
L(k, 1) steps, the vertex pait(e¥) is reached, where

(X(ellc) — (Ok]dfkodf]qk) 1k0dfk] dfkok) — B(egfk)’

and so this is also the starting point®fA(d — k)), as required. In a similar way as before,
one can see that this is the second parttd, k), which ends inp(e$*) = e{. This
shows (c). Figures 13, 7 and 10 in Appendix B illustrate the ¢bsel0, k = 4.
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Let k be even and < k < d — 2. To show (d), we construct suitable mappings
andd so that
n(d,d +k) = el +v(B(k)) 5(B(d—k+2)) +ef. (29)

These mappings are: G(k) x G(k) — G(d) x G(d) =P x Q,
Y, v) = (T8 g w04 w09 vy vy 1975, (30)
andd: G(d—k+2) x G(d—k+2) — G(d) x G(d) =P x Q,

_ k—21k
d(u,v) = (Vaxs2 - Vaa—2k+2 0150V - - vy,

12 o1 )

Ug—k+2 " U2d—2Kk+2 U24-—2k+3 Wy - Ugx+1)-

It can be verified that these mappings preserve the adjacency of relevant labels and comple-
mentarity. The pathr(d, d + k) starts as follows: after dropping froe§ labeld + k in Q,

which is in positiond +k—1, the vertex pair ig140¢, 104-11%201¢-%*+1) ' which is equal to
v(ut, V1) for the first vertex paifu'’,v') of B(k) as in (10) (withk instead ofn), also with
duplicate labell. The path continues as described in (30) since thewind vy, in (30)

stay constant according to (7). The last vertex paiy@(k)) is, by (11) and (30), equal to

V(0k711k0 ]k710k1) — (O]dfkokfl-lkodkar] 10d7k1k720k1d7k+1).

This is equal tad (14 *+20d-k+2 10d-k+11d-k01) which is$ applied to the first vertex pair
of B(d — k + 2), using (10) withd — k + 2 instead ofd. The duplicate labefl + k — 1 to
be dropped, in positiod — k in Q, is the image of the bitt; underd, where this bitu, is
dropped inB(d — k — 2) by Lemma 5. Note thai(u,v) ignores the bitst,q 114, andvy,
V2d_2k+3, andvog_z.4, Which are constant throughoBtd — k 4+ 2) by Lemma 5. The last
vertex pair of6(B(d — k + 2)) is

6(Odfk+1 1 d7k+20 1 d—k+1 OdkarZ] ) — (Odfl 1k01 d—k 1 dod)

with duplicate labeld, which has just been picked up @ as the image of bitiq .3
underd. When this labeld is dropped inP, the endpoink¢ is reached, which terminates
the pathmt(d, d + k). This completes the proof of (29). According to (29), the length of
n(d, d + k) is the sum of the lengths d(k) and of B(d — k + 2) plus two (for the first
edge frome§ and last edge te{), which shows (d). The casé= 10, k = 4 is illustrated

by Figures 14, 9 and 12 in Appendix B. ]

Itis easy to see that the shortest path lengths are obtained as follaws:divisible by
four, that is,d/2 is even, then the shortest path length occurs when droppingdaBebnd
is given byL(d, d/2) = 2a4/,—2 according to Theorem 8(c). &/2 is odd, then the shortest
path length occurs for dropped lat3zl/2, wherel(d,3d/2) = L(d,3d/2 4+ 1) = 2bg 241
by Theorem 8(b) and (d). Whed/2 is even, the path when dropping lal3al/2 is only
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two steps longer than when dropping lalogl2 since thenL(d,3d/2) = bg,; + ba2y1 =
basz + aq2 + ca2 = 2a4,2. Therefore, the shortest path results essentially when dropping
label3d/2.

The Fibonacci numbers are given by the well-known explicit expression
f, =KO"+K8"™  6,6=05+05V5 K K=05+03V5,

where® = 1.618... is the Golden Ratio an& = 1.170.... Thenf, is KO" rounded

to the nearest integer sinde@ ™ is less than 0.5 and at any rate exponentially small. By
Theorem 8(d), the sequence of shortest LH path lengths, 3n) forn =d/2=1,2,3,...
is4,10,16,42,68,178, ..., which is the sequence of Fibonacci numbers (multiplied by two)
with every third number omitted. These shortest lengths grow with the square root of the
longest lengths, which is still exponential.

Corollary 9 There ared x d games, for eved, where each LH path has length(03%/4).

A similar construction using a similar labeling to (4) is possible for addut there
the path lengths are less symmetric than those in Theorem 8 fordev&e do not need this
since it is trivial to obtain an odd-dimensional game from the next lower even dimension by
adding a strictly dominated strategy for each player.

4 Conclusions and open questions

In this paper, we have presented a constructiod of d games with a unique equilibrium
which is found by the LH algorithm using an exponential number of steps, for any dropped
label. Unfortunately, the equilibrium is eastipessedince it has full support, so our games
are not “hard to solve” by other methods. This holds because the permutaiiof#) gives

the artificial equilibriume, in (5), but also its complemery; in Lemma 3, which is the
completely mixed equilibrium (see also condition (35) in Appendix A below).

It is an open problem to find a suitable construction, perhaps extending ours, where the
game does not have a completely mixed equilibrium, but where all equilibria are still found
using an exponential number of LH steps. If the support of an equilibriudi2s say, then
it could behiddenby randomly permuting the players’ strategies, so that it would take an
exponential number, like some fraction ijz) , of guesses to find that support.

Lemke’s algorithm [15] is closely related to the LH algorithm. It solves an LCP [3]
by introducing an auxiliary vector and variable into the system, and pivots according to the
same complementary pivoting rule as LH, until the extra variable becomes zero, thereby
computing an equilibrium. This method can be given an interpretation in game-theoretic
terms [32]. Its extra flexibility given by the choice of numerical values in the auxiliary vector,
rather than just of finitely many starting edges as in the LH algorithm, deserves further study.

20



It may happen that the equilibrium in our construction is found quickly from a suitable, easily
found starting point. A possibly related study is [18].

Using the games presented here as test cases raises the additional problem that the
moment curve gives rise to notoriously ill-conditioned matrices. As a consequence, numeri-
cal problems arise when the pivoting steps are implemented using floating-point arithmetic.
These numerical problems may possibly be avoided by using points on the trigonometric
moment curve, as mentioned in Appendix A. As mentioned there, an open problem is the
required numerical accuracy of these points.
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Appendix A: Generating game matrices

In this appendix, we describe how to obtain games from representations of cyclic polytopes.
In principle, this has already been described in Proposition 2.1 of [30] for general polytopes.
In our case, as well as in the construction of games with a large number of equilibria in
[30], the polytopes are dual cyclic polytopes in dimensiowith 2d facets, with a labeling

of the facets of each polytope that has a certain structure. This structure allows a further
simplification: Only one of dual cyclic polytopes, sByhas to be brought into the form (3),
whered of the inequalities are simply nonnegativities and the otherequalities define the
payoff matrix of one player, herB. The other polytope, and thus the payoff matAixof

the other player, is then simply obtained by a suitable permutation of the rows and columns
of BT. We first explain this construction, which is summarized in Proposition 10 below.

Secondly, we apply this to a representation of cyclic polytopes in dimemnisiere de-
rived from the so-called trigonometric moment curve. In this low dimension, the coordinates
on that curve can be approximated by small integers, which gives rise to small game matrix
entries.

As indicated at the beginning of Section 3, a standard way of obtaining a cyclic polytope
in dimensiond with 2d vertices is, first, to consideXd points(t;) on the moment curve
w:t = (t,t%,...,t49) 7 for 1 < i < 2d. Suppose that; < t, < --- < t,4. Then the
vertices of that polytope are characterized by @hé strings fulfilling the Gale evenness
condition. Thepolar (or dual) polytope [37][8] is obtained by translating the polytope so
that it has the origirD in its interior, for example by subtracting the arithmetic meaof
the pointsy(t;) from each such point. The resulting vectors= w(t;) — i then define the
polar cyclic polytope

PP={zeR%|c/z<1,1<i<2d}). (31)

As described in [30, p. 560], ' = {z € R | Cz < 1, Dz < 1} with d x d matricesC
andD, then an affine transformation &f is given by

P={xeR% x>0 —DC 'x <7}, r=1-DC 'L (32)

Since 0 is a vertex of the simple polytopR, the vectorr is positive, and the second
inequalities in (32) can be re-normalized so that the right hand side is one. With the diagonal
matrix S with entriess;; = 1/r; with r as in (32), and;; = 0 for 1 # j, we can rewrite (32)
as

P={xeR¢|x>0 —SDC 'x <1]. (33)

Affine transformations leave the combinatorial structure (that is, the face incidences) of
a polytope unchanged, 3bis a cyclic polytope with facets characterized by Gale evenness
strings. These Gale evenness strings refer t@thamequalities defining® according to the
ordering in (33), that isx; > 0 being the first inequality obtained from the first pojrtt, )
on the moment curve;, > 0 corresponding tq(t,), and so on.
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Consider the polytop® defined by
Q={yeR'|-SDC'y <1, 72>0}, (34)

which is identical toP in (33) except that the first and lagtinequalities are interchanged.

In a dual cyclic polytope likeP in (33), each inequality defines a facet (obtained by
converting the inequality to an equality). We say that a facel dfaslabel k (for k =
1,...,24) if it corresponds to théth inequality in the description of the polytope in (33).
Similarly, a facet ofQ has labelk if it corresponds to théth inequality in (34). IfP and
Q in (33) and (34) are the polytop®sandQ in (3), they define a symmetric bimatrix game
with payoff matrice§ A, B) whereB" = A = —SDC}.

The vertices of a dual cyclic polytope are given by the setd décets each vertex
lies on. Encoded as bitstrings, these sets are characterized by the Gale evenness condition
explained at the beginning of Section 3, wiltid) as the set of these bitstrings. We assume
d is even. Then the Gale evenness condition is preserved by a cyclic rotation of the bitstrings,
in particular byd positions, as used in the definition (34) @f Thus, the vertices of both
P and Q correspond to the Gale evenness strings in theG$dl. A bitstring w in G(d)
defines the vertex of P obtained by converting thith inequality in (33) to an equality
wheneveru, = 1, fork = 1,...,2d. In the same manney,in G(d) defines the vertey
of Q where thekth inequality in (34) is binding whenevey = 1.

In our construction, as well as in [30], the polytopesand Q in (3) are dual cyclic
polytopes but the games are not symmetric, because the fac@tsua not labeled in their
original order. Instead, a certain permutatidms used to obtairQ from Q, by letting the
kth facet of Q in the description (34) have labalk) in Q, fork = 1,...,2d. In our
construction, we used the permutatida= 1’ defined in (4). WithA(S) = {A(k) | k € S} for
S C1,...,2d, this permutation has the property

AL, d)={1,...,d) (35)

(and thusA({d + 1,...,2d}) = {d + 1,...,2d}). This condition implies that the pair
(u,v) = e in (5) is complementary. The corresponding vertex paiPot Q is the ar-
tificial equilibrium (0, 0). (Property (35) also implies thag in Lemma 3 is complementary,
which defines the completely mixed equilibrium.)

The following proposition describes the construction of a bimatrix gémeé ) using
P in (33), andQ defined byQ in (34) with labels given by a permutationfulfilling (35).
The proposition shows how to obtaifrom B™ by permuting rows and columns suitably.

Proposition 10 Consider a pair of dual cyclic polytopes in dimensidmvith 2d facets, with
each vertex set represented by the set of Gale evenness sdfidgsLetA be a permutation

of {1,...,2d} that fulfills (35). For k = 1,...,2d, a vertexu in G(d) of the first polytope
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has the labels&k wherew, = 1, a vertexv in G(d) of the second polytope has the labels
A(k) wherev, = 1. A vertex pair(u,v) is complementary if it has all labels. Therdax d
bimatrix game(A, B) with Nash equilibria corresponding to complementary vertex pairs,
where the artificial equilibrium corresponds tg in (5), is given byB" = —SDC~! as in
(33), using a representatio(81) of a dual cyclic polytope consistent with the Gale evenness
ordering. The matrix entriea(i,j) of A are obtained from the matrix entriég1i,j) of B by

a(Ai),AG+d)—d)=b(,i) (1<ij<d). (36)

Proof. For the characterization of equilibria, the combinatorial structure of the dual cyclic
polytopes suffices, as given by the Gale evenness stéiidgs. Both P in (33) andQ in (34)

are representations of such polytopes. By assumptiork, forl, ..., 2d, thekth inequality

of (33) has labek, and thekth inequality of (34) has labél(k).

Let BT = —SDC!, define the matrixA with entriesa(i,j) by (36), and let
Q={yeR'|Ay<1, y>0}. 37)

The polytopes andQ in (33), (37) correspond to the bimatrix garm®, B), as in (3). The
facets ofQ have labels in the order of the inequalities in (37). It suffices to show that these
labelsk correspond to the label k) of Q stated above.

In detail, the inequalities in (34) are

IN
IA

d
Q={yeR!) by <1 (1
j=1

i
0 (1<j

d)}.

For1 <j < d, the(d + j)th inequality in (38) has lab&l(d + j). Hence, it should appear
as theA(d + j)th inequality in (37), which by (35) is the inequalityq+j)—q > 0. This is
achieved by the correspondence betwgen (37) andy in (38) given byyx(a+j)-a = Uj-

The ith of the firstd inequalities in (38), forl < i < d, has labelA(i). It should
appear as tha(i)th inequality in (37). That inequality has the form

Vv
IN
IN

Y;

d

D aMi), V<,

1=1

which by (35) can be rewritten as

> aMi),AMd+5) = d) U@ -a < T,

j=1
which by (36) is theith inequality of (38) as claimed. O
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Consider the following x 6 bimatrix game(A, B) with

[—180 72 —333 297 —153 270 ] [ 72 36 17 -3 —36 —153]
—30 17 =33 42 -3 20 —180 —81 —-30 20 90 270

—81 36126 126 —36 90 297 126 42 —33 —126 —333

A= 90 —36 126126 36 —81| b= 333 126 —33 42 126 297
200 -3 42 =33 17 =30 270 90 20 =30 —81 —180

| 270 —153 297 —333 72 —180 | | —153 36 -3 17 36 72]

The matrix A is obtained fromB via (36) with A = 1" in (4). The matrixB is obtained

as in Proposition 10. The underlying representation (31), however, is not based on points
(t,t2,t3,t%,1°,t%) of the moment curve, but on pointgt) of the trigonometricmoment
curve,v(t) = (cost, sint, cos2t, sin2t, cos3t, sin3t). These points also give rise to cyclic
polytopes [37, p. 75f] [8, p. 67]. Far=1imt/6 fori =1,..., 12, the first pair of coordinates

of v(t) denote the vertices of a regular 12-gon, the second pair those of a regular hexagon,
used twice, and the third pair those of a square, used three times. The origin is in the interior
of the convex hull of these vertices, so the polytope does not have to be translated to obtain its
polar. The combinatorial structure is preserved by choosing suitable integer coordinates near
the points on the circle, which are shown in Figure 4; payoffs have been multiplied by 18
to obtain integers. (The square is represented perfectly; choosing as its vertices instead the
points(1,0), (0,1), (—1,0), (0,—1), say, would not changB as the affine transformation

that produces (32) always gives the unit vectors as the normal vectors of thé fasets

of P.) Itis an open problem to find suitable approximations with small integers in higher
dimensions that preserve the combinatorial structure.

The bimatrix gamgA’, B) with
[ 81 36 -126 126 —36 90
—180 72 =333 297 —153 270
20 -3 42 =33 17 =30
=30 17 =33 42 -3 20
270 —153 297 =333 72 —180
920 —36 126 —126 36 -—81

A/

is obtained from the permutationik) = k—(—1)* for 1 < k < 12in(36). This permutation
is used in [30], and the gamé’, B) has 75 equilibria.

25



(-1,4) (1,4)

(-3,3) @ @ (3.3
® @

(—4,1) @
(-4-1) (D

(-3.-3)
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(-4,-1) @@@ @

@
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FIGURE 4: Approximation of points on the trigonometric moment curve by small integers.
The circled numbers refer to the labels= 1,...,12 of the vertices, which
become facets in the dual cyclic polytope
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Appendix B: Examples of path lengths and paths

The following table and figures show the empirical evidence leading to our main Theorems
7 and 8. Table 1 shows the path lengths and their exponential growth, and that the lengths of
the short paths(d,3d/2) for d = 2,4, 6, ... are given by the Fibonacci numbers times two,
with every third Fibonacci number omitted. Figures 7, 10, 11, and 12 illustrate Theorem 7,
and Figures 8, 13, and 14 show cases of Theorem 8.

label dimension
2 4 6 8 10 12 14
1 4 20 88 376 1596 6764 28656
2 4 8 24 92 380 1600 6768
3 4 8 24 92 380 1600 6768
4 4 20 24 40 108 396 1616
5 10 24 40 108 396 1616
6 10 88 92 108 176 464
7 10 36 92 108 176 464
8 10 36 376 380 396 464
9 16 146 380 396 464
10 16 146 1596 1600 1616
11 36 42 612 1600 1616
12 36 42 612 6764 6768
13 42 152 2586 6768
14 42 152 2586 28656
15 146 68 618 10948
16 146 68 618 10948
17 152 178 2592
18 152 178 2592
19 612 178 644
20 612 178 644
21 618 288
22 618 288
23 2586 644
24 2586 644
25 2592
26 2592
27 10948
28 10948

TABLE 1: Path lengths for different dropped labels.
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In the following figures, each row displays two pivoting steps, onB and one inQ,
so the number of the last row is to be multiplied by two to obtain the path length.

1 2 3 4 1 2 43

0 11 11
1 11 11
2 11 11
FIGURES: m(2,1).
1 2 3 4 1 2 4 3
0
1
2

FIGUREG: m(2,4)
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