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Abstract. The Lemke–Howson algorithm is the classical algorithm for the problem NASH of finding
one Nash equilibrium of a bimatrix game. It provides a constructive, elementary proof of existence of
an equilibrium, by a typical “directed parity argument”, which puts NASH into the complexity class
PPAD. This paper presents a class of bimatrix games for which the Lemke–Howson algorithm takes,
even in thebestcase,exponentialtime in the dimensiond of the game, requiringΩ((θ3=4)d) many
steps, whereθ is the Golden Ratio. The “parity argument” for NASH is thus explicitly shown to be
inefficient. The games are constructed using pairs of dual cyclic polytopes with2d suitably labeled
facets ind-space.

1 Introduction

Note: This paper is directed at theoretical computer scientists, so this introduction empha-
sizes aspects of computational complexity. Our geometric construction of certain bimatrix
games in the subsequent sections should be accessible to any game theorist.

Game theory is the formal study of conflict and cooperation. In computer science, game
theory has attracted recent interest for economic aspects of the internet, such as electronic
commerce, selfish routing in networks [28], and algorithmic mechanism design [23]. In
complexity theory, game-theoretic ideas are basic for proving lower bounds for randomized
algorithms [36] and in the competitive analysis of online algorithms [2].

∗Rahul Savani is supported by an EPSRC doctoral grant. We thank the participants of the Bellairs Workshop
on “Polytopes, Games, and Matroids” in Barbados in March 2003, in particular the organizer, Komei Fukuda,
and Walter Morris and J̈org Rambau, for stimulating discussions and comments.

†This paper supersedes the earlier report LSE-CDAM-2003-14, “Long Lemke–Howson Paths”, which is
obsolete.
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A bimatrix gameis a two-player game in strategic form, a basic model in non-coopera-
tive game theory. The strategic form is specified by a finite set of “pure” strategies for each
player, and a (for simplicity of input, integer) payoff for each player for eachstrategy profile
(which is a tuple of strategies, one for each player). The game is played by each player in-
dependently and simultaneously choosing one strategy, whereupon the players receive their
respective payoffs. A player is allowed to randomize according to a probability distribution
on his pure strategy set, which defines amixed strategyfor that player. Players are then in-
terested in maximizing their expected payoffs. ANash equilibriumis a profile of (possibly
mixed) strategies such that no player can gain by unilaterally choosing a different strategy,
where the other strategies in the profile are kept fixed. Every game has at least one equilib-
rium in mixed strategies [22]. For two players, the game is specified by twom × n integer
matricesA andB, where them rows are the pure strategiesi of player 1 and then columns
the pure strategiesj of player 2, with resulting matrix entriesaij andbij as payoffs to player
1 and 2, respectively. This is called a bimatrix game(A,B).

A classic open problem is the complexity of the problem NASH of finding one Nash
equilibrium of a bimatrix game. For the special case of zero-sum games, which are bimatrix
games(A, −A), this problem generalizes linear programming, but in general is not known to
be polynomial. Together with factoring, NASH has been called “the most important concrete
open question on the boundary of P today” [26]. A standard method for finding one Nash
equilibrium of a bimatrix game is theLemke–Howson(LH) algorithm [14]. In this paper,
we present a class of games where this algorithm is exponential. The LH algorithm is a
pivoting method related to the simplex algorithm for linear programming [4], which also has
worst-case exponential behavior [13]. Our games show that even thebest-casebehavior of
the LH algorithm can be exponential, foranychoice of its free parameter (the first variable
“to enter the basis”). To our knowledge, these are the first examples of this kind. Finding
a Nash equilibrium in sub-exponential time must therefore go beyond this classic pivoting
approach.

Exponentially long paths for finding solutions to a a linear complementarity problem
(LCP) are described in [21][9]. Although Nash equilibria are solutions to certain LCPs,
bimatrix games do not define the LCPs studied in these papers.

NASH belongs to the complexity class TFNP of total function problems in NP [25,
p. 229]: With the bimatrix game as input, the required output is a pair of mixed strategies
(as the decision problem whether an equilibrium exists is trivial); due to Lemma 1 (of [22])
below, the mixed strategy probabilities are rational numbers of polynomial length as they
solve certain linear equations, and the equilibrium property is verified in polynomial time.
The class TFNP does not have complete problems unless NP= co-NP [19] (almost by
definition, the TFNP-version of SAT, which for a SAT-formula produces a satisfying truth
assignment if one exists or else the answer “no”, when reduced to a TFNP-complete problem,
would give a problem that is both NP- and co-NP-complete).
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More specifically, NASH belongs to the subclass of TFNP call PPAD, of problems
with a parity argument for directed graphs [24, p. 516]. The parity argument states that a
directed graph (defined implicitly), where the indegree and outdegree of every node is at
most one, consists of cycles and directed paths, so that there are as many starting points as
endpoints of these paths. An instance of a problem in PPAD is specified by a polynomial-
time algorithm for finding at least one starting point, and for finding the neighbor of a point
in the graph or else declaring it as an endpoint. The possible endpoints (of which at least one
exists) are the allowed function values. The LH algorithm is a special case. It uses a trivial
artificial equilibrium as starting point, and a freely chosen starting edge, and then a unique
“complementary” pivoting rule for determining a next “basic solution”. It thereby traces the
vertices of a certain polytope and ends at an equilibrium. The edges of the graph are directed
(so the direction of the path can be determined even without knowing the past history) by a
geometric orientation [29]; see also Figure 1 below. The parity argument may be inefficient if
the paths are not of polynomial length. Our paper shows explicitly that this inefficiency may
occur for NASH, by giving games that produce exponentially long Lemke–Howson paths.

A related question is if NASH may be complete for the class PPAD. This seems to
require encoding an arbitrary polynomial-time Turing machine computation into comple-
mentary pivoting steps for polynomial-sized payoff matrices, which looks difficult.

Unlike the set of solutions to a linear program, or equivalently [4, p. 290] of equilibria
of a zero-sum game, the set of Nash equilibria of a general bimatrix game is not convex.
Thus, NASH cannot be approached in an obvious way by interior point methods. Moreover,
the set of all Nash equilibria is computationally “hard” in the sense that various associated
decision problems are NP-complete, e.g. if the game has only one Nash equilibrium, or one
with a certain support size, or with a player’s payoff above a given bound [7] (thesupport
of a mixed strategy is the set of pure strategies that have positive probability). Therefore,
any method for finding one Nash equilibrium, e.g. by divide-and-conquer or incrementally
(which is not obvious at any rate) must be weaker than characterizing the set of all equilibria
in the end, if such a method is to be polynomial (unless P= NP).

The games that we construct are hard to solve for the LH algorithm. Unfortunately,
it is easy to guess the support of the equilibrium, and thereby find it, since the only Nash
equilibrium of our games is fully mixed. A next step in the construction, which we have not
yet done, would thus be tohide the equilibrium support so that it is no longer the set of all
pure strategies.

Equilibrium enumeration methods (see [33], [35], [10], [1] and the survey in [31]) can
be modified to terminate once the first equilibrium is found, and would have to be tested on
our games as well. These methods are designed to produce all rather than just one equilib-
rium, which cannot even be polynomial in theoutputsize (unless P= NP), since deciding if
a game has only one Nash equilibrium is NP-complete ([7], see above). There is no a priori
reason to assume that these methods are good for finding just one equilibrium. Similarly,
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general algorithms for finding equilibria in games with any number of players are not likely
to be fast. These include path-following algorithms [6], which typically specialize to piv-
oting in the two-player case (for a generalization of LH to more than two players see [27],
[34]), and algorithms for approximating fixed points [17][24].

Finding anε-approximateequilibrium (see e.g. [16]) is a different problem than NASH.
In our games, all points on the LH path fulfill the equilibrium condition except for one pure
strategy, and it is possible that the payoff “error” for that strategy goes belowε after a small
number of steps; we have not investigated this. Similarly, a pivoting method implemented
in floating-point arithmetic may quickly and erroneously produce an “equilibrium” due to
rounding errors. Numerical problems arise since our payoffs are derived from the moment
curve, which leads to ill-conditioned matrices. Working implementations of the LH algo-
rithm use exact integer arithmetic [32].

Our work is most closely related to that of Morris [20], who used dual cyclic polytopes
to produce exponentially long paths, called “Lemke” paths in [20], for a related method.
As we will explain in Section 2, this can be interpreted as the LH method for finding a
symmetricequilibrium of a symmetric bimatrix game. However, these games have additional
non-symmetric equilibria that are found very quickly by the general LH algorithm, and are
therefore not useful for our purpose. Morris showed that Lemke paths cannot be used to
address the Hirsch conjecture [12]. This famous conjecture states a tight linear bound on the
shortest path between any two vertices of a polytope, for which the best known bounds are
not even polynomial [11]. Apolynomialpivoting algorithm for NASH (or even for finding a
symmetric Nash equilibrium of a symmetric game, using the symmetrization in (2) below),
applied to zero-sum games, would answer that question as well.

Section 3 describes our construction. The LH paths are defined purely combinatorially
in terms of the supports of, and best responses to, the mixed strategies that it traces. These
correspond to known bit patterns that encode the vertices of dual cyclic polytopes, which are
one of the few classes of polytopes whose face structure is known in arbitrary dimension.
Linear recurrences for the various path lengths give rise to their exponential growth. The
longest path lengths are given by every third Fibonacci number, growing withθ3d=2 for a
d×d game, whereθ is the Golden Ratio. Shorter path lengths are obtained by certain sums
of these, the shortest length beingΩ(θ3d=4).

Section 4 concludes with open problems.

2 Games, polytopes, and the Lemke–Howson algorithm

Given a bimatrix game(A,B) with m × n payoff matricesA andB, a mixed strategy for
player 1 is a vectorx in Rm with nonnegative components that sum to one, and a mixed
strategy for player 2 a similar vectory in Rn. All vectors are column vectors; the row vector
corresponding tox is written as the transposex>. The support of a mixed strategy is the set
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of pure strategies that have positive probability. Abest responseto y is a mixed strategyx
of player 1 that maximizes his expected payoffx>Ay, and a best response tox is a mixed
strategyy of player 2 that maximizes her expected payoffx>By. A Nash equilibrium is a
pair of mutual best responses, that is, a mixed strategy pair(x, y) so thatx>Ay ≥ x>Ay

andx>By ≥ x>By for all other mixed strategiesx andy. Best responses are characterized
by the following combinatorial condition, which we state only for a mixed strategyx of
player 1.

Lemma 1 [22] Let x and y be mixed strategies of player 1 and 2, respectively. Thenx is
a best response toy if and only if all strategies in the support ofx are pure best responses
to y.

Proof. Let (Ay)i be theith component ofAy, which is the expected payoff to player 1
when playing rowi. Let u = maxi(Ay)i . Then

x>Ay =
∑

i

xi(Ay)i = u −
∑

i

xi(u − (Ay)i).

Since the sum
∑
i xi(u − (Ay)i) is nonnegative,x>Ay ≤ u. The expected payoffx>Ay

achieves the maximumu if and only if that sum is zero, that is, ifxi > 0 implies(Ay)i = u,
as claimed.

A game(A,B) is symmetricif A = B>, so it does not change when the players change

roles. The game of “chicken” withA = B> =

(
2 2

4 1

)
is an example. Its equilibria, in terms

of probability vectors, are the bottom left pure strategy pair
(
(0, 1)>, (1, 0)>

)
with payoffs

4, 2 to players 1,2, the top right pure strategy pair
(
(1, 0)>, (0, 1)>

)
with payoffs2, 4, and

the mixed strategy pair
(
(1/3, 2/3)>, (1/3, 2/3)>

)
with payoffs2, 2. The mixed strategy

equilibrium is the only symmetric equilibrium. Its probabilities are uniquely determined by
the condition that the pure strategies in the support of the opponent’s strategy must both be
best responses (by Lemma 1) and hence have equal expected payoff.

In a mixed equilibrium, the probabilities are uniquely given by the pair of supports if the
corresponding sub-matrices have full rank; the support sizes are then equal. This holds if the
game isnondegenerate, defined by the property that the number of pure best reponses to any
mixed strategy never exceeds the size of its support (see [31] for a detailed discussion). Even
in a degenerate bimatrix game, any Nash equilibrium is a convex combination of extreme
equilibria [35][10], which are also determined by linear equalities. The LH algorithm can be
extended to degenerate games by standard lexicographic perturbation techniques [14][31].
All games considered here are nondegenerate.

By Lemma 1, an equilibrium is given if any pure strategy of a player is either a best
response (to the opponent) or is played with probability zero (by the player himself). This
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can be captured by polytopes [37][8] whose facets represent pure strategies, either as best re-
sponses or having probability zero. We explain first the simpler case of symmetric equilibria
of a symmetric game withd× d payoff matrixC to player 1, say. Let

S = { z ∈ Rd | z ≥ 0, Cz ≤ 1 } (1)

where0 and1 denote vectors with all entries 0 and 1, respectively, and inequalities holding
for all components. We can assume thatC is nonnegative and has no zero columnby adding
a constant to all payoffs, which does not change the best response structure, so that the poly-
hedronS is bounded and thus a polytope. We assume there are no redundant inequalities
in Cz ≤ 1, which would correspond to dominated strategies [31]. Then the game is nonde-
generate if and only if the polytopeS is simple, that is, every vertex lies on exactlyd facets
of the polytope [37][8]. A facet is obtained by making one of the inequalities defining the
polytopebinding, that is, by converting it into an equality.

Lemma 2 [33] A mixed strategy pair(x, y) is a symmetric Nash equilibrium of the game
(C,C>) if and only if x = y = u · z and z ∈ S in (1), z 6= 0, u = 1/

∑
i zi, and

z>(1 − Cz) = 0, wherez must be a vertex ofS by nondegeneracy.

Proof. Let z ∈ S, z 6= 0 andu = 1/
∑
i zi . Thenu > 0, andu ·z is a mixed strategyx. The

conditionCz ≤ 1 is equivalent toCx ≤ 1u. The orthogonality conditionz>(1 − Cz) = 0

is equivalent tox>(1u − Cx) = 0, so that for each positive componentxi of x (of which
there is at least one),(Cx)i = u = maxk(Cx)k. Thus, by Lemma 1,x is a best response
to itself, that is,(x, x) is a symmetric equilibrium. Conversely, any such equilibrium(x, x)

with u = maxk(Cx)k, which is positive, andz = 1/u · x, gives a vectorz with the stated
properties.

The vectorz is on d facets ofS since for eachi, eitherzi = 0 or (Cz)i = 1. If z

was not a vertex but on a higher-dimensional face ofS, any vertex of that face would be on
additional facets, contradicting nondegeneracy of the game asS would then not be a simple
polytope.

In the game of chicken above,z = (1/6, 1/3)> gives the symmetric equilibrium. The
vectorz has to be re-scaled to become a mixed strategyx. The equilibrium payoffu, nor-
malized to 1 inCz ≤ 1, is the scaling factor. The converse mapping fromx to z defines a
projective transformation of a polyhedron representing the upper envelope of expected pay-
offs to the polytopeS [31].

The conditions in Lemma 2 define an LCP [3], usually stated as: findz so that

z ≥ 0, q + Mz ≥ 0, z>(q + Mz) = 0,

here with dataM = −C, q = 1. This LCP has a trivial solutionz = 0, which is not a Nash
equilibrium. However,z = 0 is anartificial equilibriumwhich is the starting point of the LH
algorithm (in our first version for symmetric games, giving what [20] calls “Lemke paths”).
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It is useful tolabel the facets ofS [29]. For each pure strategyi, the facets defined by
zi = 0 and by(Cz)i = 1 both get labeli. Every vertex has the label of the facets it lies
on. The complementarity conditionz>(1−Cz) = 0 then means thatz is completely labeled
(has all labelsi), since then eachi is either not played or a best response, as required in
equilibrium. SinceS is simple, such a completely labeled vertex has each label exactly once.

The LH algorithm is started from the completely labeled vertexz = 0 by choosing one
label k that isdropped, meaning that labelk is no longer required. This is the only free
choice of the algorithm, which from then on proceeds in a unique manner. By leaving the
facet with labelk, a unique edge is traversed whose endpoint is another vertex, which lies on
a new facet. The label, sayj, of that facet is said to bepicked up. If this is the missing labelk,
the algorithm terminates at a completely labeled vertex. Otherwise,j is clearlyduplicate,
and the next edge is (uniquely) chosen by leaving the facet that so far had labelj, and the
process repeated. The LH method generates a sequence ofk-almost complementaryedges
and vertices (having all labels except possiblyk, wherek occurs only at the starting point
and endpoint). The resulting path cannot repeat a vertex as this would offer a second way
to proceed when that vertex is first encountered, which is not the case (sinceS is simple).
Hence, it terminates at a Nash equilibrium.

FIGURE 1
2

1d
c

2b

1
a

3
3

This is illustrated in Figure 1 for dimension 3. Pointa is completely labeled, being
adjacent to facets with labels1, 2, 3. Dropping label1, it proceeds to pointb picking up
label 2, now duplicate. The next point isc with duplicate label3, and finallyd where the
missing label1 is picked up, which terminates the path.

As in the simplex algorithm [4], edge traversal is implemented algebraically bypivot-
ing with variables entering and leaving a basis, the nonbasic variables representing the facets.
The only difference is the rule for choosing the next entering variable, which in linear pro-
gramming is done such as to improve the objective function. Here, it is thecomplementary
pivotingrule where the nonbasic variable with duplicate label enters the basis.

Furthermore, the path is directed, giving a “directed parity argument” [24] which puts
the problem in the class PPAD, rather than just in PPA. In Figure 1, the starting pointa
has anorientation, with the labels1, 2, 3 in clockwise order. When label1 is dropped, the
remaining labels keep their orientation (in one dimension less) relative to the edges of the
path. In Figure 1, label2 is always to the left and label3 always to the right of the edge. At
the endpoint of the path, the missing label is picked up at the other end of the edge, so that
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the orientation of that vertex is opposite to that of the starting vertex of the path; in Figure 1,
point d has labels1, 2, 3 in anticlockwise order. This generalizes to higher dimensions,
where orientation is defined as the sign of a certain determinant. The endpoints of any LH
path have opposite orientation, which leads to anindex theoryof equilibria [29][6]. Knowing
the orientation of the artificial equilibrium, the orientation of anyk-almost complementary
edge can be determined directly, which gives the PPAD property.

For nonsymmetric bimatrix games(A,B), or even for finding nonsymmetric equilibria
of symmetric games as in the game of “chicken” above, the LH algorithm is applied as
follows, which is its standard form. Let

z =

(
x

y

)
, C =

(
0 A

B> 0

)
. (2)

The polytopeS of dimensiond = m + n in (1) is then theproductP ×Q of the polytopes

P = { x ∈ Rm | x ≥ 0, B>x ≤ 1 }, Q = {y ∈ Rn | Ay ≤ 1, y ≥ 0 }. (3)

Any Nash equilibrium(x, y) of (A,B) is again given byz>(1−Cz) = 0, which is equivalent
to x>(1 − Ay) = 0 andy>(1 − B>x) = 0. These conditions state thatx is a best response
to y and vice versa, wherex andy have to be normalized to represent mixed strategies. The
only difference to Lemma 2 is that this normalization has to be done separately forx andy,
rather than for the entire vectorz. It is easy to see that in equilibriumx = 0 if and only if
y = 0, where(0, 0) is the artificial equilibrium.

The LH algorithm is then applied as before, where a label corresponds either to a strat-
egy i of player 1 or a strategyj of player 2. These have to be distinct, so it is convenient to
number then strategies of player 2 asm + 1, . . . , m + n, as suggested in [29]. A duplicate
label then represents a pure strategy that has both probability zero and is a best response. If
this is a strategyi of player 1, for example, it determines the facetxi = 0 in P or (Ay)i = 1

in Q, corresponding to the respectiveith inequality in (3).

The LH path on the edges ofS = P×Q is a subgraph of theproduct graphof the edge
graphs ofP andQ. This means that edges are alternately traversed inP andQ, keeping the
vertex in the other polytope fixed. A duplicate label picked up inQ is dropped inP and vice
versa. This is the standard view of the LH algorithm; for further details see [31].

3 Lemke–Howson on labeled dual cyclic polytopes

We construct square games withm = n = d strategies for each player. Similar to [30],
these are derived fromdual cyclic polytopes[37][8] in dimensiond with 2d facets. A
standard way of obtaining a cyclic polytopeP ′ in dimensiond with 2d vertices is to take
the convex hull of2d pointsµ(ti) on themoment curveµ : t 7→ (t, t2, . . . , td)> for 1 ≤ i ≤
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2d. However, the polytopes in (3) are defined by inequalities and not as the convex hull of
points. In the dual of a polytope, its vertices are re-interpreted as normal vectors of facets.
The polytopeP ′ is first translated so that it has the origin0 in its interior, for example by
subtracting the arithmetic meanµ of the pointsµ(ti) from each such point. The resulting
vectorsci = µ(ti) − µ then define the dual cyclic polytope

P ′′ = { z ∈ Rd | c>i z ≤ 1, 1 ≤ i ≤ 2d }.

A vertexu of such a polytope is characterized by a bitstringu1u2 · · ·u2d of length2d, with
the kth bit uk indicating whetheru is on thekth facet (uk = 1) or not (uk = 0). The
polytope is simple, so exactlyd bits are1, the otherd bits are0. Assume thatt1 < t2 <

· · · < t2d when defining thekth facet ofP ′′ by the binding inequality(µ(tk) − µ)z ≤ 1.
Then the vertices ofP ′′ are characterized by the0-1 strings fulfilling theGale evenness
condition [5]: A bitstring represents a vertex if and only if any substring of the form01 · · · 10

has even length, so0110, 011110, etc., is allowed, but not010, 01110, and so on. A maximal
substring of1’s is called arun. We only considerevendimensiond, where the allowed odd
runs of1’s at both ends of the string can be glued together to form an even run, which shows
the cyclic symmetry of the Gale evenness condition. LetG(d) be the set of these Gale
evenness bitstrings of length2d with d ones.

Both P andQ in (3) will be dual cyclic polytopes with a special order of their inequal-
ities corresponding to the facet labels. A suitable affine transformation [30, p. 560] givesP

from P ′ , andQ in a similar manner, so that the firstd inequalities (for the pure strategies of
player 1) inP have the formx ≥ 0, and the secondd inequalities (for the pure strategies of
player 2) inQ arey ≥ 0. The remainingd inequalitiesB>x ≤ 1 in P andAy ≤ 1 in Q

then determine the game(A,B). For further details of the construction see Appendix A. The
game data is of polynomial size ind (so the running time of an algorithm is polynomial in
the size of the game if and only if it is polynomial ind).

The equilibrium condition and the LH algorithm depend on which facets a vertex be-
longs to, as encoded in the Gale evenness bitstrings inG(d), and on the facet labels. These
are defined by permutationsl andl ′ of 1, . . . , 2d for P andQ, respectively. For a vertexu
of P, which we identify with its bitstring inG(d), its labels are given byl(k) whereuk = 1,
and the labels of a vertexv of Q are l ′(k) wherevk = 1, for 1 ≤ k ≤ 2d. Thekth facet
of P (corresponding to thekth position in a bitstring) has labell(k) = k, so l is simply the
identity permutation. Thekth facet ofQ has labell ′(k). The permutationl ′ has the fixed
pointsl ′(1) = 1 andl ′(d) = d, and otherwise exchanges adjacent numbers, as follows:

l ′(k) =





k, k = 1, d,

k + (−1)k, 2 ≤ k ≤ d − 1,

k − (−1)k, d + 1 ≤ k ≤ 2d.

(4)
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The artificial equilibriume0 is a vertex pair(u, v) so thatu is labeled with1, . . . , d andv

with d+1, . . . , 2d. In terms of bitstrings,u = 1d0d (which ared ones followed byd zeros)
andv = 0d1d, which both fulfill Gale evenness, and have the indicated labels underl andl ′,
respectively, so that

e0 = (1d0d, 0d1d) ∈ G(d)×G(d). (5)

A similar Nash equilibriume1 is readily identified, which has full support.

Lemma 3 Let e1 = (0d1d, 1d0d). This is the only Nash equilibrium of the game.

Proof. Let (u, v) be a completely labeled vertex pair, and suppose thatud = 1. If ud+1 = 1,
thenvd = 0 andvd+2 = 0 (via complementarity, sincel ′(d + 1) = d + 2) sovd+1 = 0 by
Gale evenness, and thusud+2 = 1. Continuing in that way, all1’s to the right of thedth
bit ud of u (which is 1) have to come in pairs. Similarly, ifud-1 = 1, thenvd-2 = 0 by
complementarity, which withvd = 0 implies vd-1 = 0. This means that the1’s to the left
of ud come in pairs if there is a zero to the left of them. In the latter case, the run of1’s
containingud has odd length, so it must includeu2d , but then is too long. Hence, the only
possibility whereud = 1 is when(u, v) = e0 . Similarly, ud = 0 implies (u, v) = e1.

Hence, all LH paths, for any dropped label, lead frome0 to e1 . Denote byπ(d, k) the
path when labelk is dropped in dimensiond, regarded as a sequence(u0, v0) (u1, v1) · · ·
(uL, vL) of vertex pairs inP×Q, that is, inG(d)×G(d), and letL(d, k) = L be the length
of that path.

1 0 0 0 01 1 1

1 0 01 10 0 1
1 0 01 1 100

1 0 0 01 1 10

1 01 1 10
1 1 1 10

0
00

0
0 1 0 0 0 01 1 1

0 0 0 01 1 1 1
0 0 01 1 10 1

01 10 0 1
0 01 10 10 1

0 1
0 0 0 0 1 1 1 1

1 3 2 4 6 5 8 71 2 3 4 5 6 7 8
1 3 2 4 6 5 8 71 2 3 4 5 6 7 8

FIGURE 2 FIGURE 3

As an example, Figure 2 showsπ(4, 8), with P on the left andQ on the right. The
numbers at the top are the labelsl(k) andl ′(k) for k = 1, . . . , 8. The starting pointe0 is the
vertex paire0 = (u, v) = (11110000, 00001111). We first drop label8 in Q, so the bitv7
(sincel ′(7) = 8) changes from1 to 0, which by Gale evenness gives the bit string10001101

as the new vertexv ′ in Q. In Figure 2,u is connected to bothv andv ′ by a sloped line.
These sloped lines (forming the middle zigzag path) indicate the vertex pairs on the LH path,
which we use since in each step only one vertex changes but the other stays fixed. Inv ′,
label1 has been picked up, which is now duplicate and dropped inP, giving the next vertex
01111000. The new duplicate label is5 and in the next step dropped inQ, giving vertex
10011001. In that manner, the path proceeds until it ends ate1 .

10



All paths can be expressed in terms of the two special pathsπ(d, 1) and π(d, 2d).
These have certain symmetries.

Lemma 4 Let L = L(d, 1) and let(ui, vi) be theith vertex pair of the pathπ(d, 1). Then
for 0 ≤ i ≤ L, (ui, vi) = (vL-i, uL-i).

Proof. The particular names of the labels do not matter, so we can re-name them for bothP

andQ with the permutationl ′ in (4), thekth facet inP getting labell ′(l(k)), which isl ′(k),
and inQ labell ′(l ′(k)), which isl(k). But thenP andQ switch roles,e0 is exchanged with
e1 , label1 stays the same, and the path backwards corresponds toπ(d, 1) itself as claimed.
Examples are Figures 5, 7, 10 ford = 2, 4, 6 in Appendix B.

For the pathπ(d, 2d), we disregard the first vertex pair and the last two vertex pairs.
The remaining path, which will callB(d), is point-symmetric in each polytope, by reversing
the bitstrings while ignoring the zero bit for the missing label. Figure 3 shows this ford = 4

where the disregarded rows and columns are struck out. Examples are Figures 6, 9, 11, 12
for d = 2, 4, 6, 8 in Appendix B.

Lemma 5 Let L = L(d, 2d) and let(ui, vi) be theith vertex pair of the pathπ(d, 2d) for
0 ≤ i ≤ L = L(d, 2d). Then for1 ≤ i ≤ L − 2,

uik = uL-1-i2d-k (1 ≤ k ≤ 2d − 1), (6)

vi1 = vL-1-i2d = 1, (7)

vik = vL-1-i2d-k (2 ≤ k ≤ 2d − 2), (8)

ui2d = vi2d-1 = 0. (9)

In (u1, v1), the duplicate label is1, which is then dropped inP, and never picked up again.

Proof. An example for the following arguments is provided by Figure 2. Equation (9) holds
because label2d is missing for alli = 1, . . . , L − 2. After one step onπ(d, 2d), the vertex
pair

(u1, v1) = (1d0d, 10d-11d-201) (10)

is reached. The duplicate label is1, which has been picked up inQ, and will next be dropped
in P from u1 . The last vertex pair ofπ(d, 2d) is (uL, vL) = ed1 . This is reached by picking
up label2d in P. The previous vertex pair is therefore(uL-1, vL-1) = (0d-11d0, 1d0d),
where labeld is duplicate. The vertex pair(uL-2, vL-2) is therefore

(uL-2, vL-2) = (0d-11d0, 1d-10d1), (11)

with duplicate label2d − 1. This vertex pair is reached from

(uL-3, vL-3) = (0d-21d00, 1d-10d1) (12)
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by picking up this label2d − 1 in P. Equations (10) and (11) describe the starting vertex
pair (u1, v1) and ending vertex pair(uL-2, vL-2) of the pathB(d).

The mappingr defined byr(k) = 2d−k for 1 ≤ k ≤ 2d− 1, andr(2d) = 2d, serves
as a relabeling to prove the claimed symmetry ofB(d). Equation (6) is equivalent to

uik = uL-1-ir(k) (1 ≤ k ≤ 2d − 1). (13)

We will show shortly that (7) and (8) together are essentially equivalent to the equations,
similar to (13),

vil ′(k) = vL-1-il ′(r(k)) (1 ≤ k ≤ 2d − 1). (14)

When labelk is dropped inQ from vi , then the bitvij in positionj so thatl ′(j) = k changes
from one to zero. Sincel ′ is its own inverse,j = l ′(k). So, (14) has to be read as: the bit of
vertexvi in positionl ′(k), which has labelk, is equal to the bit of vertexvL-1-i in position
l ′(r(k)), which has labelr(k).

In addition to the two equations (13) and (14), we will show by induction oni: If
label k is duplicate in the vertex pair(ui, vi), then labelr(k) is duplicate in the vertex
pair (uL-1-i, vL-1-i), and when labelk is dropped in one polytope (P or Q) going from
(ui, vi) to (ui+1, vi+1), then labelr(k) is dropped in the same polytope going backwards
from (uL-1-i, vL-1-i) to (uL-2-i, vL-2-i).

Equations (10) and (11) show that (13) holds fori = 1, and the duplicate label is1
in (u1, v1) and r(1) in (uL-2, vL-2). When i is odd, then in the step from(ui, vi) to
(ui+1, vi+1) the duplicate label is dropped inP, andvi = vi+1. Similarly, the backwards
step from(uL-1-i, vL-1-i) to (uL-2-i, vL-2-i) is also done by dropping the label inP. If
in these two steps, the duplicate labels arek and r(k), respectively, then (13) also holds
for i + 1 instead ofi, becauser preserves the Gale evenness condition (r is a reversal of
the bitstrings and cyclic shift by one position), so the verticesui and ui+1 are joined by
an edge inP if and only if uL-1-i anduL-2-i are joined by an edge (defined by the same
labels, using the relabelingr) in P. Moreover, a new label, sayk ′, is picked up inP which
is the duplicate label of the vertex pair(ui+1, vi+1), and the duplicate label in the vertex pair
(uL-2-i, vL-2-i) is thenr(k ′). This shows the inductive step fromi to i + 1 wheni is odd.

We now considerQ. The set{2, 3, . . . , 2d − 2} is mapped to itself under bothr and
l ′ defined in (4); note that both bijections mapd to itself. It is then easy to see that (8) is
equivalent to (14) for2 ≤ k ≤ 2d − 2. For k = 1, we havel ′(k) = 1 andl ′(r(k)) = 2d,
so (14) fork = 1 (or k = 2d − 1, which gives the same equation) follows from (7); we will
prove the stronger assertion (7).

As inductive hypothesis, assume that for somei equations (7), (13), and (14) hold;
moreover, that the duplicate label isk and dropped fromvi in Q (that is,i is even), and that
the duplicate label to be dropped when going backwards fromvL-1-i to vL-2-i is r(k). This
is true fori = 2 by (12), wherek = d + 1. Suppose that labelk ′ is picked up inQ in vertex
vi+1. We want to show thatvL-2-i has the new labelr(k ′).
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Call two labels (of any vertex) inQ adjacentif they are the labels of two cyclically
adjacent positions in the bitstring, as determined byl ′. Unlike in P, if some labelsa andb

are adjacent inQ, then there are cases wherer(a) andr(b) are not adjacent. This occurs
when(a, b) is any one of the pairs(1, 3), (2d − 3, 2d), (2d, 2d − 1). Similarly, the labels
r(a) andr(b) are adjacent when(a, b) is (2d − 1, 2d − 3), (3, 2d), or (2d, 1) but thena

andb are not. However, we show that this does not matter, considering each of these three
cases (and their symmetric counterparts) in turn.

Because of the inductive assumption (7), and (9), the adjacent labels2d, 2d−1, 1 in Q

(in positions2d − 1, 2d, and1, respectively) correspond to the bits0, 1, 1 for both current
verticesvi andvL-1-i. First, suppose that when dropping labelk from vi, it matters that
labels1 and3 are adjacent. That is, the run of ones that is changed in going fromvi to vi+1

includes positions 1 and 2 (which have labels1 and 3, respectively). This would cause a
problem since labelsr(1) = 2d − 1 andr(3) = 2d − 3 in vL-1-i are not adjacent (because
they correspond to positions2d and2d − 2, respectively). This could occur in two cases:
First, whenk = 2d − 1, because then the above bits0, 1, 1 would change to0, 0, 1 and the
even run of ones starting in position2d (with label2d − 1) would “shift to the right” across
positions1 and2, which have labels1 and3 in Q. But then, by the inductive assumption,
the dropped labelr(k) when going backwards fromvL-1-i to vL-2-i is 1, which is the label
of the rightmost bit in0, 1, 1, which shifts left to become1, 1, 0, so that the label picked
up in vL-2-i would be2d, contradicting (9). The second case occurs when the said string
0, 1, 1 would shift left to become1, 1, 1 (where the third one, in position 1, is shifted in from
position 2), again contradicting (9).

Second, suppose it matters that labels2d − 3 and2d are adjacent invi but r(2d − 3)

and r(2d) in vL-1-i are not. This can only happen when label2d is picked up, which it
is not, by (9). Third, the fact that labels2d and2d − 1 are adjacent invi but r(2d) and
r(2d − 1) in vL-1-i are not does not matter either, because label2d is not picked up.

These three cases have their counterparts where labelsr(2d − 1) and r(2d − 3) in
vL-1-i are adjacent, but2d − 1 and2d − 3 in vi are not; the reasoning is identical to the
first case above. The second and third case are thatr(3) and r(2d), andr(2d) and r(1),
respectively, are adjacent invL-1-i , which is again unproblematic.

This completes the inductive step fromi to i + 1 for all i, so that equations (6) to (9)
hold throughout.

Two vertices ofG(n) are connected by an edge if and only if the corresponding bit-
strings differ only by two substrings which are1k0 for one bitstring and01k for the other
(wherek is even), using the cyclic symmetry of the Gale evenness bitstrings if necessary.
For example, the verticesv0 and v1 in Figure 2 are00001111 and 10001101, where the
substrings are those in positions7, 8, 1. These use the cyclic symmetry since the substrings
in question involve both position2d and position1. We say that such an edgewraps around
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(the end of the 0-1 string). If the mentioned substrings1k0 and 01k are contiguous sub-
strings of positions1 through2d, the edge doesnotwrap around, like, for example, the edge
connecting verticesu0 = 11110000 andu1 = 01111000 in Figure 2.

Lemma 6 No edge ofπ(d, 1) wraps around (in either polytope): If the edge connects(u, v)

to (u ′, v), then the edge connectingu andu ′ in P does not wrap around, and if the edge of
π(d, 1) connects(u, v) to (u, v ′), then the edge connectingv and v ′ in Q does not wrap
around.

Proof. The first edge ofπ(d, 1) joining e0 to (01d0d-1, 0d1d) does not wrap around, and
neither does the last edge joining(0d1d, 01d0d-1) to e1. In all other edges, position1 is zero
in both polytopes, so none of these edges wraps around either.

For any two pathsπ andπ ′ onG(n)×G(n), we denote byπ+π ′ the path obtained by
joining the last vertex pair ofπ to the first pair ofπ ′, assuming this is possible. The length
of the new path is the sum of the lengths ofπ andπ ′ plus one; the number ofvertex pairsis
simply the respective sum.

The following central theorem describes how pathsπ(d, 1) andπ(d, 2d) are composed
of other such paths, possibly from lower dimension. Appendix B shows these paths as pat-
terns of bitstrings that illustrate this, as indicated in detail in the proof.

Theorem 7 Let A(d) = π(d, 1) andB(d) = (u1, v1) · · · (uL-2, vL-2) where(ui, vi) is the
ith vertex pair ofπ(d, 2d), 0 ≤ i ≤ L = L(d, 2d). Then there are pathsC(d) and mappings
α,β, β ′, γ, γ ′ defined on vertex pairs, and extended to sequences of vertex pairs, so that

A(d) = β(B(d)) + C(d), (15)

C(d) = α(A(d − 2)) + β ′(B(d)), (16)

B(d) = γ(A(d − 2)) + γ ′(C(d − 2)). (17)

Proof. Overview: The pathC(d) is simply a tail segment ofA(d). The mappings are given
as follows:β andβ ′ are defined onG(d)×G(d),

β(u, v) = (u, 0v2v3 . . . v2d-21v2d),

andβ ′ is determined byβ due to Lemma 4. Furthermore,α, γ, γ ′ : G(d−2)×G(d−2) →
G(d)×G(d). With u

 
defined as the bitstringu reversed,

α(u, v) = (0u
 

110, 0 v
 

110). (18)

With c = 2d − 4,
γ(u1 . . . uc, v) = (u111u2 . . . uc00, 10v01). (19)
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We obtainγ ′ from γ by Lemma 5.

First we show, equivalent to (15) and (16), that

A(d) = β(B(d)) + α(A(d − 2)) + β ′(B(d)). (20)

Note that only positions1 and 2d − 1 in Q (corresponding to the missing label inA(d)

and B(d), respectively) are changed by the mappingβ, and these positions are constant
throughoutB(d) by (7) and (9). The starting point(u1, v1) of B(d) is given by (10), and
in the first step ofB(d) label 1 is dropped inP. The pathA(d) is also started by dropping
label 1 in P from ed0 . Now β(u1, v1) = ed0 , as required, and in the first step ofA(d) and
B(d) the label to be dropped is1 in P. As (u1, v1) anded0 differ only in positions that are
constant throughoutB(d), the pathB(d) maps toβ(B(d)) and thereby represents the initial
part ofA(d). An example isB(6) in Figure 11 (omitting fromπ(6, 12) the first and the last
two vertex pairs), andA(6) in Figure 12. By (11), the endpoint ofβ(B(d)) is

β(0d-11d0, 1d-10d1) = (0d-11d0, 01d-20d-111). (21)

The duplicate label is2d − 1, which has been picked up inP. So in the next step ofA(d),
label2d − 1 is dropped inQ and label2d − 3 is picked up, giving the vertex pair

(u∗, v∗) = (0d-11d0, 01d-20d-2110). (22)

(For the pathπ(d, 2d), labeld would be picked up instead at this stage, as stated in the proof
of Lemma 5.) This is the edge ofA(d) which joinsβ(B(d)) to α(A(d − 2)) in (20).

We are now at the start ofC(d) and want to show that this path segment starts with
α(A(d − 2)) with α in (18). Indeed, the starting vertex pair ofC(d) is (u∗, v∗) = α(ed-20 ).
The duplicate label is2d − 3, which is to be dropped inP in the next step. The subsequent
steps are represented byα(A(d − 2)) since in the lower-dimensional polytope, label1 is
dropped, which is mapped byα to label2d − 3 of the higher-dimensional polytope, consid-
ering α also as an injective map of labels, obtained in the obvious way from (18), namely
α(k) = 2d − 2 − k for 1 ≤ k ≤ 2d − 4. Essentially, the subsequent steps inA(d − 2) map
into higher dimension by (18) and by Lemma 6; we only need to check complementarity
of the constant positions in higher dimension. In the higher dimension, position1 with the
missing label1 is zero in both polytopes, consistent with (18). Positions2d − 1 and2d are
also complementary by (18). For positions2d − 3 and2d − 2, we have complementarity
because2d − 3 is zero as it is obtained from the position with the missing label1 in lower
dimension. This shows that the initial segment ofC(d) is indeedα(A(d − 2)).

In the last step ofA(d−2), label1 is picked up inQ. So in the last step ofα(A(d−2)),
label 2d − 2 is picked up inQ. Then we are at the vertex pair(v∗, u∗) = α(ed-21 ), which
is (01d-20d-2110, 0d-11d0) by (22). We have shown that the initial part ofA(d) in (20) is
β(B(d))+α(A(d−2)) and that the starting point and endpoint ofα(A(d−2)) are(u∗, v∗)
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and(v∗, u∗), respectively. Then the rest of the pathA(d) in (20) is obtained by Lemma 4:
The next vertex pair, obtained from(v∗, u∗) by dropping label2d − 2 in P, is

(u ′, v ′) = (01d-20d-111, 0d-11d0), (23)

which agrees with Lemma 4 and (21). Thus, the remainder is the pathβ(B(d)) backwards
but with the bitstrings forP andQ exchanged. However, using the symmetry ofB(d) in
Lemma 5, this part of the path can be expressed asβ ′(B(d)) with a suitably defined mapping
β ′, similar toβ, which exchanges the bitstrings forP andQ. This shows (20). (Figures 7,
10, 11 illustrate the cased = 6.)

We now show (17). (Ford = 8, Figures 12 and 10 showB(8) andA(6), and Figures
7 and 11 together giveC(6) as in (16).) The first part ofB(d) is indeedγ(A(d − 2)): Both
B(d) andA(d− 2) start by dropping label1 in P, and the starting point ofB(d) is γ(ed-20 ).
Then B(d) proceeds likeγ(A(d − 2)) because of Lemma 6 and since complementarity
holds for the constant positions in higher dimension, which is easily checked using (19).
Next, by (20),

γ(A(d − 2)) = γ[β(B(d − 2)) + α(A(d − 4)) + β ′(B(d − 2))]. (24)

Now consider the starting point(u ′′, v ′′) of β ′(B(d − 2)), which is (u ′, v ′) given by (23)
but with d− 2 instead ofd. Furthermore, consider the endpoint ofβ ′(B(d− 2)), that is, the
endpointed-21 of A(d − 2). The images of these points underγ are

γ(u ′′, v ′′) = γ(01d-40d-311, 0d-31d-20) = (01d-20d-31100, 10d-21d-2001)

γ(ed-21 ) = γ(0d-21d-2, 1d-20d-2) = (0110d-31d-200, 101d-20d-11).

This shows that these two vertex pairsγ(u ′′, v ′′) and γ(ed-21 ) are mirror images of each
other under the symmetry ofB(d) described in Lemma 5. This means that the endpoint
γ(ed-21 ) of γ(A(d − 2)) is already in the second half ofB(d). The central part ofB(d),
given by the last part ofγ(A(d − 2)) in (24), is γ[β ′(B(d − 2))]. Therefore, there is a
mappingγ ′ so that

B(d) = γ[β(B(d− 2))+α(A(d− 4))+β ′(B(d− 2))]+γ ′[α(A(d− 4))+β ′(B(d− 2))],

because the pathsA(d − 4) andB(d − 2) are symmetric and therefore do not have to be
written backwards. This representation ofB(d) is equivalent to (17) as claimed.

Let an be the number of vertex pairs ofA(2n), which is one more than the length
L(2n, 1) of that path. Letbn andcn be that number forB(2n) andC(2n), respectively.
That is,

an = L(2n, 1) + 1, bn = L(2n, 4n) − 2 (n ≥ 1). (25)

Then the concatenation of paths in (15) impliesan = bn + cn, in (16) cn = an-1 + bn ,
and in (17)bn = an-1 + cn-1 . Moreover, the pathsπ(2, 1) andπ(2, 4) have length4 =
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a1 − 1 = b1 + 2. This shows that the numbersb1, c1, a1, b2, c2, a2, . . . are the Fibonacci
numbers2, 3, 5, 8, 13, 21, . . . given by

f0 = 1, f1 = 2, fn+1 = fn + fn-1 (n ≥ 1), (26)

that is,
an = f3n, bn = f3n-2 (n ≥ 1). (27)

So both the lengths ofπ(d, 1) and ofπ(d, 2d) for evend = 2n = 2, 4, 6, . . . are given by
every third Fibonacci number (minus one and plus two, respectively). These are the longest
paths. They occur several times, sinceL(d, 1) = L(d, d) andL(d, d + 1) = L(d, d + 2) =

L(d, 2d − 1) = L(d, 2d). As shown next, this is due to the symmetry of the Gale evenness
condition and of the labelings. Other pathsπ(d, k) are given as concatenations of these
paths in lower dimension. They are characterized, for all possible dropped labelsk, in
the following theorem. The lengths of these paths ford ≤ 14 are shown in Table 1 in
Appendix B.

Theorem 8 The LH path lengths for any dropped label are characterized by(25), (26), (27),
and

(a) L(d, k) = L(d, d + 1 − k) andL(d, d + k) = L(d, 2d + 1 − k), for 1 ≤ k ≤ d;

(b) L(d, k) = L(d, k + 1) for evenk when2 ≤ k ≤ d − 2, and oddk whend + 1 ≤ k ≤
2d − 1;

(c) L(d, k) = L(k, 1) + L(d − k, 1) for evenk and2 ≤ k ≤ d − 2;

(d) L(d, d + k) = L(k, 2k) + L(d − k + 2, 2(d − k + 2)) − 4 = bk=2 + bd=2-k=2+1 whenk

is even and4 ≤ k ≤ d − 2.

Proof. Overview. Claim (a) is proved using a cyclic shift byd of each string inG(d)

followed by a reversal, which leavesG(d) invariant and is compatible with the labelings
l and l ′. Claim (b) is proved like Lemma 4. For (c), the pathsA(k) and A(d − k) are
concatenated with extension mappings similar to (15), (16), (17). A similar argument applies
to (d) using the pathsB(k) andB(d − k + 2). Using (b), cases (c) and (d) cover all possible
dropped labels. The range ofk in (d) can be restricted because of (a) and (b); by (25), we
could have allowedk = 2 in (d), but there would be nothing to prove.

For (a), letψ be defined byψ(k) = d − k + 1 and ψ(d + k) = 2d − k + 1 for
k = 1, . . . , d. This is a cyclic shift byd followed by a reversal of positions, which leaves the
setG(d) invariant. Furthermore,ψ commutes with the labelingsl andl ′ of P andQ, so the
Lemke–Howson algorithm proceeds in the same manner. That is to say, the vertex pairs on
the pathπ(d, k), seen as a pairs of 0-1 strings, are step by step the same when the positions
in each string are permuted according toψ. Underψ, the first vertex paire0 (and similarly
the last paire1) is mapped to itself, but the positions are changed as above. This means that
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underψ, the pathπ(d, k) is mapped toπ(d, d − k + 1), so these two paths have the same
length. Figures 7 and 8 in Appendix B illustrate the cased = 4, k = 1.

To show (b), let2 ≤ k ≤ d−2. As in Lemma 4, the relabelingl ′ in (4) applied to both
P andQ shows thatπ(d, k) corresponds to the pathπ(d, k + 1) backwards, so these paths
have the same length.

Claim (c) requires more work. For any pathsA andB on G(n)×G(n), considered as
sequences of vertex pairs, letAB denote the pathA joined to the pathB, where the endpoint
of A is equal to the starting point ofB. The length (number of edges) ofAB is the sum of
the lengths ofA andB.

We prove the the following statement, which clearly implies (c): Letk be even and
2 ≤ k ≤ d − 2. Then

π(d, k) = α(A(k)) β(A(d − k))

with α : G(k)×G(k) → G(d)×G(d) = P ×Q,

α(u, v) = (uk · · ·u11d-k0d-ku2k · · ·uk+1, vk · · · v10d-k1d-kv2k · · · vk+1), (28)

andβ : G(d − k)×G(d − k) → G(d)×G(d),

β(u, v) = (0ku1k, 1kv0k).

The starting point ofπ(d, k) is ed0 . As required,α(ek0) = ed0 . In the first step ofπ(d, k),
labelk is dropped inP. Position1 of the lower dimensional polytopes, given by the bitu1

and v1 in (28), is mapped to positionk in both P and Q in the higher dimension. InP,
positionk has labelk, which is missing inπ(d, k). This missing label in the higher dimen-
sional polytopeP corresponds to the missing label1 in the lower dimension. Becauseα
preserves the adjacency of labels cyclically, and since by Lemma 6 the pathA(k) does not
wrap around, the firstL(k, 1) steps ofπ(d, k) proceed according toα(A(k)); all we need
to check is the complementarity of the positions of the higher dimensional polytope which
are constant according toα. Complementarity of positionsk + 2, . . . , 2d − k is immediate.
Positionk andk + 1 in P andQ, respectively, correspond to the missing labelk of π(d, k)

and are thus both zero throughout. Finally, positionk+1 in P, with labelk+1, is 1 accord-
ing to (28), and is complementary since positionk in Q with labelk + 1 is 0 throughout, as
it corresponds to the missing label in the lower dimensional polytope. At the end of the first
L(k, 1) steps, the vertex pairα(ek1) is reached, where

α(ek1) = (0k1d-k0d-k1k, 1k0d-k1d-k0k) = β(ed-k0 ),

and so this is also the starting point ofβ(A(d − k)), as required. In a similar way as before,
one can see that this is the second part ofπ(d, k), which ends inβ(ed-k1 ) = ed1 . This
shows (c). Figures 13, 7 and 10 in Appendix B illustrate the cased = 10, k = 4.
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Let k be even and4 ≤ k ≤ d − 2. To show (d), we construct suitable mappingsγ

andδ so that
π(d, d + k) = ed0 + γ(B(k)) δ(B(d − k + 2)) + ed1 . (29)

These mappings areγ : G(k)×G(k) → G(d)×G(d) = P ×Q,

γ(u, v) = (u11
d-ku2 · · ·u2k0d-k, v10d-kv2 · · · v2k1d-k), (30)

andδ : G(d − k + 2)×G(d − k + 2) → G(d)×G(d) = P ×Q,

δ(u, v) = (vd-k+2 · · · v2d-2k+2 0k-21k0 v2 · · · vd-k+1,
ud-k+2 · · ·u2d-2k+2 1k-2u2d-2k+30

k-1u1 · · ·ud-k+1).

It can be verified that these mappings preserve the adjacency of relevant labels and comple-
mentarity. The pathπ(d, d + k) starts as follows: after dropping fromed0 labeld + k in Q,
which is in positiond+k−1, the vertex pair is(1d0d, 10d-11k-201d-k+1), which is equal to
γ(u1, v1) for the first vertex pair(u1, v1) of B(k) as in (10) (withk instead ofn), also with
duplicate label1. The path continues as described in (30) since the bitsv1 andv2k in (30)
stay constant according to (7). The last vertex pair ofγ(B(k)) is, by (11) and (30), equal to

γ(0k-11k0, 1k-10k1) = (01d-k0k-21k0d-k+1, 10d-k1k-20k1d-k+1).

This is equal toδ(1d-k+20d-k+2, 10d-k+11d-k01), which isδ applied to the first vertex pair
of B(d − k + 2), using (10) withd − k + 2 instead ofd. The duplicate labeld + k − 1 to
be dropped, in positiond − k in Q, is the image of the bitu1 underδ, where this bitu1 is
dropped inB(d − k − 2) by Lemma 5. Note thatδ(u, v) ignores the bitsu2d-2k+4, andv1 ,
v2d-2k+3 , andv2d-2k+4, which are constant throughoutB(d − k + 2) by Lemma 5. The last
vertex pair ofδ(B(d − k + 2)) is

δ(0d-k+11d-k+20, 1d-k+10d-k+21) = (0d-11k01d-k, 1d0d)

with duplicate labeld, which has just been picked up inQ as the image of bitu2d-2k+3
underδ. When this labeld is dropped inP, the endpointed1 is reached, which terminates
the pathπ(d, d + k). This completes the proof of (29). According to (29), the length of
π(d, d + k) is the sum of the lengths ofB(k) and ofB(d − k + 2) plus two (for the first
edge fromed0 and last edge toed1 ), which shows (d). The cased = 10, k = 4 is illustrated
by Figures 14, 9 and 12 in Appendix B.

It is easy to see that the shortest path lengths are obtained as follows: Ifd is divisible by
four, that is,d/2 is even, then the shortest path length occurs when dropping labeld/2, and
is given byL(d, d/2) = 2ad=2−2 according to Theorem 8(c). Ifd/2 is odd, then the shortest
path length occurs for dropped label3d/2, whereL(d, 3d/2) = L(d, 3d/2 + 1) = 2bd=2+1

by Theorem 8(b) and (d). Whend/2 is even, the path when dropping label3d/2 is only
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two steps longer than when dropping labeld/2 since thenL(d, 3d/2) = bd=2 + bd=2+1 =

bd=2 + ad=2 + cd=2 = 2ad=2. Therefore, the shortest path results essentially when dropping
label3d/2.

The Fibonacci numbers are given by the well-known explicit expression

fn = Kθn + K θ n, θ, θ = 0.5± 0.5
√

5, K, K = 0.5± 0.3
√

5,

whereθ = 1.618 . . . is the Golden Ratio andK = 1.170 . . .. Then fn is Kθn rounded
to the nearest integer sinceK θ n is less than 0.5 and at any rate exponentially small. By
Theorem 8(d), the sequence of shortest LH path lengthsL(2n, 3n) for n = d/2 = 1, 2, 3, . . .

is 4, 10, 16, 42, 68, 178, . . ., which is the sequence of Fibonacci numbers (multiplied by two)
with every third number omitted. These shortest lengths grow with the square root of the
longest lengths, which is still exponential.

Corollary 9 There ared× d games, for evend, where each LH path has lengthΩ(θ3d=4).

A similar construction using a similar labeling to (4) is possible for oddd, but there
the path lengths are less symmetric than those in Theorem 8 for evend. We do not need this
since it is trivial to obtain an odd-dimensional game from the next lower even dimension by
adding a strictly dominated strategy for each player.

4 Conclusions and open questions

In this paper, we have presented a construction ofd × d games with a unique equilibrium
which is found by the LH algorithm using an exponential number of steps, for any dropped
label. Unfortunately, the equilibrium is easilyguessedsince it has full support, so our games
are not “hard to solve” by other methods. This holds because the permutationl ′ in (4) gives
the artificial equilibriume0 in (5), but also its complemente1 in Lemma 3, which is the
completely mixed equilibrium (see also condition (35) in Appendix A below).

It is an open problem to find a suitable construction, perhaps extending ours, where the
game does not have a completely mixed equilibrium, but where all equilibria are still found
using an exponential number of LH steps. If the support of an equilibrium isd/2, say, then
it could behiddenby randomly permuting the players’ strategies, so that it would take an
exponential number, like some fraction of

( d
d=2

)
, of guesses to find that support.

Lemke’s algorithm [15] is closely related to the LH algorithm. It solves an LCP [3]
by introducing an auxiliary vector and variable into the system, and pivots according to the
same complementary pivoting rule as LH, until the extra variable becomes zero, thereby
computing an equilibrium. This method can be given an interpretation in game-theoretic
terms [32]. Its extra flexibility given by the choice of numerical values in the auxiliary vector,
rather than just of finitely many starting edges as in the LH algorithm, deserves further study.
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It may happen that the equilibrium in our construction is found quickly from a suitable, easily
found starting point. A possibly related study is [18].

Using the games presented here as test cases raises the additional problem that the
moment curve gives rise to notoriously ill-conditioned matrices. As a consequence, numeri-
cal problems arise when the pivoting steps are implemented using floating-point arithmetic.
These numerical problems may possibly be avoided by using points on the trigonometric
moment curve, as mentioned in Appendix A. As mentioned there, an open problem is the
required numerical accuracy of these points.
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Appendix A: Generating game matrices

In this appendix, we describe how to obtain games from representations of cyclic polytopes.
In principle, this has already been described in Proposition 2.1 of [30] for general polytopes.
In our case, as well as in the construction of games with a large number of equilibria in
[30], the polytopes are dual cyclic polytopes in dimensiond with 2d facets, with a labeling
of the facets of each polytope that has a certain structure. This structure allows a further
simplification: Only one of dual cyclic polytopes, sayP, has to be brought into the form (3),
whered of the inequalities are simply nonnegativities and the otherd inequalities define the
payoff matrix of one player, hereB. The other polytope, and thus the payoff matrixA of
the other player, is then simply obtained by a suitable permutation of the rows and columns
of B>. We first explain this construction, which is summarized in Proposition 10 below.

Secondly, we apply this to a representation of cyclic polytopes in dimensiond = 6 de-
rived from the so-called trigonometric moment curve. In this low dimension, the coordinates
on that curve can be approximated by small integers, which gives rise to small game matrix
entries.

As indicated at the beginning of Section 3, a standard way of obtaining a cyclic polytope
in dimensiond with 2d vertices is, first, to consider2d pointsµ(ti) on the moment curve
µ : t 7→ (t, t2, . . . , td)> for 1 ≤ i ≤ 2d. Suppose thatt1 < t2 < · · · < t2d . Then the
vertices of that polytope are characterized by the0-1 strings fulfilling the Gale evenness
condition. Thepolar (or dual) polytope [37][8] is obtained by translating the polytope so
that it has the origin0 in its interior, for example by subtracting the arithmetic meanµ of
the pointsµ(ti) from each such point. The resulting vectorsci = µ(ti) − µ then define the
polar cyclic polytope

P ′ = { z ∈ Rd | c>i z ≤ 1, 1 ≤ i ≤ 2d }. (31)

As described in [30, p. 560], ifP ′ = { z ∈ Rd | Cz ≤ 1, Dz ≤ 1 } with d × d matricesC
andD, then an affine transformation ofP ′ is given by

P = { x ∈ Rd | x ≥ 0, −DC-1x ≤ r } , r = 1 − DC-11. (32)

Since 0 is a vertex of the simple polytopeP, the vectorr is positive, and the secondd
inequalities in (32) can be re-normalized so that the right hand side is one. With the diagonal
matrix S with entriessii = 1/ri with r as in (32), andsij = 0 for i 6= j, we can rewrite (32)
as

P = { x ∈ Rd | x ≥ 0, −SDC-1x ≤ 1 } . (33)

Affine transformations leave the combinatorial structure (that is, the face incidences) of
a polytope unchanged, soP is a cyclic polytope with facets characterized by Gale evenness
strings. These Gale evenness strings refer to the2d inequalities definingP according to the
ordering in (33), that is,x1 ≥ 0 being the first inequality obtained from the first pointµ(t1)

on the moment curve,x2 ≥ 0 corresponding toµ(t2), and so on.
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Consider the polytopeQ defined by

Q = { y ∈ Rd | −SDC-1y ≤ 1, y ≥ 0 } , (34)

which is identical toP in (33) except that the first and lastd inequalities are interchanged.

In a dual cyclic polytope likeP in (33), each inequality defines a facet (obtained by
converting the inequality to an equality). We say that a facet ofP has label k (for k =

1, . . . , 2d) if it corresponds to thekth inequality in the description of the polytope in (33).
Similarly, a facet ofQ has labelk if it corresponds to thekth inequality in (34). IfP and
Q in (33) and (34) are the polytopesP andQ in (3), they define a symmetric bimatrix game
with payoff matrices(A,B) whereB> = A = −SDC-1 .

The vertices of a dual cyclic polytope are given by the sets ofd facets each vertex
lies on. Encoded as bitstrings, these sets are characterized by the Gale evenness condition
explained at the beginning of Section 3, withG(d) as the set of these bitstrings. We assume
d is even. Then the Gale evenness condition is preserved by a cyclic rotation of the bitstrings,
in particular byd positions, as used in the definition (34) ofQ. Thus, the vertices of both
P andQ correspond to the Gale evenness strings in the setG(d). A bitstring u in G(d)

defines the vertexx of P obtained by converting thekth inequality in (33) to an equality
wheneveruk = 1, for k = 1, . . . , 2d. In the same manner,v in G(d) defines the vertexy
of Q where thekth inequality in (34) is binding whenevervk = 1.

In our construction, as well as in [30], the polytopesP andQ in (3) are dual cyclic
polytopes but the games are not symmetric, because the facets ofQ are not labeled in their
original order. Instead, a certain permutationλ is used to obtainQ from Q, by letting the
kth facet ofQ in the description (34) have labelλ(k) in Q, for k = 1, . . . , 2d. In our
construction, we used the permutationλ = l ′ defined in (4). Withλ(S) = {λ(k) | k ∈ S} for
S ⊆ 1, . . . , 2d, this permutation has the property

λ({1, . . . , d}) = {1, . . . , d} (35)

(and thusλ({d + 1, . . . , 2d}) = {d + 1, . . . , 2d}). This condition implies that the pair
(u, v) = e0 in (5) is complementary. The corresponding vertex pair ofP × Q is the ar-
tificial equilibrium (0, 0). (Property (35) also implies thate1 in Lemma 3 is complementary,
which defines the completely mixed equilibrium.)

The following proposition describes the construction of a bimatrix game(A,B) using
P in (33), andQ defined byQ in (34) with labels given by a permutationλ fulfilling (35).
The proposition shows how to obtainA from B> by permuting rows and columns suitably.

Proposition 10 Consider a pair of dual cyclic polytopes in dimensiond with 2d facets, with
each vertex set represented by the set of Gale evenness stringsG(d). Letλ be a permutation
of {1, . . . , 2d} that fulfills (35). For k = 1, . . . , 2d, a vertexu in G(d) of the first polytope
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has the labelsk whereuk = 1, a vertexv in G(d) of the second polytope has the labels
λ(k) wherevk = 1. A vertex pair(u, v) is complementary if it has all labels. Then ad× d

bimatrix game(A,B) with Nash equilibria corresponding to complementary vertex pairs,
where the artificial equilibrium corresponds toe0 in (5), is given byB> = −SDC-1 as in
(33), using a representation(31)of a dual cyclic polytope consistent with the Gale evenness
ordering. The matrix entriesa(i, j) of A are obtained from the matrix entriesb(i, j) of B by

a(λ(i), λ(j + d) − d) = b(j, i) (1 ≤ i, j ≤ d). (36)

Proof. For the characterization of equilibria, the combinatorial structure of the dual cyclic
polytopes suffices, as given by the Gale evenness stringsG(d). BothP in (33) andQ in (34)
are representations of such polytopes. By assumption, fork = 1, . . . , 2d, thekth inequality
of (33) has labelk, and thekth inequality of (34) has labelλ(k).

Let B> = −SDC-1 , define the matrixA with entriesa(i, j) by (36), and let

Q = { y ∈ Rd | Ay ≤ 1, y ≥ 0 } . (37)

The polytopesP andQ in (33), (37) correspond to the bimatrix game(A,B), as in (3). The
facets ofQ have labels in the order of the inequalities in (37). It suffices to show that these
labelsk correspond to the labelsλ(k) of Q stated above.

In detail, the inequalities in (34) are

Q = {y ∈ Rd |

d∑

j=1

b(j, i) yj ≤ 1 (1 ≤ i ≤ d),

yj ≥ 0 (1 ≤ j ≤ d) } .

(38)

For 1 ≤ j ≤ d, the(d + j)th inequality in (38) has labelλ(d + j). Hence, it should appear
as theλ(d + j)th inequality in (37), which by (35) is the inequalityy�(d+j)-d ≥ 0. This is
achieved by the correspondence betweeny in (37) andy in (38) given byy�(d+j)-d = yj .

The ith of the firstd inequalities in (38), for1 ≤ i ≤ d, has labelλ(i). It should
appear as theλ(i)th inequality in (37). That inequality has the form

d∑

l=1

a(λ(i), l) yl ≤ 1 ,

which by (35) can be rewritten as

d∑

j=1

a(λ(i), λ(d + j) − d) y�(d+j)-d ≤ 1 ,

which by (36) is theith inequality of (38) as claimed.
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Consider the following6× 6 bimatrix game(A,B) with

A =




−180 72 −333 297 −153 270

−30 17 −33 42 −3 20

−81 36 −126 126 −36 90

90 −36 126 −126 36 −81

20 −3 42 −33 17 −30

270 −153 297 −333 72 −180




, B =




72 36 17 −3 −36 −153

−180 −81 −30 20 90 270

297 126 42 −33 −126 −333

−333 −126 −33 42 126 297

270 90 20 −30 −81 −180

−153 −36 −3 17 36 72




.

The matrixA is obtained fromB via (36) with λ = l ′ in (4). The matrixB is obtained
as in Proposition 10. The underlying representation (31), however, is not based on points
(t, t2, t3, t4, t5, t6) of the moment curve, but on pointsν(t) of the trigonometricmoment
curve,ν(t) = (cost, sint, cos2t, sin2t, cos3t, sin3t). These points also give rise to cyclic
polytopes [37, p. 75f] [8, p. 67]. Fort = iπ/6 for i = 1, . . . , 12, the first pair of coordinates
of ν(t) denote the vertices of a regular 12-gon, the second pair those of a regular hexagon,
used twice, and the third pair those of a square, used three times. The origin is in the interior
of the convex hull of these vertices, so the polytope does not have to be translated to obtain its
polar. The combinatorial structure is preserved by choosing suitable integer coordinates near
the points on the circle, which are shown in Figure 4; payoffs have been multiplied by 18
to obtain integers. (The square is represented perfectly; choosing as its vertices instead the
points(1, 0), (0, 1), (−1, 0), (0, −1), say, would not changeB as the affine transformation
that produces (32) always gives the unit vectors as the normal vectors of the firstd facets
of P.) It is an open problem to find suitable approximations with small integers in higher
dimensions that preserve the combinatorial structure.

The bimatrix game(A ′, B) with

A ′ =




−81 36 −126 126 −36 90

−180 72 −333 297 −153 270

20 −3 42 −33 17 −30

−30 17 −33 42 −3 20

270 −153 297 −333 72 −180

90 −36 126 −126 36 −81




is obtained from the permutationλ(k) = k−(−1)k for 1 ≤ k ≤ 12 in (36). This permutation
is used in [30], and the game(A ′, B) has 75 equilibria.
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FIGURE 4: Approximation of points on the trigonometric moment curve by small integers.
The circled numbers refer to the labelsi = 1, . . . , 12 of the vertices, which
become facets in the dual cyclic polytopeP.
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Appendix B: Examples of path lengths and paths

The following table and figures show the empirical evidence leading to our main Theorems
7 and 8. Table 1 shows the path lengths and their exponential growth, and that the lengths of
the short pathsπ(d, 3d/2) for d = 2, 4, 6, . . . are given by the Fibonacci numbers times two,
with every third Fibonacci number omitted. Figures 7, 10, 11, and 12 illustrate Theorem 7,
and Figures 8, 13, and 14 show cases of Theorem 8.

label dimension
2 4 6 8 10 12 14

1 4 20 88 376 1596 6764 28656
2 4 8 24 92 380 1600 6768
3 4 8 24 92 380 1600 6768
4 4 20 24 40 108 396 1616
5 10 24 40 108 396 1616
6 10 88 92 108 176 464
7 10 36 92 108 176 464
8 10 36 376 380 396 464
9 16 146 380 396 464
10 16 146 1596 1600 1616
11 36 42 612 1600 1616
12 36 42 612 6764 6768
13 42 152 2586 6768
14 42 152 2586 28656
15 146 68 618 10948
16 146 68 618 10948
17 152 178 2592
18 152 178 2592
19 612 178 644
20 612 178 644
21 618 288
22 618 288
23 2586 644
24 2586 644
25 2592
26 2592
27 10948
28 10948

TABLE 1: Path lengths for different dropped labels.
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In the following figures, each row displays two pivoting steps, one inP and one inQ,
so the number of the last row is to be multiplied by two to obtain the path length.

1 2 3 4 1 2 4 3

0 1 1 0 0 0 0 1 1
1 0 1 1 0 0 1 1 0
2 0 0 1 1 1 1 0 0

FIGURE 5: π(2, 1).

1 2 3 4 1 2 4 3

0 1 1 0 0 0 0 1 1
1 0 1 1 0 1 0 0 1
2 0 0 1 1 1 1 0 0

FIGURE 6: π(2, 4)

1 2 3 4 5 6 7 8 1 3 2 4 6 5 8 7

0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1
2 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1
3 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1
4 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0
5 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
6 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0
7 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0
8 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0
9 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0

10 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

FIGURE 7: π(4, 1)

1 2 3 4 5 6 7 8 1 3 2 4 6 5 8 7

0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1
2 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0
3 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0
4 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0
5 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0
6 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1
7 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1
8 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1
9 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1

10 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

FIGURE 8: π(4, 4)
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1 2 3 4 5 6 7 8 1 3 2 4 6 5 8 7

0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1
2 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1
3 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1
4 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1
5 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

FIGURE 9: π(4, 8)

1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1
2 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1
3 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1
4 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1
5 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1
6 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1
7 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1
8 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1
9 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1

10 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
11 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1
12 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1
13 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1
14 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1
15 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1
16 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1
17 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0
18 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0
19 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
20 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0
21 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0
22 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0
23 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
24 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0
25 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0
26 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0
27 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0
28 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0
29 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0
30 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0
31 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
32 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0
33 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0
34 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0
35 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
36 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0
37 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0
38 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0
39 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0
40 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0
41 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0
42 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0
43 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0
44 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

FIGURE 10: π(6, 1)
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1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 11

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1
2 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1
3 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1
4 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1
5 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
6 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1
7 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1
8 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1
9 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1

10 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1
11 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1
12 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1
13 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1
14 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1
15 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1
16 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 1
17 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1
18 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

FIGURE 11: π(6, 12)

30



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 3 2 5 4 7 6 8 10 9 12 11 14 13 16 15

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1
2 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1
3 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1
4 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1
5 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1
6 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1
7 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1
8 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1
9 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1

10 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1
11 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1
12 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1
13 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1
14 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1
15 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1
16 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1
17 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1
18 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1
19 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1
20 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
21 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1
22 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
23 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1
24 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1
25 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1
26 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1
27 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1
28 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1
29 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1
30 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1
31 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1
32 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1
33 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1
34 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1
35 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1
36 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1
37 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1
38 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1
39 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1
40 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1
41 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1
42 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1
43 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1
44 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1
45 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1
46 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1
47 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1
48 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1
49 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1
50 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1
51 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1
52 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1
53 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1
54 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1
55 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1
56 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1
57 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1
58 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1
59 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1
60 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1
61 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1
62 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1
63 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1
64 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1
65 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1
66 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1
67 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1
68 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1
69 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1
70 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1
71 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1
72 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
73 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3 2 5 4 7 6 9 8 10 12 11 14 13 16 15 18 17 20 19

0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1
2 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
3 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
4 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0
5 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0
6 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1
7 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1
8 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1
9 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1

10 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
11 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0
12 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0
13 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0
14 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0
15 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0
16 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0
17 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0
18 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0
19 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0
20 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0
21 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0
22 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
23 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0
24 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0
25 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0
26 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0
27 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0
28 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0
29 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0
30 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0
31 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0
32 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0
33 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0
34 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0
35 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0
36 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0
37 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
38 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
39 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0
40 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0
41 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0
42 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0
43 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0
44 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0
45 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0
46 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3 2 5 4 7 6 9 8 10 12 11 14 13 16 15 18 17 20 19

0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1
3 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1
4 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1
5 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1
6 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1
7 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1
8 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0
9 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1

10 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1
11 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1
12 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1
13 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0
14 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0
15 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0
16 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0
17 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1
18 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1
19 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1
20 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1
21 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0
22 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1
23 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1
24 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1
25 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1
26 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0
27 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0
28 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0
29 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0
30 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1
31 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1
32 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
33 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1
34 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0
35 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0
36 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0
37 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0
38 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1
39 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1
40 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1
41 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1
42 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0
43 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1
44 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1
45 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1
46 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1
47 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0
48 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0
49 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0
50 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0
51 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1
52 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1
53 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1
54 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1
55 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0
56 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1
57 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1
58 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1
59 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
60 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
61 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
62 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1
63 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0
64 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1
65 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
66 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
67 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1
68 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0
69 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0
70 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0
71 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0
72 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
73 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1
74 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1
75 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
76 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
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